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COMPLEX ANALYSIS

The Pluripolar Hull and the Fine TopologybyArmen EDIGARIANPresented by Józef SICIAK
Summary. We show that the projetions of the pluripolar hull of the graph of an analytifuntion in a subdomain of the omplex plane are open in the �ne topology.1. Introdution. Let Ω ⊂ C

n be an open set and let E ⊂ Ω be anysubset. We say that E is pluripolar in Ω if for all z ∈ E there exist a onnetedneighborhood Uz of z in Ω and a plurisubharmoni funtion u(z, w) 6≡ −∞de�ned on Uz suh that
E ∩ Uz ⊂ {(z, w) ∈ Uz : u(z, w) = −∞}.By Josefson's theorem (see [Jos℄), a set E ⊂ C

N is pluripolar if and only ifthere exists a globally de�ned plurisubharmoni funtion u(z, w) suh that
E ⊂ {(z, w) ∈ C

N : u(z, w) = −∞}.By the pluripolar hull E∗

Ω (see [LePo℄) of a pluripolar subset E ⊂ Ω, wemean
E∗

Ω :=
⋂

{z ∈ Ω : u(z) = −∞},where the intersetion is taken over all plurisubharmoni funtions u in Ωwhih equal −∞ on E. In general, it is di�ult to desribe the pluripolarhull of a given set E. The following theorem, reently proved in [EdWi3℄,gives some information about E∗

Ω.Theorem 1. Let Ω be a pseudoonvex open set in C
N and let E ⊂ Ω bean Fσ pluripolar subset. If E is onneted then so is E∗

Ω.The following main result of the paper gives another property of E∗
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Theorem 2. Let Ω be a pseudoonvex open set in C

N and let E ⊂ Ω bean Fσ pluripolar subset. Assume that U ⊂ Ω is an open neighborhood of E∗

Ωand that f : U → C is a non-onstant holomorphi funtion. Then for any
p ∈ f(E∗

Ω) \ f(E) the set C \ f(E∗

Ω) is thin at p.Moreover , if f(E) is open in the �ne topology then so is f(E∗

Ω).A set F ⊂ C is thin at a point ξ if either ξ 6∈ F , or ξ ∈ F and there existsa subharmoni funtion h in a neighborhood of ξ suh that limz∈F, z→ξh(z) <
h(ξ). One an always hoose h in suh a way that the upper limit equals −∞(see e.g. [Ran℄).Starting from a paper of Sadullaev [Sad℄ the pluripolar hull of graphs ofertain analyti funtions has been studied in a number of papers (see e.g.[EdWi1℄�[EdWi3℄, [E-J2℄, [LePo℄, [Si℄, [Wie1℄, [Wie2℄, and [Zwo℄).For a subset A of the omplex plane C and a omplex-valued funtion fon A we denote by Γf (A) the graph of f over A,

Γf (A) = {(z, w) ∈ C
2 : z ∈ A, w = f(z)}.Let f be a holomorphi funtion in a domain D ⊂ C. It is immediatethat Γf (D) is a pluripolar set. Supported by several examples, in [LeMaPo℄Levenberg, Martin and Poletsky onjetured that if f is analyti in D andthe domain of existene of f is D, then Γf (D) is omplete pluripolar. Thisonjeture was disproved in [EdWi2℄ (in ase of the unit dis) and in [EdWi1℄(in ase of a domain D = C \ K, where K is a ompat polar set).Denote by πj the projetion onto the jth oordinate plane in C

2, πj(z) =
zj for z = (z1, z2) ∈ C

2, j = 1, 2. As a orollary of Theorem 2 we get thefollowing result, whih is a positive answer to Problem 1 posed in [E-J1℄ (ina revised version [E-J2℄, the authors get independently the �rst part of theorollary).Corollary 3. Let D ⊂ C be a domain and let f be an analyti funtionin D. Then π1((Γf (D))∗
C2) is open in the �ne topology. Moreover , if f isnon-onstant then π2((Γf (D))∗

C2) is also open in the �ne topology.The �ne topology is the weakest topology for whih all subharmoni fun-tions are ontinuous. A neighborhood basis of a point in this topology on-sists of sets whih di�er from a Eulidean neighborhood of this point by aset whih is thin at this point (see e.g. [Bre℄). Hene, if A ⊂ C is any setthen A is open in the �ne topology if and only if C\A is thin at eah p ∈ A.2. Preliminary results. Let Ω be a domain in C
N . In [LePo℄ the neg-ative pluripolar hull is de�ned as

E−

Ω :=
⋂

{z ∈ Ω : u(z) = −∞},
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where the intersetion is taken over all negative plurisubharmoni funtions uin Ω that are −∞ on E. The following relation between the negative pluripo-lar hull and the pluripolar hull holds (see [LePo℄).Theorem 4. Let Ω be a pseudoonvex domain in C

N . Let {Ωj} be aninreasing sequene of relatively ompat subdomains of Ω with ⋃
j Ωj = Ω.Let E ⊂ Ω be pluripolar. Then

E∗

Ω =
⋃

j

(E ∩ Ωj)
−

Ωj
.For a subset E ⊂ Ω, the pluriharmoni measure at a point z ∈ Ω of Erelative to Ω is de�ned as

(2.1) ω(z, E, Ω)

= − sup{u(z) : u is plurisubharmoni in Ω and u ≤ −χE},where χE is the harateristi funtion of E. The relation between the nega-tive pluripolar hull and the pluriharmoni measure is given in the followingtheorem (see [LePo℄).Theorem 5. Let Ω be a domain in C
N and let E ⊂ Ω be pluripolar.Then

E−

Ω = {z ∈ Ω : ω(z, E, Ω) > 0}.From Theorem 5 we get the followingCorollary 6. Let Ω be a pseudoonvex domain in C
N and let E ⊂ Ωbe an Fσ pluripolar subset. Then E∗

Ω is also an Fσ set.Proof. Let E =
⋃

j Kj , where K1 ⊂ K2 ⊂ · · · are ompat sets. Then
E∗

Ω =
⋃

j(Kj)
∗

Ω. So, it su�ient to show that K∗

Ω is an Fσ set for anyompat pluripolar set K. Take an inreasing sequene of relatively om-pat hyperonvex domains Ωj so that K ⊂ Ω1 and that Ω =
⋃

j Ωj . Then
K∗

Ω =
⋃

∞

j=1
K−

Ωj
and K−

Ωj
=

⋃
∞

k=1
{z ∈ Ωj : ω(z, K, Ωj) ≥ 1/k}. Reall that

ω(·, K, Ωj) is an upper semiontinuous funtion.The following result is well known. For the sake of ompleteness we givethe proof.Proposition 7. Let E be a Borel polar set in C. Then E∗

C
= E.Proof. Fix z0 6∈ E. By Choquet's theorem there exists a sequene of opensets U1 ⊃ U2 ⊃ · · · ⊃ E suh that z0 6∈ Uj and c(Uj) → 0 when j → ∞. Here

c is the logarithmi apaity (see e.g. [Ran℄). Put Ẽ =
⋂

j Uj . Then c(Ẽ) = 0(so Ẽ is polar), Ẽ is a Gδ set, Ẽ ⊃ E, and z0 6∈ Ẽ. Hene, Ẽ is ompletepolar and z0 6∈ E∗

C
.Reall the following result (see [An℄).
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Theorem 8 (Anona's theorem). Let K be a ompat non-polar set in C.Then for any ε > 0 there exists a ompat set K ′ ⊂ K suh that c(K\K ′) < εand K ′ is regular at any point of itself.As a orollary we get the following useful result.Corollary 9. Let E be a Borel set in C. Assume that E is non-polar.Then there exists a sequene of ompat sets K1 ⊂ K2 ⊂ · · · ⊂ E, regular atany point of eah of them, and a polar Borel set P suh that E = P ∪

⋃
j Kj.Proof. First note that there exists an Fσ set E1 and a polar set P1 sothat E = E1 ∪P1. We have E1 =

⋃
j K̃j , where K̃j is an inreasing sequeneof ompat sets. Now, it su�es to use Theorem 8.3. Proof of the main result. Reall the following loalization priniple[EdWi3℄.Theorem 10. Let Ω ⊂ C

n be an open set and let E be an Fσ pluripolarsubset of Ω. Then for any open set Ω′
⋐ Ω and any open set U suh that

∂U ∩ E∗

Ω = ∅ we have(3.1) ω(z, E ∩ U ∩ Ω′, Ω′) = ω(z, E ∩ U ∩ Ω′, U ∩ Ω′), z ∈ U ∩ Ω′.Proof of Theorem 3. Let p ∈ f(E∗

Ω)\f(E) and let z0 ∈ f−1(p)∩E∗

Ω . Put
F = C\f(E∗

Ω). Then F is Borel (Gδ). Assume that F is not thin at p. Hene,there exists a sequene of ompat sets K1 ⊂ K2 ⊂ · · · ⊂ F , regular at anypoint of eah of them, and a polar Borel set P suh that F \{p} = P ∪
⋃

j Kj .Put Uj = f−1(C \Kj)∩U . Sine E is an Fσ set, there exists a sequeneof ompat sets E1 ⊂ E2 ⊂ · · · ⊂ E suh that E =
⋃

j Ej . Then E∗

Ω =⋃
j(Ej)

∗

Ω. Hene, p ∈
⋃

j f
(
(Ej)

∗

Ω

). Put Lj = f(Ej).First, assume that f(E) is non-polar. Then without loss of generality, wemay assume that L1 is non-polar.Fix a hyperonvex domain Ω′
⋐ Ω. We want to estimate ω(z0, Ej ∩

Ω′, Ω′). By the loalization priniple we have
ω(z0, Ej ∩ Ω′, Ω′) = ω(z0, Ej ∩ Ω′, Ω′ ∩ Uk) ≤ ω(p, Lj, Ĉ \ Kk).We laim that(3.2) lim

k→∞

ω(p, Lj, Ĉ \ Kk) = 0.Fix j ≥ 1. For eah natural number k we let Dk be the onneted omponentof Ĉ \ Kk whih ontains p. We have
ω(p, Lj , Ĉ \ Kk) = ω(p, Lj ∩ Dk, Dk).Note that Dk is a regular domain (see [Ran, Theorem 4.2.4℄). Put hk(z) =

ω(z, Lj ∩ Dk, Dk). Then hk is a harmoni funtion on Dk. Moreover, itextends subharmonially to Ĉ \ Lj (we put hk = 0 on Ĉ \ Dk). Hene
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h(z) = limk→∞ hk(z) is non-negative and subharmoni on Ĉ \Lj (being thedereasing limit of a sequene of subharmoni funtions). Moreover, h = 0on ⋃

k Kk. Sine ⋃
k Kk is non-thin at p, p is an aumulation point of ⋃

k Kjand h(p) = 0. Hene, we have proved (3.2).So, we have ω(z0, Ej∩Ω′, Ω′) = 0. Hene, z0 6∈ (Ej∩Ω′)−Ω′ . Sine Ω′
⋐ Ωis an arbitrary hyperonvex domain, we get z0 6∈ (Ej)

∗

Ω and z0 6∈
⋃

j(Ej)
∗

Ω.But we know that z0 ∈ f−1(p) ∩ E∗

Ω. A ontradition.Now, assume that f(E) is polar. Note that f(E∗

Ω) ⊂ f(E)∗
C

= f(E).Assume that f(E) is open in the �ne topology. Take p ∈ f(E∗

Ω). Notethat there are two ases: p ∈ f(E∗

Ω) \ f(E) and p ∈ f(E). In both ases wesee that C \ f(E∗

Ω) is thin at p.Proof of Corollary 3. Note that π1(Γf (D)) = D is open and, therefore,open in the �ne topology. If f is non-onstant then π2(Γf (D)) = f(D) isalso open.4. Example. Note that in Corollary 3 we annot state, in general, that
π1((Γf (D))∗

C2) is open. Indeed, take an = 1/n and cn = e−n2

/n2, n ∈ N. Put
f(z) =

∞∑

n=1

cn

z − an
.Note that f is a holomorphi funtion on the domain D = C \ {an : n ∈ C}

∪ {0}. By [EdWi1℄, (Γf (D))∗
C2 = Γf (D) ∪ {(0, f(0))}. So, π1((Γf (D))∗

C2) =
D ∪ {0}.
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