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Summary. We characterize strong cohomological dimension of separable metric spaces
in terms of extension of mappings. Using this characterization, we discuss the relation
between strong cohomological dimension and (ordinal) cohomological dimension and give
examples to clarify their gaps. We also show that IndG X = dimG X if X is a separable
metric ANR and G is a countable Abelian group. Hence dimZ X = dim X for any separable
metric ANR X.

1. Introduction. Strong cohomological dimension was introduced by
Kodama [11] as an inductive dimension in cohomological dimension theory
for compacta, and we generalize it to separable metric spaces. All spaces
considered in this note are assumed to be separable and metrizable.

Definition 1. X has strong cohomological dimension at most n with
respect to an Abelian group G, written IndGX ≤ n, provided that for any
pair of a closed subset A and an open subset U containing A, there exists
an open subset V ⊂ X such that

A ⊂ V ⊂ U and dimG ∂V ≤ n− 1.

We define
IndGX = min{n : IndGX ≤ n}.

Here dimGX denotes the cohomological dimension of X with respect to G.
Namely, dimGX≤n means that every map f : A → K(G,n) of any closed
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subset A ofX to an Eilenberg–MacLane space admits a continuous extension
F : X → K(G,n).

Note that in the above definition, if we take a singleton as A, we obtain
the definition of the small strong cohomological dimension indGX. It is easily
seen that for a separable metric space X, indGX = IndGX. Some of the
results in this paper may be generalized to wider classes of spaces, but our
interest here is restricted to separable metric spaces.

In [9] we showed that IndGX ≤ n if and only if for given disjoint closed
subsets A and B in X, there exists a separator C between A and B such that
dimGC ≤ n − 1. For a nontrivial Abelian group G, Kodama [11] provided
fundamental properties of strong cohomological dimension and showed the
following:

Theorem 1.1 ([11, Theorem 38-6]). For any nontrivial Abelian group G
we have the following :

(1) dimGX ≤ IndGX ≤ dimGX + 1,
(2) IndGX ≤ IndX = dimX,
(3) IndGX ≤ 1⇔ IndX ≤ 1.

Theorem 1.2 ([11, Lemma 38-9]). For every 2-dimensional compact
ANR X and every nontrivial Abelian group G, we have the equality dimGX
= IndGX = dimX = 2.

In connection with the above result, Kodama asked ([11, Problem 38-10]):
If X is a compact ANR, does the equality dimGX = IndGX hold for every
Abelian group G?

This was answered affirmatively by the authors in [9] using the Borsuk–
Sieklucki theorem for cohomological dimension.

Borsuk–Sieklucki theorem for cohomological dimension ([3],
[9], [1]). Suppose that X is a compact ANR and G is an Abelian group.
Let {Xα}α∈J be an uncountable family of closed subsets of X. If dimGX =
dimGXα = n for all α ∈ J, then dimG(Xα ∩Xβ) = n for some α 6= β.

In this paper we shall give a characterization of IndG, where G is a
countable Abelian group, as an application of the following theorem.

Generalized Eilenberg–Borsuk theorem ([4], [6]). Let K be a
countable CW-complex and let X be a separable metric space. If K ∗ L is
an absolute neighborhood extensor of X for some CW-complex L, then for
any map f : A→ K with A closed in X, there exists a continuous extension
f ′ : U → K of f over an open set U such that L ∈ AE(X \ U).

Then we shall add several fundamental properties of IndG and give sev-
eral examples to show the gap between strong cohomological dimension and
cohomological dimension.
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Another application of the generalized Eilenberg–Borsuk theorem is to
prove that dimGX = IndGX for every separable metric ANR X and every
countable Abelian group G such that dimGX > 1. This is done by methods
entirely different from those in [9].

2. Results. We shall give a characterization of IndG by using the termi-
nology of extension theory. A space Y is an absolute extensor of a space X,
denoted by Y ∈ AE(X), if every map f : A→ Y with A closed in X extends
over X. Thus, dimGX ≤ n means X ∈ AE(K(G,n)). We denote by ΣX
the reduced suspension of a pointed space X.

For a prime number p, Zp is the cyclic group of order p and Z(p) is the
group of all rational numbers m/n such that n is relatively prime to p; Q is
the additive group of rational numbers.

Theorem 2.1. Suppose X is a separable metric space, G is a countable
Abelian group and n > 1. Then the following conditions are equivalent.

(1) IndGX ≤ n.
(2) Σ(K(G,n− 1)) ∈ AE(X).

Proof. (2)⇒(1). This follows from the generalized Eilenberg–Borsuk the-
orem. Namely, given disjoint closed subsets A and B in X, the map A∪B →
S0 = {−1, 1} extends over a neighborhood of A ∪ B so that K(G,n − 1) ∈
AE(X \ U). In particular, dimG ∂U ≤ n.

(1)⇒(2). Let f : A → ΣK(G,n) be a given map of a closed subset
A of X. There is an open subset U of X with A ⊂ U and an extension
f̃ : U → ΣK(G,n) of f . Since IndGX ≤ n, there is an open subset V of X
such that A ⊂ V ⊂ ClV ⊂ U and dimG ∂V ≤ n − 1. Then f̃ |∂V ' 0. This
yields a map g : X \ V → ΣK(G,n). Therefore we can define the extension
F : X → ΣK(G,n) by F |V = f̃ |V and F |X\V = g.

Since S1 is K(Z, 1) and so ΣK(Z, 1) ∼= S2, we have

Corollary 2.2. For every separable metric space X, IndZX ≤ 2 is
equivalent to dimX ≤ 2.

Corollary 2.3. If an infinite-dimensional separable metric space X has
dimZX = 2, then IndZX = 3.

For an infinite-dimensional compactum X with dimZX = 2, by Edwards’
cell-like resolution theorem, there exist a compactum Z with dimZ = 2 and
a cell-like map f : Z → X. Thus, IndZ Z < IndZX. This yields

Corollary 2.4. A cell-like map does not preserve integral strong coho-
mological dimension.

Theorem 2.5. For each prime p there is a compactum X such that
dimZ(p)

X = 2 and IndZ(p)
X = 3.



186 J. Dydak and A. Koyama

Proof. Let X be an infinite-dimensional compactum such that dimZ(p)
X

= 2 and dimH X = 1 for every Bockstein group H 6= Z(p) (see [12, Corol-
lary 3.2]). If IndZ(p)

X = 2, then X has a basis consisting of open sets V such
that dimH ∂V ≤ 1 for each Bockstein group H. In particular, dimZ ∂V ≤ 1,
which implies dim ∂V ≤ 1. That means dimX ≤ 2, a contradiction.

Remark 1. In connection with Corollaries 2.2 and 2.3 note the following
fact: Let G be an Abelian group. If a separable metric space X has dimGX =
1 < dimX, then IndGX = 2. For example, take the Pontryagin surface Πp.
Then for any prime number q 6= p, dimZq Πp < IndZq Πp = 2. On the other
hand, [9, Corollary 4.8] (or see Theorem 2.11 below) shows that for any finite-
dimensional separable metric space X and any countable Abelian group G, if
dimGX ≥ 2, then dimGX = IndGX. Hence for any separable metric space
X and Abelian group G, if 2 ≤ dimGX 6= IndGX and G is countable, then
X has to be infinite-dimensional, and if 2 ≤ dimGX 6= IndGX and X is
finite-dimensional, then G has to be uncountable.

Indeed, we do not know whether for each n ≥ 3 there exist a compactum
X and an Abelian group G such that n = dimGX < IndGX. Readers
may think that the product of the compactum in Theorem 2.5 and the unit
interval should be an example. However, the next theorem shows that this
is not the case.

Theorem 2.6. If X is a separable metric space and G is an Abelian
group, then IndG(X × I) = dimG(X × I).

Proof. It is shown in [5, Proposition 1.17] that for any neighborhood U
of a closed subset A in X × I there is a closed neighborhood V ⊂ U of A
such that ∂V is the union of a locally finite family {Bs}s∈S of closed sets,
each homeomorphic to a closed subset of X. That proves IndG(X × I) ≤
dimGX + 1. Since dimG(X × I) = dimGX + 1, we are done.

Corollary 2.7. Let X be a separable metric space and let G be an
Abelian group. If dimGX < IndGX, then IndG(X × I) = IndGX.

Remark 2. As seen in Remark 1, for distinct prime numbers p 6= q,
IndZq Πp = 2. Then, by Dranishnikov’s acyclic resolution theorem, there
exist a compactum Z with dimZ = 1 and a Zq-acyclic map f : Z → Πp.
Hence Zq-acyclic maps do not preserve IndZq .

Theorem 2.8. If a separable metric space X has dimQX = n > 1, then
IndQX = n.

Proof. In general, for m ≥ 2, by [8, Lemma 9.4], K(Q,m) has the same
extension type as M(Q,m), where for an Abelian group G, M(G,m) is a
Moore space of type (G,m). Namely, for a metrizable space Y , K(Q,m) ∈
AE(Y ) if and only if M(Q,m) ∈ AE(Y ). Now, by the assumption that
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dimQX = n, M(Q, n) ∈ AE(X). Here we may suppose that M(Q, n) =
ΣM(Q, n − 1) and M(Q, n − 1) is a countable CW-complex. Therefore for
given disjoint closed subsets A and B in X, in the same way as in the proof of
Theorem 2.1(2)⇒(1), we can find a separator C between A and B such that
M(Q, n− 1) ∈ AE(C). Then K(Q, n− 1) ∈ AE(C). Thus, IndQX ≤ n.

Remark 3. In view of our examples and Theorem 2.8 we may pose the
problem of characterizing the class of Abelian groups G such that IndGX =
dimGX for every (finite-dimensional) separable metric space X. In particu-
lar, we may restrict our interest to finite cyclic groups Zp or finite groups.

Next we give another application of the generalized Eilenberg–Borsuk
theorem. Here we consider separable metric ANRs instead of finite-dimen-
sional separable metric spaces. We need the following result from [7].

Theorem 2.9. Suppose that X is metrizable and K is a connected CW-
complex such that dimπm(K)X ≤ m for each m ≥ 1. Then K ∈ AE(X) in
the following cases:

(1) πm(K) = 0 for m sufficiently large,
(2) dimX <∞,
(3) X is an ANR.

Moreover , if K is simply connected , the condition “dimπm(K)X ≤ m for
each m ≥ 1” can be replaced by “dimHm(K)X ≤ m for each m ≥ 1”.

Corollary 2.10. For a separable metric ANR X, an Abelian group G
and n > 1, M(G,n) ∈ AE(X) is equivalent to K(G,n) ∈ AE(X).

Theorem 2.11. Let G be a countable Abelian group. Suppose X is a sep-
arable metric ANR or a finite-dimensional separable metric space. If dimGX
> 1, then IndGX = dimGX.

Proof. Suppose dimGX = n > 1. As in the proof of Theorem 2.8, it
suffices to show that M(G,n) ∈ AE(X). In both cases, by Theorem 2.9, the
required condition is equivalent to dimπm(M(G,n))X ≤ m for each m ≥ 1,
and the second condition is equivalent to dimHm(M(G,n)) X ≤ m for each
m ≥ 1 since n ≥ 2. However, this is clear because dimGX ≤ n.

Corollary 2.12. For every separable metric ANR X,

dimX = dimZX = IndZX.

Those results are generalizations of ones in [13] to separable metric ANRs.
However, our proof is completely different.

Remark 4. Kodama posed another problem relating to IndG ([11, Prob-
lem 38-8]): Let f : X → Y be a closed surjective map between sepa-
rable metric spaces and let G be an Abelian group. Does the inequality
dimGX ≤ IndG Y +dimG f hold? Here dimG f = sup{dimG f

−1(y) | y ∈ Y }.
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To show that the answer is negative, consider finite-dimensional compacta
Y and F such that dimZp∞ (Y ×F ) > dimZp∞ Y +dimZp∞ F and dimZp∞ Y =
dimZp∞ F = 2 (Zp∞ is the p-torsion of Q/Z). Let X = Y × F and let
f : X → Y be the projection. Now

dimZp∞ X > dimZp∞ Y + dimZp∞ f,

and it suffices to invoke Theorem 2.11.

Remark 5. We do not know whether countability of G is essential in
our results. In particular, we can ask whether dimGX = IndGX for every
separable metric ANR X and every Abelian group G.

3. Remarks. Recently Chigogidze [2] reformulated extraordinary di-
mension theories as follows.

Definition 2. Let L be a CW-complex and X be a space. We say that

(i) IndLX ≤ 0 if and only if L ∈ AE(X);
(ii) IndLX ≤ n, n ∈ N, if and only if for every closed subset A and

every open neighborhood V of A in X, there exists an open subset
U such that A ⊂ U ⊂ V and IndL ∂U ≤ n− 1.

We define

IndLX =
{

inf{n ≥ 0 : IndLX ≤ n} if such an n exists,
∞ if IndLX � n for any n ∈ N ∪ {0}.

If we take a singleton for A in the above, we obtain the definition of the
small inductive dimension indLX. Moreover, we set

dimLX = min{n ∈ N ∪ {0} : ΣnL ∈ AE(X)},
where ΣnL denotes the iterated suspension of L and Σ0L = L.

By the definition we easily see that IndS0 X = IndX, indS0 X = indX
and dimS0 X = dimX for any space X. IndSn X ≤ 0 if and only if dimX
≤ n, and IndK(G,n)X ≤ 0 if and only if dimGX ≤ n. Hence IndGX ≤ n
if and only if IndK(G,n−1)X ≤ 1. Therefore we may say that we have
considered the problem under what conditions on X and G the inequality
IndK(G,n−1)X ≤ IndK(G,n)X +1 holds. More generally, we can ask whether
IndΩLX ≤ IndLX + 1, where ΩL is the loop space of a pointed CW-com-
plex L. Theorem 2.1 essentially says the following:

Theorem 3.1. Let L be a countable CW-complex. Then IndLX =
IndΣLX + 1.

Corollary 2.3 and Theorem 2.5 yield

Theorem 3.2. There exists a simply connected countable CW-complex
L and a compactum X such that IndΣΩLX 6= IndLX.
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