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Summary. For some classes X ⊂ 2Bn of closed subsets of the disc Bn ⊂ Rn we prove
that every Hausdorff-continuous mapping f : X → X has a fixed point A ∈ X in the sense
that the intersection A ∩ f(A) is nonempty.

1. Introduction. The aim of fixed point theory is to study the equa-
tion f(x) = x for mappings f : T → T of a topological space T . Many
generalizations of theorems of the classical fixed point theory were obtained
for set-valued mappings (also called multivalued mappings) F : T → 2T and
their fixed points x ∈ F (x), [2].

The idea of this paper is to consider the remaining two possibilities:

(1) a mapping φ : 2T → T , where A ∈ 2T is called a fixed point of φ if
A 3 φ(A), and

(2) a mapping Φ : 2T → 2T , where A ∈ 2T is called a fixed point of Φ if
A ∩ Φ(A) 6= ∅.

Of course in both cases the set 2T of all subsets of T can be replaced by
some class X ⊂ 2T of subsets of T : we have φ : X → T in (1) and Φ : X → X
in (2). (Observe that in the case X = 2T the mappings φ and Φ have an
obvious fixed point A = T .)

In what follows we assume that the classX contains no singleton {t} ⊂ T .
In this way our considerations fall within the domain of mereology. We recall
that mereology is a set theory founded by S. Leśniewski [1886–1939]. In this
theory the notion of a point y ∈ Z is replaced by the notion of a region
Y v Z [3]. We stress that this paper does not belong to mereology—we use
the standard ZFC-mathematics.
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In this paper we focus on the Brouwer case:

T = Bn =
{
(x1, . . . , xn) ∈ Rn :

n∑
j=1

(xj)
2 ≤ 1

}
.

To justify the notion of fixed point from (2) let us consider the following

Example. Let T = B2, X the set of all regular polygons with n vertices
in B2, and Φ rotation of angle π/n about 0. Of course there is no A ∈ X
with A = Φ(A), but A ∩ Φ(A) is nonempty e.g. for every regular polygon A
with center at 0.

2. A simple fixed point schema. Denote by d the Hausdorff metric
dH or the Borsuk continuity metric dB ([1]) in the set of all nonempty closed
subsets of the disc Bn. By a simple fixed point schema we understand a
situation described in the assumptions of the following

Theorem 1. Let X ⊂ 2Bn be such that

(i) Every continuous mapping F : Bn → (X, d) has a fixed point x ∈
F (x).

Assume also that

(ii) There exists a continuous mapping G : Bn → (X, d) such that every
point x ∈ Bn is a fixed point of G.

Then every continuous mapping Φ : (X, d)→ (X, d) has a fixed point.

Proof. The mapping F := Φ◦G has a fixed point x ∈ Φ(G(x)) by (i) and
x ∈ G(x) by (ii). Thus Φ(G(x)) ∩G(x) 6= ∅, so G(x) is a fixed point of Φ.

Example. Let X be the set of all closed convex subsets of Bn with
nonempty interior and diameter ≤ ε. Then every continuous mapping Φ :
(X, dH) → (X, dH) has a fixed point. Assume that ε < 2 to eliminate the
obvious fixed point A = Bn. To prove the existence of a fixed point of
Φ we use the simple fixed point schema with (i) being the special case of
the well known Kakutani [5] fixed point theorem. The mapping G in (ii) is
constructed as follows. Fix x ∈ Bn. Then x lies on a segment OP with O = 0,
P ∈ ∂Bn = Sn−1 and divides OP in the ratio of t : (1 − t) = |Ox| : |xP |.
Define G(x) to be the closed ball with radius ε/2 and center C ∈ OP such
that for {D} = CP ∩ ∂G(x) we have x ∈ CD and |Cx| : |xD| = t : (1− t).

Remark. The same proof based on the simple fixed point schema with
the Kakutani theorem replaced by the Eilenberg–Montgomery fixed point
theorem shows that if Y is the set of all Q-acyclic nonsingleton subsets of
Bn of diameter ≤ ε then every continuous mapping Φ : (Y, dH) → (Y, dH)
has a fixed point.
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Let us note that the only assumption (i) of the simple fixed point schema
does not guarantee the existence of a fixed point of Φ. Consider the following

Example. Let X be the set of all right-angled triangles in B2. Then
(i) is satisfied for n = 2 and d = dH by the Kakutani fixed point theorem.
Nevertheless we will construct a fixed point free continuous mapping Φ :
(X, d)→ (X, d). Let ABC ∈ X be a triangle with hypotenuse AB. Consider
the perpendicular bisector s of the segment AB and {P1, P2} = s ∩ ∂B2.
Choose P := Pi from {P1, P2} so that P and C lie on the opposite sides of
the line AB. Let j : R2 → R2 be the map

j(z) = P + k · (z − P )
with k = k(A,B) > 0 continuous in (A,B) and small enough to make the
sets ABC and j[ABC] disjoint. One can check that these conditions are
satisfied e.g. by

k =
1−

√
1− (|AB|/2)2

1−
√

1− (|AB|/2)2 + |AB|
.

Then Φ(ABC) := j[ABC] is Hausdorff-continuous and fixed point free.
We now derive the above formula for k. Let {Q} = PC ∩ AB. It is

sufficient to take k < |PQ| : |PC|. If H is the center of the segment AB then
|PQ| ≥ |PH| and |PC| ≤ |PH|+ |HC|, |HC| < max{|AC|, |BC|} < |AB|.
It is enough to take k ≤ |PH| : (|PH| + |AB|). The right hand side of this
inequality is increasing in |PH|. Given the length |AB|, the minimal value of
|PH| is achieved for A,B ∈ ∂B2. Thus min{|PH|} = 1 −

√
1− (|AB|/2)2,

which yields the formula for k.
Another benefit from the above proof is the corollary that (ii) is not

satisfied: there is no Hausdorff-continuous set-valued mapping G : B2 → 2B2

taking right-angled triangles as values with x ∈ G(x) for every x ∈ B2. This
seems to be of independent interest.

For another example of this type take X to be the class of all two-point
sets in Bn and construct a Hausdorff-continuous fixed point free mapping
Φ : X → X as follows. Fix {A,B} ∈ X, C = (A + B)/2, j : R2 → R2 with
j(z) = C+(z−C)/2, Φ({A,B}) = j[{A,B}]. The condition (i) is guaranteed
by the fact that every Hausdorff-continuous mapping F : Bn → X splits into
two continuous selectors. This follows because the graph

ΓF = {(x, y) ∈ Bn × Bn : y ∈ F (x)}
of F covers Bn and Bn is simply connected [4]. In this case we use a mon-
odromy property [4, 15.2, p. 87], analogous to the well known fact on exten-
sions of analytic functions.

3. Two more examples. In this section we give examples of classes
X ⊂ 2Bn which do not satisfy the condition (ii) in the simple fixed point
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schema but nevertheless guarantee the existence of fixed points of Hausdorff-
continuous mappings Φ : X → X.

Example. Let X be the set of all non-degenerate segments in Bn (i.e.,
of positive length). We prove that condition (ii) is not satisfied. Suppose for
contradiction that there is a Hausdorff-continuous mapping G : Bn → X
such that x ∈ G(x) for every x ∈ Bn. The end-points of the segment G(x)
for x ∈ Bn are two continuous selectors of G. Denote these selectors by
A1, A2 : Bn → Bn. Of course, there is i ∈ {1, 2} with Ai(x) = x for every
x ∈ ∂Bn. Then the mappings A1 and A2 have a coincidence point c ∈ Bn
such that A1(c) = A2(c). This is a contradiction because our segments are
not singletons. (If A1 and A2 had no coincidence point then the formula

{r(x)} := ∂Bn ∩ {Aj(x) + t(Ai(x)−Aj(x)) : t > 0} for i 6= j ∈ {1, 2}

would provide a retraction r : Bn → ∂Bn, which is impossible.)

Theorem 2. Let X be the set of all segments in Bn of positive length.
Then every Hausdorff-continuous mapping φ : X → Bn has a fixed point.

Proof. Every segment in Bn can be parallel translated to have center
at 0. In this way the set X1 of all segments in Rn with center 0 and length
≤ 2 is a strong deformation retract of (X, dH). The space of all segments
with center 0 and length 2 in Rn is the real projective space RPn−1. We have
the homotopy equivalence e : X → RPn−1:

X ' X1 ≈ RPn−1 × (0, 1] ' RPn−1.

LetX2 be the space of all segments with end-points P , P/2 for P ∈ ∂Bn. The
mapping h : Sn−1 → X2, h(P ) = PP ′ with P ′ = P/2, is a homeomorphism.

Suppose for a contradiction that there exists a fixed point free continuous
mapping φ : X → Bn. Projecting the segment J ∈ X from the point φ(J)
into the sphere ∂Bn we obtain an arc L(J) with center c(J) ∈ L(J). We thus
get a continuous function c : X → ∂Bn. Consider the commuting diagram

X2
i // X

��

c // Sn−1

Sn−1

OO

π // RPn−1

with i the inclusion and π the projection, and the sequence

Hn−1(Sn−1,Z2)
h?−→ Hn−1(X2,Z2)

i?−→ Hn−1(X,Z2)
c?−→ Hn−1(Sn−1,Z2).

Since π? = 0 and π = e ◦ i ◦ h, we have i? = 0. On the other hand, we
will prove that c?i?h? = id, which is a contradiction. Indeed, observe that

c ◦ i ◦ h(P ) = c(PP ′) ∈ L(PP ′) and P ∈ L(PP ′).
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We can move the point P along the arc L(PP ′) to the point c(PP ′), getting
a homotopy

c ◦ i ◦ h ' idSn−1 .

Thus c? ◦ i? ◦ h? = id 6= 0, a contradiction.

Corollary. For X from Theorem 2, every Hausdorff-continuous map-
ping Φ : X → X has a fixed point.

Proof. Denote by s(J) the center of the segment J . The mapping φ :=
s ◦ Φ has a fixed point J by Theorem 2. Thus s(Φ(J)) ∈ J and s(Φ(J)) ∈
Φ(J) ∩ J 6= ∅, so J is a fixed point of Φ.

Remark. The same proofs show that Theorem 2 and the Corollary are
true for the class X of all segments in Bn of positive length ≤ ε.

Now we return to the first example in this paper.

Example. Let X be the set of all regular polygons in B2 with n ver-
tices and of diameter ≤ ε. If ε = 2 then every Hausdorff-continuous mapping
Φ : X → X has a fixed point A ∈ X which is a regular polygon inscribed in
∂B2. In fact, suppose for contradiction that Φ(A) ⊂ B2\A for every A ∈ X in-
scribed in S1. Fix such an A. The set B2\A has n components C1, . . . , Cn and

Φ(A) ⊂ Ci for some i.

We rotate A about 0. Let Oα : R2 → R2 denote the rotation of angle α about
0 in R2. Of course Φ(Oα[A]) ⊂ Oα[Ci]. For α = 2π/n we get a contradiction:

Oα[A] = A but Oα[Ci] = Ci+1.

In what follows we assume that ε < 2.
We prove that (ii) from the simple fixed point schema is not satisfied.

Suppose for contradiction that there is a Hausdorff-continuous mapping G :
B2 → X such that x ∈ G(x) for every x ∈ B2. Since B2 is simply connected,
the vertices w1(x), . . . , wn(x) of the polygon G(x) for x ∈ B2 are continuous
selectors of G (for the argument see the end of Section 2). Of course there
exists i such that

wi(x) = x for every x ∈ ∂B2.

We can assume that i = 1. Denote by S1(x) the circle circumscribed around
the regular polygon G(x). By a similarity of the type R2 3 P 7→ λ(P −P0) ∈
R2 we identify S1(x) with S1. Note that this similarity involves no rotation.
Since w1(x) ∈ S1(x) ≈ S1, we have

S1
i
⊂ B2

w1−→ S1.
Denote by deg the Brouwer degree. As B2 is contractible, deg(w1 ◦ i) = 0.
On the other hand we will prove that w1 ◦ i ' id, so deg(w1 ◦ i) = 1,
a contradiction.
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To prove the last homotopy relation it is sufficient to show that x ∈ S1 =
∂B2 and w1(x) ∈ S1 ≈ S1(x) are antipodal points for no x ∈ S1. Denote
by Cx the center of the polygon G(x). We should check that the angle α
between the segments Ox and Cxw1(x) = Cxx is not 180◦ for any x ∈ S1.
Fix x ∈ S1. The supremum of α over all possible regular polygons G(x) in
B2 with vertices w1 = x,w2, . . . , wn is achieved for w2 ∈ S1 (or equivalently
for wn ∈ S1) in the limit w2 → w1. In this way sup{α : all possible G(x)} =
π/n < π, which proves the homotopy w1 ◦ i ' id.

Theorem 3. Let X be the set of all regular n-gons in B2 of diameter
≤ ε < 2. Then every Hausdorff-continuous mapping φ : X → B2 has a fixed
point.

Proof. Every regular n-gon in B2 can be parallel translated so as to have
center 0. In this way the set X1 of all regular n-gons with center at 0 and
diameter ≤ ε in R2 is a strong deformation retract of (X, dH). The subspace
Xε

1 of X1 of polygons with diameter ε is homeomorphic to S1. We have the
homotopy equivalence e : X → S1:

X ' X1 ' Xε
1 ≈ S1.

Let X2 be the space of all polygons WP ∈ X with a vertex P ∈ ∂B2, with
center in the segment OP and diameter ε. The mapping h : S1 → X2,
h(P ) =WP , is a homeomorphism.

Let i : X2 → X be the inclusion. The mapping e◦i◦h is not an injection—
it winds the circle S1 n-times around S1.

Suppose for a contradiction that there exists a fixed point free continuous
mapping φ : X → B2. Projecting the polygon W ∈ X from φ(W ) to the
circle ∂B2 we obtain an arc L(W ) with center c(W ) ∈ L(W ). We thus get a
continuous function c : X → ∂B2. Consider the commuting diagram

X2
i // X

��

c // S1

S1

OO

pn // S1

with i the inclusion, and pn(z) = zn for z ∈ S1 ⊂ C. Consider the sequence

H1(S1)
h?−→ H1(X2)

i?−→ H1(X)
c?−→ H1(S1)

of homology groups with integer coefficients. All groups in this sequence are
isomorphic to Z. We will show that i? = ×n and c?i?h? = id, which will give
a contradiction. Fixing generators we can write

Z h?−→ Z i?−→ Z c?−→ Z.
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Since pn? = ×n and pn = e ◦ i ◦ h, we have i? = ×n. On the other hand,
c ◦ i ◦ h(P ) = c(WP ) ∈ L(WP ) and P ∈ L(WP ).

We can move the point P along the arc L(WP ) to c(WP ), getting a homotopy
c ◦ i ◦ h ' idS1 . Thus c? ◦ i? ◦ h? = id, a contradiction.

Corollary. For X from Theorem 3, every Hausdorff-continuous map-
ping Φ : X → X has a fixed point.

The proof is analogous to the proof of the Corollary after Theorem 2.

4. Résumé and open problems. The main positive results of this
paper can be summarized in

Theorem 4. Let X ⊂ 2Bn and X(ε) = {A ∈ X : diam(A) ≤ ε}. Then
the statement:

• Every Hausdorff-continuous mapping Φ : X(ε) → X(ε) has a fixed
point A ∈ X(ε) in the sense that A ∩ Φ(A) 6= ∅

is true for every class X from the following list:

1. The set of all closed convex subsets of Bn with nonempty interior.
2. The set of all nonsingleton Q-acyclic subsets of Bn.
3. The set of all segments in Bn.
4. The set of all regular n-gons in B2.

We ask if the list from Theorem 4 could be extended by the following
classes:

5, 6. The set of all convex n-gons in B2.
7, 8. The set of all n-gons in B2.
9–13. The set of all cubes (regular tetrahedrons, octahedrons, dodeca-

hedrons, icosahedrons) in B3.
14–15. The set of all closed curves in B3 (with the Borsuk continuity

metric [1] in place of the Hausdorff metric).

Addendum. Questions 9–13 were answered in the affirmative by the
author in October 2012; a paper is in preparation. The questions remain
unanswered e.g. for cubes in higher dimensions.
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