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Summary. We prove that the sums Sk of independent random vectors satisfy

P

(
max

1≤k≤n
‖Sk‖ > 3t

)
≤ 2 max

1≤k≤n
P (‖Sk‖ > t), t ≥ 0.

1. Introduction and result. Let {Xk}k∈N, N = {1, 2, 3, . . .}, be a
sequence of independent random vectors defined on a probability space
(Ω,F , P ). Set Sn =

∑n
k=1Xk, S0 = 0. The main result of this paper is

inspired by the following statement on p. 23 in [13]:

“It is known that if the inequality

(∗) P
(
max
1≤i≤n

‖Si‖ > t
)
≤ K max

1≤i≤n
P

(
‖Si‖ >

t

L

)
holds true for each n = 1, 2, . . . , for each t > 0, and for all sequences of
independent random vectors with values in an arbitrary Banach space F,
then L ≥ 3 and K ≥ 2. We do not know if

P
(
max
1≤i≤n

‖Si‖ > t
)
≤ 2 max

1≤i≤n
P

(
‖Si‖ >

t

3

)
.”

In this paper we prove

Theorem. If X1, . . . , Xn are independent random vectors, then for each
t ≥ 0,

(1.1) P
(
max
1≤k≤n

‖Sk‖ > 3t
)
≤ 2 max

1≤k≤n
P (‖Sk‖ > t).

2010 Mathematics Subject Classification: Primary 60E15; Secondary 11Y65.
Key words and phrases: maximal inequalities, ψ∗ dependence, continued fractions.

DOI: 10.4064/ba61-2-9 [155] c© Instytut Matematyczny PAN, 2013



156 Z. S. Szewczak

The inequality (∗) with L = K = 4 is stated in [5, Theorem 1(i)]. In
[16, pp. 3–4] the proof of (∗) with L = K = 3 by S. Kwapień can be found
(see also [13, p. 15]). This proof (see also [13, p. 16], [11, p. 149]) uses the
following variant of the Lévy–Ottaviani inequality (cf. [14], [15]):
(1.2)

P
(
max
1≤k≤n

‖Sk‖ > s+ t
)
≤ P (‖Sn‖ > t)

1−max1≤k≤n P (‖Sn − Sk‖ > s)
, s, t ≥ 0,

where s is such that max1≤k≤n P (‖Sn − Sk‖ > s) < 1. It should be pointed
out that (∗) with K = (3 +

√
5)/2, L = 3 is stated without proof in [13,

p. 23] (on p. 28 this result is attributed to J. Sawa).
There are many important applications of the Lévy–Ottaviani inequality

(cf. [2, p. 296], [7]), for example it proved to be useful for verification of the
Anscombe condition (cf. [4, p. 103], [6, p. 17]) and relative stability (cf. [1],
[17, Theorem 2]).

The paper is organized as follows: in the next section we prove (1.1), while
in the last section we generalize it to dependent vectors and give applications
to moment inequalities.

2. Proof of Theorem. We use Etemadi’s approach (cf. [5, p. 215], [2,
p. 288]), instead of (1.2) as in [13]. For fixed s, t ≥ 0 and k = 1, . . . , n consider
the sets

Ck = {‖Sn − Sn−j‖ ≤ s+ t for all 0 ≤ j < k, ‖Sn − Sn−k‖ > s+ t}.
The sets Ck, k = 1, . . . , n, are disjoint and

n⋃
k=1

Ck =
{
max
1≤k≤n

‖Sn − Sn−k‖ > s+ t
}
=
{
max
0≤k<n

‖Sn − Sk‖ > s+ t
}
.

Since {‖Sn‖ ≤ t; ‖Sn − Sn−k‖ > s+ t} ⊆ {‖Sn−k‖ > s} we obtain

P
(
max
0≤k<n

‖Sn − Sk‖ > s+ t; ‖Sn‖ ≤ t
)
=

n∑
k=1

P (Ck; ‖Sn‖ ≤ t)

≤
n∑
k=1

P (Ck; ‖Sn−k‖ > s) =

n∑
k=1

P (Ck)P (‖Sn−k‖ > s)

≤ max
1≤k<n

P (‖Sn−k‖ > s)P
(
max
0≤k<n

‖Sn − Sk‖ > s+ t
)
.

Thus we get

(2.1) P
(
max
0≤k<n

‖Sn − Sk‖ > s+ t; ‖Sn‖ ≤ t
)

≤ max
1≤k<n

P (‖Sk‖ > s)P
(
max
0≤k<n

‖Sn − Sk‖ > s+ t
)
.
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The above inequality and the obvious inclusion{
max
1≤k≤n

‖Sk‖ > s+2t
}
⊆ {‖Sn‖ > t}∪

{
max
0≤k<n

‖Sn−Sk‖ > s+ t; ‖Sn‖ ≤ t
}

yield

(2.2) P
(
max
1≤k≤n

‖Sk‖ > s+ 2t
)
≤ P (‖Sn‖ > t) + max

1≤k<n
P (‖Sk‖ > s).

Thus (1.1) follows from (2.2) for s = t.

3. Dependent random vectors. Let {Xk}k∈N be a sequence of random
vectors defined on a probability space (Ω,F , P ). Define

ψ∗n = sup
k∈N

sup

{
P (A ∩B)

P (A)P (B)
: P (A)P (B) > 0, A ∈ F k

1 , B ∈ F∞n+k
}
,

where F m
k is the σ-field generated by Xk, Xk+1, . . . , Xk+m, m ∈ N. For

properties of the coefficient ψ∗n, see [3, Vol. I, Chapter 5]. In this section
we provide some inequalities for sequences of dependent random vectors
satisfying ψ∗1 <∞. Among such sequences are digits of the regular continued
fraction expansion of irrational numbers. In this case ψ∗1 ≤ 2 ln 2 < 1.39 (with
respect to the Gauss measure) and ψ∗1 ≤ 12 ln 2

12−π2 ln 2
< 1.62 (with respect to the

Lebesgue measure) (cf. [9, Corollary 1.3.15, p. 49] and [3, Vol. I, Proposition
5.2(I)(c), p. 153]).

It is not difficult to see from the first part of the proof of the Theorem
(details are left to the reader) that for n ≥ 1 and s, t ≥ 0,

(3.1) P
(
max
0≤k<n

‖Sn − Sk‖ > s+ t; ‖Sn‖ ≤ t
)

≤ ψ∗1 max
1≤k<n

P (‖Sk‖ > s)P
(
max
0≤k<n

‖Sn − Sk‖ > s+ t
)
,

and for s such that ψ∗1 max1≤k<n P (‖Sn − Sk‖ > s) < 1,

(3.2) P
(
max
1≤k≤n

‖Sk‖ > s+ t
)
≤ P (‖Sn‖ > t)

1− ψ∗1 max1≤k<n P (‖Sn − Sk‖ > s)

(apply (3.1) to Xrev
k := Xn−k+1, k = 1, . . . , n). In particular,

(3.3) (1 + ψ∗1) max
1≤k≤n

P (‖Sk‖ > t) ≥ P
(
max
0≤k<n

‖Sn − Sk‖ > 2t
)
.

Further, by the second part of the proof of the Theorem,

(3.4) P
(
max
1≤k≤n

‖Sk‖ > s+ 2t
)

≤ P (‖Sn‖ > t) + ψ∗1 max
1≤k<n

P (‖Sk‖ > s)P
(
max
0≤k<n

‖Sn − Sk‖ > s+ t
)
,
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and for s such that ψ∗1 max 1≤k<n P (‖Sk‖ > s) < 1,

(3.5) P
(
max
1≤k≤n

‖Sk‖ > s+ 2t
)
≤ P (‖Sn‖ > t)

1− ψ∗1 max1≤k<n P (‖Sk‖ > s)
·

Thus by (3.4) we get

Corollary. Let X1, . . . , Xn be a sequence of random vectors such that
ψ∗1 <∞. Then

(3.6) P
(
max
1≤k≤n

‖Sk‖ > 3t
)
≤ (1 + ψ∗1) max

1≤k≤n
P (‖Sk‖ > t).

A generalization of (3.2) for the coefficient φ (see [3, Vol. I, Definition 3.3,
p. 67]), which is weaker than ψ∗ and asymmetric (cf. [3, Vol. I, Proposition
5.2(III)(a), p. 153]), is due to Iosifescu (cf. [8, Théorème 3, pp. 327–328], [10,
Lemma 1.1.6, p. 8]). An extension of the latter is formula (13) in [17, p. 69],
while the analogue of (3.6) is stated in [17, Proposition 8, p. 68].

As a simple application of these inequalities we consider moment inequal-
ities. Let q ≥ 1. Then setting in (3.5)

s =
(
(ψ∗1 +

√
2qψ∗1) max

1≤k<n
E(‖Sk‖q)

)1/q
,

we see by Markov’s inequality that for every t > 0,

P
(
max
1≤k≤n

‖Sk‖ > s+ 2t
)
≤ (1 +

√
ψ∗1/2

q)P (‖Sn‖ > t).

Therefore integration yields

E
((

max
1≤k≤n

‖Sk‖ − s
)+)q

≤ 2q(1 +
√
ψ∗1/2

q)E‖Sn‖q.

This and the inequality

((a− b)+)q ≥ 21−qaq − bq, a, b ≥ 0,

with a = max1≤k≤n ‖Sk‖ and b = s give

(3.7) 22q−1(1 +
√
ψ∗1/2

q)2 max
1≤k≤n

E(‖Sk‖q) ≥ E max
1≤k≤n

‖Sk‖q

(cf. [18, p. 339]). More generally we have

Proposition. Let X1, . . . , Xn be a sequence of random vectors such that
ψ∗1 <∞ and ϕ : R+ → R+ be a non-decreasing function. Then

(3.8) E
(
ϕ
(
max
1≤k≤n

‖Sk‖
))
≤ 2(1 + ψ∗1) max

1≤k≤n
E(ϕ(3‖Sk‖)).

We adapt the proof due to S. Kwapień (cf. [12]). Setting s = t in (3.5)
yields

P
(
max
1≤k≤n

‖Sk‖ > 3t
)
≤ P (‖Sn‖ > t)

1− ψ∗1 max1≤k<n P (‖Sk‖ > t)
.
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Define
t0 := inf

{
t : 2ψ∗1 max

1≤k<n
P (‖Sk‖ > t) ≤ 1

}
,

and let k0 be such that

max
1≤k<n

P (‖Sk‖ ≥ t0) = P (‖Sk0‖ ≥ t0).

Then 2ψ∗1P (‖Sk0‖ ≥ t0) ≥ 1 and
1

1− ψ∗1 max1≤k<n P (‖Sk‖ > t)
≤ 2

for t ≥ t0, while 2ψ∗1P (‖Sk0‖ > t) ≥ 1 for t < t0. Therefore,

P
(
max
1≤k≤n

‖Sk‖ > 3t
)
≤ 2P (‖Sn‖ > t) + 2ψ∗1P (‖Sk0‖ > t),

for all t ∈ R+. Hence, by Proposition 0.2.1 of [13], applied to ϕ(t/3),

E
(
ϕ
(
max
1≤k≤n

‖Sk‖
))
≤ 2E(ϕ(3‖Sn‖)) + 2ψ∗1E(ϕ(3‖Sk0‖)),

which concludes the proof of the Proposition.

Remark. For independent random vectors the Proposition was obtained
by S. Kwapień (cf. [12]) with constant 6; here we have replaced it by 4.
Observe also that for ϕ(t) = t4 from (3.8) we get constant 324, while (3.7)
gives 200. On the other hand, for q = 8 the inequality (3.7) gives 36992,
while (3.8) yields 26244.
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