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Summary. Let Ω be a countable infinite product ΩN
1 of copies of the same probabil-

ity space Ω1, and let {Ξn} be the sequence of the coordinate projection functions from
Ω to Ω1. Let Ψ be a possibly nonmeasurable function from Ω1 to R, and let Xn(ω) =
Ψ(Ξn(ω)). Then we can think of {Xn} as a sequence of independent but possibly nonmea-
surable random variables on Ω. Let Sn = X1 + · · ·+Xn. By the ordinary Strong Law of
Large Numbers, we almost surely have E∗[X1] ≤ lim inf Sn/n ≤ lim supSn/n ≤ E∗[X1],
where E∗ and E∗ are the lower and upper expectations. We ask if anything more precise
can be said about the limit points of Sn/n in the nontrivial case where E∗[X1] < E∗[X1],
and obtain several negative answers. For instance, the set of points of Ω where Sn/n
converges is maximally nonmeasurable: it has inner measure zero and outer measure one.

1. Introduction. Ordinary random variables are P -measurable func-
tions on a probability space (Ω,F , P ), where F is a σ-field on Ω. By the
ordinary Strong and Weak Laws of Large Numbers, if X1, X2, . . . are mea-
surable identically distributed random variables with finite expectation, then
(X1 + · · · + Xn)/n → E[X1] almost surely (Strong Law) and in probabil-
ity (Weak Law). But we can also ask what happens to long-term means of
samples when the random variables are not measurable.

Let (Ω,F , P ) be a probability space. The following collects some known
facts (see, e.g., [6, Lemmas 1.2.2 and 1.2.3]) that allow us to apply proba-
bilistic techniques in the case of nonmeasurable random variables.

Proposition 1.1. Let H be any subset of Ω. Then there are measurable
sets H∗ and H∗ such that H∗ ⊆ H ⊆ H∗ and such that for any measurable
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A ⊆ H we have P (A) ≤ P (H∗) and for any measurable B ⊇ H we have
P (B) ≥ P (H∗). The sets H∗ and H∗ are uniquely defined up to sets of
measure zero.

For any real-valued function f on Ω, there are measurable functions f∗
and f∗ such that f∗ ≤ f ≤ f∗ everywhere and, for any measurable g on Ω
such that g ≤ f everywhere, we have g ≤ f∗ almost surely, while for any mea-
surable h on Ω such that f ≤ h everywhere, we have h ≥ f∗ almost surely.
The functions f∗ and f∗ are uniquely defined up to almost sure equality.

The functions f∗ and f∗ are the maximal measurable minorant and min-
imal measurable majorant of f , respectively.

We then have P∗(H) = P (H∗) and P ∗(H) = P (H∗), where P∗ and P ∗
are the inner and outer measures generated by P . Note that H is measurable
with respect to the completion of P if and only if P∗(H) = P ∗(H), in which
case it has that value as its measure with respect to the completion of P .

We say that a set is maximally nonmeasurable provided that P∗(H) = 0
and P ∗(H) = 1. Such a set is one all of whose measurable subsets have null
measure and all of whose measurable supersets have full measure.

As a replacement for the independence assumption in the case of ordinary
random variables, take our probability space (Ω,F , P ) to be the product of
the probability spaces (Ωn,Fn, Pn), and let our sequence of possibly non-
measurable random variables be a sequence of functions X1, X2, . . . on Ω
such that Xn(ω1, ω2, . . .) depends only on the value of ωn, so that there is a
function Ψn such that Xn(ω1, ω2, . . .) = Ψn(ωn). We will say that X1, X2, . . .
is then a sequence of independent identically distributed possibly nonmeasur-
able random variables (iidpnmrvs) providing that all the probability spaces
(Ωn,Fn, Pn) are the same space (Ω1,F1, P1) and that Ψn is the same function
Ψ for all n.

The following fact about product measures and the (·)∗ and (·)∗ operators
follows from [6, Lemma 1.2.5].

Proposition 1.2. Suppose (Ω,F , P ) is the product of the probability
spaces (Ωn,Fn, Pn) for n = 1, 2, . . .. Let Ψn be a function on Ωn. Let
Xn(ω1, ω2, . . .) = Ψn(ωn). Let Yn(ω1, ω2, . . .) = (Ψn)∗(ωn) and Zn(ω1, ω2, . . .)
= Ψ∗n(ωn). Then P -almost surely we have (Xn)∗ = Yn and X∗n = Zn.

In particular, if X1, . . . , Xn are iidpnmrvs, then (X1)∗, . . . , (Xn)∗ are
identically distributed independent random variables, and so areX∗1 , . . . , X∗n.
Let Sn = X1 + · · ·+Xn. From the Strong Law of Large Numbers as applied
to {(Xn)∗} and {X∗n} (and using the fact that if |X1|∗ is integrable, then so
are (X1)∗ and X∗1 ) it then follows that almost surely

(1) E[(X1)∗] ≤ lim inf
n→∞

Sn
n
≤ lim sup

n→∞

Sn
n
≤ E[X∗1 ].
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Here and elsewhere “almost surely” will mean except perhaps on a set of prob-
ability zero. Thus an event holds almost surely provided its lower probability
is 1. (In the case of complete measures, this is equivalent to the usual notion
of holding almost surely as holding on a set of full measure.)

We can define the lower and upper expectations of X1 as E∗[X1] =
E[(X1)∗] and E∗[X1] = E[X∗1 ], respectively (for more on lower and upper
expectations, see [4]). Again, we have a trivial case when E[(X1)∗] = E[X∗1 ]
and then the Strong Law holds. In that case, (Xn)∗ = X∗n almost surely
(since (Xn)∗ ≤ Xn ≤ X∗n), and Xn will be measurable with respect to the
completion of P .

The converse is also known [3]: if the Strong Law holds, then X1 al-
most surely equals an L1-function, and is measurable with respect to the
completion of P .

Can (1) be improved on? For instance, can the first or last almost sure
inequality sometimes be replaced by an equality? Or can we say that in the
nontrivial case it is almost surely true that Sn/n diverges? Our main result
shows that the answers to these questions are negative, and that the failure
of the Strong Law for nonmeasurable X1 is radical.

Theorem 1.3. Let X1, X2, . . . be iidpnmrvs with E∗[|X1|] <∞. Suppose
A is a nonempty proper subset of [E∗[X1], E

∗[X1]]. Then each of the following
is maximally nonmeasurable:

(i) the subset of Ω where lim infn→∞ Sn(n)/n is in A,
(ii) the subset of Ω where lim supn→∞ Sn(n)/n is in A,
(iii) the subset of Ω where limn→∞ Sn(n)/n exists and is in A,
(iv) the subset of Ω where limn→∞ Sn(n)/n exists,
(v) the subset of Ω where all the limit points of Sn(n)/n are in A.

Thus in the nontrivial case (that is, when [E∗[X1], E
∗[X1]] has a non-

empty proper subset, i.e., when E∗[X1] < E∗[X1]) nothing can be proba-
bilistically said, with respect to P , about the limit points of Sn(n)/n except
that all the limit points lie within [E∗[X1], E

∗[X1]].
For completeness, here is a somewhat analogous result about the Weak

Law:

Theorem 1.4. Let X1, X2, . . . be iidpnmrvs with E∗[|X1|] <∞. Suppose
a∈ [E[(X1)∗], E[X∗1 ]] and ε>0 is sufficiently small that [E∗[X1], E

∗[X1]] is not
a subset of [a− ε, a+ ε]. Then P∗(|Sn/n− a|>ε)→0 and P ∗(|Sn/n− a|>ε)
→ 1 as n→∞.

The proof of both theorems will be based on the following easy fact about
the existence of extensions of measures.

Lemma 1.5. Suppose f is a function on a probability space (Ω,F , P )
and f is simple, i.e., takes on only finitely many values. Then there are
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extensions P∗ and P ∗ of P defined on the σ-field generated by F and f such
that f = f∗ almost surely with respect to P∗ and f = f∗ almost surely with
respect to P ∗.

It suffices to see this where f is an indicator function, and in that case the
result follows from the observation that if A ⊆ Ω and α ∈ [P∗(A), P

∗(A)],
then there is an extension Pα of P to σ(F ∪ {A}) such that Pα(A) = α (cf.
[2, p. 71]).

Remark. Our proofs of the theorems would be much simpler if we could
have this lemma for f taking on infinitely many values, but alas the lemma
is false in that case. To see the falsity, let Ω be the open square (0, 1)2, take
F to be the σ-field of subsets of the form A× (0, 1) for A ⊆ (0, 1) Lebesgue-
measurable, take P to be the restriction of Lebesgue measure to F , and set
f(x, y) = y. Then f∗ = 0 almost surely with respect to P but there is no
extension of P with respect to which f = 0 almost surely, since f is nowhere
equal to zero.

2. Proofs. We need some very easy preliminaries.

Lemma 2.1. Suppose that f = g on a measurable set B. Then f∗ = g∗
and f∗ = g∗ almost surely on B.

Proof. Let h(ω) = f∗(ω) for ω /∈ B and let h(ω) = min(f∗(ω), g∗(ω))
otherwise. Then h is a measurable function such that h ≥ f . Hence h ≥ f∗

almost surely. So g∗ ≥ h ≥ f∗ almost surely on B. In the same way, we see
that f∗ ≥ g∗ almost surely on B. That f∗ = g∗ almost surely on B is proved
the same way.

The following is a simple consequence of [6, Lemma 1.2.2].

Lemma 2.2. If |f−g| ≤ ε everywhere, then |f∗−g∗| ≤ ε and |f∗−g∗| ≤ ε
almost surely.

The following trivial lemma encapsulates the strategy for the proof of
our theorems.

Lemma 2.3. Suppose that B is a subset of a probability space (Ω,F , P )
such that there are extensions P1 and P2 of P so that B is P1- and P2-
measurable with P1(B) = x1 and P2(B) = x2. Then P∗(B) ≤ x1 and x2 ≤
P ∗(B). In particular, if P1(B) = 0 and P2(B) = 1, then B is maximally
nonmeasurable.

Proof. We have P∗(B) = P (B∗) = P1(B∗) ≤ P1(B) = x1 and P ∗(B) =
P (B∗) = P2(B

∗) ≥ P2(B) = x2, where B∗ and B∗ are defined with respect
to P .
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By Lemma 2.3, we need to show that for each of the subsets of Ω men-
tioned in Theorem 1.3, there is an extension of P that assigns measure zero
to the subset and another that assigns to it measure one.

Finally, as we will soon see, the following lemma will yield all the results
of Theorem 1.3.

Lemma 2.4. Suppose X1, X2, . . . is a sequence of iidpnmrvs such that
E[|X1|∗] < ∞. Then for any α ∈ [E∗[X1], E

∗[X1]] there is an extension P ′

of P such that P ′-almost surely Sn/n converges to α. If E∗[X1] < E∗[X1]
then there is an extension P ′′ of P such that P ′′-almost surely Sn diverges.

Proof. Write EP [f ] for the expectation of f with respect to P , i.e.,	
Ω f(ω) dP (ω). The variables X1, X2, . . . are defined by Xn(ω1, ω2, . . .) =
Ψ(ωn) on our product space Ω for some real-valued function Ψ .

Let X ′n = Xn · 1{|Xn|≤n}.
Let An,± = {±Xn > n}. Let An = {|Xn| > n} = An,+ ∪ An,−. Observe

that An,+ ⊆ {X∗n > n} and An,− ⊆ {(Xn)∗ < −n}. Let Bn = {|X∗n| > n} ∪
{|(Xn)∗| > n}. Clearly An ⊆ Bn. Then

(2)
∞∑
n=1

P (Bn) ≤
∞∑
n=1

P (|(Xn)∗| > n) +
∞∑
n=1

P (|X∗n| > n) <∞,

since
∑∞

n=1 P (|X| > n) ≤
	∞
0 P (|X| > t) dt = E[|X|], and since both (Xn)∗

and X∗n have finite expectations given that |Xn|∗ does. In particular, almost
surely, only finitely many of the Bn occur by Borel–Cantelli. Since An ⊆ Bn,
almost surely only finitely many of the An occur.

We now claim that E[(X ′n)∗] → E[(X1)∗] and E[(X ′n)
∗] → E[X∗1 ] as

n→∞. We only need to prove the latter convergence since the former follows
by applying the latter to the iidpnmrv sequence {−Xn}. Now, outside of Bn,
we have X ′n = Xn, and since Bn is measurable it follows from Lemma 2.1
that outside of Bn we have (X ′n)∗ = X∗n almost surely. Moreover, everywhere
on Bn we have X ′n = 0 and hence (X ′n)

∗ = 0 by Lemma 2.1. Thus

|E[(X ′n)
∗]− E[X∗1 ]| = |E[(X ′n)

∗]− E[X∗n]| ≤ E[|(X ′n)∗ −X∗n|]
≤ E[|(X ′n)∗ −X∗n| · 1Bn ] = E[|X∗n| · 1Bn ]

≤ E[|X∗n| · 1{|Xn|∗>n}] = E[|X∗1 | · 1{|X1|∗>n}]→ 0,

since E[|X1|∗] <∞.
Let Ψ ′n = Ψ · 1{|Ψ |≤n} so that X ′n(ω1, ω2, . . .) = Ψ ′n(ωn). Choose a simple

function Ψ1,n such that both |Ψ1,n − Ψ ′n| ≤ 1/n and |Ψ1,n| ≤ n everywhere
on Ω1.

By Lemma 1.5 there is an extension P1,n,0 of P1 such that Ψ1,n is P1,n,0-
measurable and P1,n,0-almost surely Ψ1,n = (Ψ1,n)∗, and an extension P1,n,1

of P1 such that Ψ1,n is P1,n,1-measurable and P1,n,1-almost surely Ψ1,n = Ψ∗1,n.
Let F1,n be the σ-field on Ω1 generated by F1 and Ψ1,n.
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For i = 0, 1, let P i be the product of the measures P1,1,i, P1,2,i, P1,3,i, . . . .
This is an extension of P .

Let Yn(ω1, ω2, . . .) = Ψ1,n(ωn). By Proposition 1.2, (Yn)∗(ω1, ω2, . . .) =
(Ψ1,n)∗(ωn) for P -almost all (ω1, ω2, . . .). Then P 0-almost surely we have
Yn = (Yn)∗ and P 1-almost surely Yn = Y ∗n (where (Yn)∗ and Y ∗n are
defined with respect to P ). Define the measure P ′ = (1 − a)P 0 + aP 1,
where a is such that α = (1 − a)EP [(X1)∗] + aEP [X

∗
1 ]. Then EP ′ [Yn] =

(1−a)EP [(Yn)∗]+aEP [Y ∗n ]. Now |(Yn)∗− (X ′n)∗| ≤ 1/n and |Y ∗n − (X ′n)
∗| ≤

1/n everywhere by Lemma 2.2 and the choice of Ψ1,n, so by uniform con-
vergence we have E[(Yn)∗ − (X ′n)∗] and E[Y ∗n − (X ′n)

∗] converging to zero.
Moreover, we have already seen that E[(X ′n)∗]→ E[(X1)∗] and E[(X ′n)

∗]→
E[X∗1 ], so EP [(Yn)∗]→ EP [(X1)∗] and EP [Y ∗n ]→ EP [X

∗
1 ]. Thus, EP ′ [Yn]→

(1− a)EP [(X1)∗] + aEP [X
∗
1 ] = α.

Now |Yn − X ′n| ≤ 1/n everywhere and |X ′n| ≤ max(|(Xn)∗|, |X∗n|) · 1Bn .
Thus
∞∑
n=1

VarP ′ [Yn]

n2
≤
∞∑
n=1

E[Y 2
n ]

n2
=

∞∑
n=1

EP ′ [(X
′
n + (Yn −X ′n))2]

n2

≤ 2
∞∑
n=1

EP ′ [(X
′
n)

2]

n2
+
∞∑
n=1

2

n3

≤ 2

∞∑
n=1

EP ′ [((Xn)∗)
2 · 1Bn ]

n2
+ 2

∞∑
n=1

EP ′ [(X
∗
n)

2 · 1Bn ]

n2
+

∞∑
n=1

2

n3

= 2
∞∑
n=1

EP [((Xn)∗)
2 · 1Bn ]

n2
+ 2

∞∑
n=1

EP [(X
∗
n)

2 · 1Bn ]

n2
+O(1)

≤ 2

∞∑
n=1

EP [((Xn)∗)
2 · 1{|(Xn)∗|>n}]

n2
+ 2

∞∑
n=1

EP [(X
∗
n)

2 · 1{|X∗n|>n}]
n2

+O(1),

where the last equality follows from the fact that P is an extension of P ′,
and (Xn)∗ and X∗n are P -measurable. The finiteness of the right hand side
is then a consequence of the proof of [1, Lemma 2.4.3]. It then follows from
Kolmogorov’s Strong Law [5, Theorem 5.8] that P ′-almost surely (Y1+ · · ·+
Yn − E[Y1 + · · ·+ Yn])→ 0 and hence (Y1 + · · ·+ Yn)/n→ α.

Let Tn = Y1 + · · ·+ Yn. Let S′n = X ′1 + · · ·+X ′n. Since |X ′n − Yn| ≤ 1/n
everywhere, |S′n/n− Tn/n| ≤ (1/n)(1 + 1/2 + · · ·+ 1/n) and the right hand
side converges to zero. Moreover, P -almost surely for all but finitely many
n we have Xn = X ′n, so that P -almost surely (Sn − S′n)/n → 0. Thus,
P -almost surely we have (Sn − Tn)/n → 0. But P ′ extends P , so this also
holds P ′-almost surely. But since P ′-almost surely Tn/n → α, we see that
Sn/n converges P ′-almost surely to α.
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To construct P ′′, first recall that EP [(Yn)∗]→ EP [(X1)∗] and EP [Y ∗n ]→
EP [X

∗
1 ]. Let γ = EP [(X1)∗] and δ = EP [X

∗
1 ]. For n > 0, let an be a

strictly increasing sequence of positive integers such that (a) |EP [(Yk)∗] −
EP [(X1)∗]| < 1/n and |EP [Y ∗k ] − EP [X

∗
1 ]| < 1/n for all k ≥ an, and

(b) an+1/an →∞. Let a0 = 1.
Let Ln = {an−1 + 1, an−1 + 2, . . . , an}. Let L = L1 ∪ L3 ∪ L5 ∪ · · · .

For n ∈ L, let αn = EP [(Yn)∗], and for n /∈ L, let αn = EP [Y
∗
n ]. Let

βn = α1+ · · ·+αn. We now claim that βa2n/a2n → δ and βa2n+1/a2n+1 → γ
as n → ∞. For, since both EP [(Yn)∗] and EP [Y

∗
n ] converge, there is an

M <∞ such that |αk| ≤M for all K, and then by the choice of an,

βa2n − a2nδ =
a2n∑

k=a2n−1+1

(EP [Y
∗
k ]− δ)− a2n−1δ +

a2n−1∑
k=1

αk

= O(a2n/(2n− 1)) +O(a2n−1).

Since a2n−1/a2n → 0 by condition (b) above, we see that βa2n/a2n − δ con-
verges to 0 as desired. Likewise,

βa2n+1 − a2n+1γ =

a2n+1∑
k=a2n+1

(EP [(Yk)∗]− γ)− a2nγ +

a2n∑
k=1

αk

= O(a2n+1/2n) +O(a2n),

and so βa2n+1/a2n+1 → γ.
Now define P ′′1,n to be equal to P1,n,0 if n ∈ L, and to P1,n,1 if n /∈ L. Let

P ′′ be the product of the measures P ′′1,1, P ′′1,2, . . . .
In exactly the same way as we proved above using Kolmogorov’s Strong

Law that P ′-almost surely (Tn−EP ′ [Tn])/n→ 0, we can also show that P ′′-
almost surely (Tn − EP ′′ [Tn])/n → 0. But EP ′′ [Tn] = βn, since EP ′′ [Yn] =
EP [(Yn)∗] if n ∈ L and EP ′′ [Yn] = EP [Y

∗
n ] otherwise. Thus, P ′′-almost surely

Ta2n/a2n → δ and Ta2n+1/a2n+1 → γ.
But we have already seen that (Sn/n−Tn)/n converges to zero P -almost

surely, and hence also P ′′-almost surely. Thus P ′′-almost surely Sa2n/a2n → δ
and Sa2n+1/a2n+1 → γ. Since δ > γ, our desired divergence result follows.

Proof of Theorem 1.3. Choose any a1 ∈ A. By Lemma 2.4, we have an
extension P ′ of P such that P ′-almost surely Sn/n converges to a1. Moreover,
sinceA is a proper nonempty subset of [EP [(X1)∗], EP [X

∗
1 ]], this interval must

contain at least two points and hence EP [(X1)∗] < EP [X
∗
1 ], so by the same

lemma there is an extensionP ′′ ofP such thatP ′′-almost surelySn/n diverges.
Now choose any a2 ∈ [EP [(X1)∗], EP [X

∗
1 ]] − A. Again by Lemma 2.4 there

is an extension P ′′′ of P such that P ′′′-almost surely Sn/n converges to a2.
All the events described in (i)–(v) will happen whenever Sn/n→ a1, and

so they all have P ′-measure 1. Events (i), (ii), (iii) and (v) cannot happen
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when Sn/n → a2, and so they all have P ′′′-measure 0. And event (iv) has
P ′′-measure 0. Thus, each event has measure 1 under one extension of P and
measure 0 under some other extension, and so by Lemma 2.3, each event is
maximally P -nonmeasurable.

Proof of Theorem 1.4. Let a and ε be as in the statement of the the-
orem. The conditions of the theorem guarantee that there is a point b ∈
[E∗[X1], E

∗[X1]]− [a− ε, a+ ε]. Let γ = |b− a| − ε. Since b /∈ [a− ε, a+ ε],
we have γ > 0.

By Lemma 2.4, let P ′ be an extension of P such that P ′-almost surely
Sn/n converges to a, and let P ′′ be an extension of P such that P ′′-almost
surely Sn/n converges to b. Then Sn/n converges to a in P ′-probability
and to b in P ′′-probability. Hence limn→∞ P

′(|Sn/n − a| > ε) = 0. By
Lemma 2.3, we have limn→∞ P∗(|Sn/n − a| > ε) = 0. Moreover, 0 =
limn→∞ P

′′(|Sn/n− b| > γ) ≥ lim supn→∞ P
′′(|Sn/n− a| ≤ ε) by the choice

of γ. Thus P ′′(|Sn/n − a| ≤ ε) converges to 0, and so P ′′(|Sn/n − a| > ε)
converges to 1, hence P ∗(|Sn/n− a| > ε) also converges to 1.
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