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DIFFERENTIAL INEQUALITIES

Diret and Reverse Gagliardo�Nirenberg Inequalitiesfrom Logarithmi Sobolev InequalitiesbyMatteo BONFORTE and Gabriele GRILLOPresented by Stanisªaw KWAPIE�
Summary. We investigate the onnetion between ertain logarithmi Sobolev inequal-ities and generalizations of Gagliardo�Nirenberg inequalities. A similar onnetion holdsbetween reverse logarithmi Sobolev inequalities and a new lass of reverse Gagliardo�Nirenberg inequalities.0. Introdution. The main onern of this paper is to investigate theonnetions between logarithmi Sobolev inequalities (LSI) and generaliza-tions of Gagliardo�Nirenberg inequalities (GNI). The typial LSI inequalitywe shall be onerned with in the �rst part of the paper will be of the form(0.1) \
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µ being a positive Radon measure on a Riemannian manifold X, ∇ theRiemannian gradient, c1, c2 positive onstants, and ‖ · ‖p the Lp norm. Themanifold setting is hosen for the sake of notational simpliity only andould be generalized in many respets: for example, the role of the operator
∇ ould be taken by a (vetor-valued) derivation (see e.g. [13℄ for details),but ertain disrete settings ould be disussed as well (see [2℄).Suh inequalities have a long history sine the pioneering work of Gross[17℄, who proved the equivalene between a weaker form of suh inequalitiesin the ase p = 2 and hyperontrativity of the linear heat semigroup. Itwas proved later that (0.1) is indeed equivalent to ultraontrativity of theheat semigroup (see also [1℄). This an be seen for example by notiing that,2000 Mathematis Subjet Classi�ation: 46A35, 26D10.Key words and phrases: Gagliardo�Nirenberg inequality, logarithmi Sobolev inequal-ity, 4-norms inequality, reverse inequality. [323℄
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by applying the numerial inequality log x ≤ εx + log(1/ε), ∀x, ε > 0, tothe r.h.s. of (0.1), one proves a family of LSI of the form onsidered in [14℄.The proof of ultraontrativity then follows by methods whih are by nowstandard.More reently, it has been shown in [12℄, [7℄, [8℄ that the validity of suha LSI for p ≥ 2 implies ultraontrative-like bounds of the form

‖u(t)‖∞ ≤
C

tα
‖u(0)‖β

2for the solutions u(t) to suitable lasses of nonlinear evolution equationsinluding the porous media equation and the heat equation driven by the
p-Laplaian (see also [9℄ and [15℄ for a generalization to a doubly nonlinearevolution equation).Sine on the other hand it is known that, in the linear ase, ultraontra-tivity for the heat semigroup is equivalent to the usual Sobolev inequality
‖u‖2d/(d−2) ≤ C‖∇u‖2 (and to the Nash inequalities as well), it is not sur-prising that (0.1) is onneted to Sobolev inequalities involving the p-energyfuntional ‖∇u‖p, or to inequalities of Nash type involving that funtional.This is indeed a onsequene of the results of [4℄�[6℄, in whih it is provedthat logarithmi Sobolev inequalities imply Nash-type inequalities (whih area speial ase of GNI), and of [2℄ (see also [18℄), in whih it is shown thatany single GNI implies a whole lass of them; in Setion 2 we disuss thispoint with a few more details.Our aim here is to further investigate this onnetion. We �rst show thatthe entropy funtional

J(p, u) =
\
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log
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‖u‖p

]

|u(x)|p

‖u‖p
p

dµ(x)an be used to bound both from below and from above the variation of theonvex funtion p 7→ log ‖u‖p
p. This is the ontent of our �rst result, Theorem1.1. This will allow us �rst to prove the following inequality, whih we allthe 4-norms inequality. It is a generalization of the GNI and reads(0.2) ‖u‖1/d

q ‖u‖1/s−1/q
p ≤ C‖∇u‖1/s−1/q

p ‖u‖1/d
s ,where 0 < s ≤ q ≤ p and d ≥ 1, d being a parameter having the role ofdimension. GNI inequalities an then be proved with the help of the resultsof [2℄.We next prove reverse analogues of the above 4-norms inequalities, asa onsequene of reverse LSI whih we prove in Setion 3. In fat we �rstdisuss the onsequenes of a reverse LSI in the form given by [16℄, [19℄, [20℄adapted to the real ase. We shall mostly speialize to the Eulidean ase,the underlying measure being the Gaussian measure. This is beause thatis the main ase in whih we are able to prove a reverse LSI for suitable
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lasses of funtions. We hope that suh inequalities an be used in order tostudy reverse hyperontrativity for suitable lasses of data. We shall thenuse Theorem 1.1 to prove a new reverse analogue of (0.2), from whih reverseGNI (and in partiular reverse Sobolev inequalities) will then follow, againfor a suitable lass of funtions.This paper is organized as follows. In the �rst setion we prove the mainproperty of the entropy funtional whih will be used in the following, in-luding the aforementioned Theorem 1.1. In Setion 2 we prove that a suit-able LSI implies (0.2), and then make some remarks on the onnetionswith the GNI. Setion 3 is devoted to the proof of reverse LSI, Sobolev andGagliardo�Nirenberg inequalities.1. Basi entropy inequalities. In this setion we prove the basi in-equalities onerning the funtional J(p, u), de�ned with respet to a generalpositive Radon measure µ, whih will be the starting point for proving bothdiret and reverse Gagliardo�Nirenberg inequalities.Theorem 1.1. We have(1.1) ‖u‖pe
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qp
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J(1,uq)for any 0 < p ≤ q and u ∈ Lp(X, µ) ∩ Lq(X, µ).Proof. It is well known that the funtional
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r = log
\
X

|u(x)|r dµ(x)de�ned over (0,∞)×
⋂

p>0 Lp(X, µ) is onvex with respet to r > 0, and its�rst derivative
d
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1

r
N(r, u)is nondereasing with respet to r > 0. For more details one an refer toSetion (2.4) of [8℄.By the onvexity of N one has, for 0 < p ≤ q,
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q .The latter inequalities are learly equivalent to the assertion.



326 M. Bonforte and G. Grillo
We now ollet some useful properties of the entropy funtional whihwill be of help later on.Proposition 1.2. The funtional J has the following properties:

J(r, uγ) = γJ(γr, u) for all γ, r > 0;(1.2)
J(r, us+h) ≥ J(r, us) for all r, s > 0, h ≥ 0.(1.3)Proof. The �rst statement is an immediate onsequene of the de�nitionof J . For the seond, we �rst prove that the map β 7→ J(1, uβ) is nonde-reasing. In fat, it is well known that the map

α 7→ log ‖u‖1/αis onvex (see e.g. [2℄). By taking derivatives, the map
α 7→ −
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)

is nondereasing. Thus, the map β 7→ βJ(β, u) is inreasing, as also is, bythe previous result, the funtional β 7→ J(1, uβ). Finally,
sJ(s, ur+h) = J(1, us(r+h)) ≥ J(1, usr) = sJ(s, ur).2. 4-norms inequalitites via entropy and LSI. In this setion wedraw the main onsequenes of the lower bound in (1.1), by making use ofthe inequalities of Proposition 1.2.We shall �rst proveProposition 2.1. For any 0 < p < ̺ the p-LSI implies the ̺-LSI.Proof. We ompute
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where we have also used the Hölder inequality with onjugate exponents
σ = ̺/p > 1 and σ′ = ̺/(̺ − p) > 1.Theorem 2.2 (4-norms inequality). Suppose that the following LSI holdstrue for some p, d > 0:(2.1) pJ(p, u) ≤ d log
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Then
(2.2) ‖u‖1/d

q ‖u‖1/s−1/q
p

≤ L(1/p)1/s−1/q
p ‖∇u‖(1/s−1/q)

p ‖u‖1/d
s for 0 < s ≤ q ≤ p.Moreover if ̺ ≥ p then (2.1) implies
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s for 0 < s ≤ q ≤ p ≤ ̺.Proof. We will prove (2.2) by ombining the right-hand inequality of(1.1) and the p-LSI (2.1) rewritten in the form(2.4) epJ(p,u) ≤ Ld/p
p

‖∇u‖d
p

‖u‖d
p

.To this end we need the monotoniity property (1.3) that we reall here:
qJ(q, u) = J(1, uq) ≤ pJ(p, u) = J(1, up) for any p ≥ q > 0.Using this together with the right-hand inequality of (1.1) one obtains

‖u‖q

‖u‖s
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q−s

sq
J(1,uq)

≤ e
q−s

sq
J(1,up)for any p ≥ q ≥ s > 0. Now we ombine this last inequality with (2.4) toobtain
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or equivalently(2.5) ‖u‖q

‖u‖s
≤ L(d/p)(1/s−1/q)

p

‖∇u‖
d(1/s−1/q)
p

‖u‖
d(1/s−1/q)
pfor any p ≥ q ≥ s > 0. This is learly equivalent to (2.2). The last partfollows from the �rst and from Proposition 2.1Given the above result, the GNI is a onsequene of the results of [2℄.Although the following results are known from [2℄, for ompleteness and forthe reader's onveniene we reall onisely how to proeed in this diretionfrom our starting point.

• p-Nash inequalities. Fix p, d > 0. The �rst onsequene of (2.2) (justby letting q = p) is the following family of p-Nash inequalities:(2.6) ‖u‖1+ps/d(p−s)
p ≤ L1/p

p ‖∇u‖p‖u‖
ps/d(p−s)
s whenever 0 < s < p.Similarly inequality (2.3) implies a family of ̺-Nash inequalities with ̺ ≥ pand with proportionality onstant L1/p

p ̺/p. We �rst stress that the above re-sult holds for any p > 0. Also, the term p-Nash inequality is due to similarity
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to the elebrated Nash inequality:

‖u‖
1+2/d
2 ≤ C‖∇u‖2‖u‖

2/d
1 .The above remark does not distinguish the ases of p larger and smallerthan d. The following remarks deal with some more detailed onsequenesof the above results, whih take into aount suh di�erenes.

• Gagliardo�Nirenberg inequalities. In the previous remark we provedthat a p-LSI implies a 4-norms inequality suh as (2.2) and then a family of
p-Nash inequalities, whih are a speial ase of GNI:(2.7) ‖u‖r ≤ Cϑ/p

p ‖∇u‖ϑ
p‖u‖

1−ϑ
sfor any p, r, s, d > 0 and ϑ ∈ [0, 1] suh that(2.8) 1

r
= ϑ

(

1

p
−

1

d

)

+ (1 − ϑ)
1

swhere Cp ∝ Lp, Lp being the onstant in the p-LSI.We now reall that this fat atually guarantees the validity of all theGNI above, one the relative position of p and d is �xed, see also [2, Th. 10.2℄.To this end we will need some results of [2℄.The subritial ase: 0 < p < d. By Theorem 3.1 of [2℄ it is known that asingle GNI of the form (2.7) implies the other GNI inequalities orrespondingto 0 < p < d �xed, while ϑ ∈ [0, 1] and r, s > 0 are related as in (2.8). Thena p-LSI of the form (2.1) implies the whole family of GNI (2.7) mentionedabove, via a p-Nash inequality. This family also ontains as a speial asethe lassial p-Sobolev inequality:
‖u‖pd/(d−p) ≤ Cp‖∇u‖p.The ritial ase: p = d. By Theorem 3.3 of [2℄, a single GNI of the form(2.7) implies the other GNI orresponding to p = d > 0, 0 < s < r < ∞,

ϑ = 1 − s/r.With the help of Theorem 3.2.6 of [18℄, we an also show that the abovementioned family of GNI implies some versions of Moser�Trudinger inequal-ities. See [2, Theorem 3.4℄ for details.The superritial ase: p > d. By Theorem 3.2 of [2℄, a single GNI of theform (2.7) implies the other GNI inequalities orresponding to p > d > 0�xed, while 0 < s < r ≤ ∞, ϑ ∈ [0, 1] are related as in (2.8). In partiularby letting r → ∞ we get(2.9) ‖u‖∞ ≤ Cϑ/p
p ‖∇u‖ϑ

p‖u‖
1−ϑ
sfor all 0 < s < ∞. This last family ontains a version of the well knownMorrey inequality.
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• Other Gagliardo�Nirenberg inequalities. In this last remark we fousour attention on the main onsequenes of the seond 4-norms inequal-ity (2.3). We proved in a previous remark, using Theorem 2.2, that a suitable

p-LSI implies a 4-norms inequality suh as (2.3) and then a ̺-Nash inequal-ity, provided ̺ ≥ p. This fat leads us to prove that a p-LSI implies a largerfamily of GNI:(2.10) ‖u‖r ≤ Gϑ
̺ ‖∇u‖ϑ

̺‖u‖
1−ϑ
swhenever 0 < p ≤ ̺, ϑ ∈ [0, 1], with Gq ∝ L

1/p
p q/p and

1

r
= ϑ

(

1

̺
−

1

d

)

+ (1 − ϑ)
1

s
.Thus we an extend the above remarks simply by replaing p with ̺, and

L
1/p
p with L

1/p
p ̺/p. Informally speaking, we realled that, for �xed p > 0, asingle p-LSI implies a family of ̺-GNI of the type (2.10), with ̺ ≥ p (thisbeing the ontent of [2, Setion 8℄), and hene all the ̺-versions of Sobolev,Moser�Trudinger and Morrey inequalities.3. Reverse inequalities. In this setion we start by proving a newfamily of reverse logarithmi Sobolev inequalities in a general setting. Thesereverse LSI will give as a diret onsequene a reverse Sobolev inequality,while put together with a reverse 4-norms inequality will give a family ofreverse Gagliardo�Nirenberg inequalities as well.As far as we know, reverse LSI �rst appeared in the works of S. B. Sontz[19℄, [20℄ in the setup of Segal�Bargmann spaes. After these pioneeringworks, a paper [16℄ of F. Galaz-Fontes, L. Gross and S. B. Sontz gave ageneralization of reverse LSI over omplex manifolds and investigated theonnetion between reverse LSI and reverse hyperontrativity.Although reverse LSI are in a sense typial of the omplex setting, weshall show that they have some real analogue. A reverse LSI of a di�erenttype appears in [11℄. Hereafter, we always deal with spaes of real-valuedfuntions.We start by proving the main theorems of this setion, onerning reverseinequalities with respet to a positive measure, absolutely ontinuous withrespet to a referene measure, indiated by dx:

dµ(x) = m(x) dx,

m being a funtion for whih ∆m makes sense as a loally integrable funtion(hereafter, ∆ denotes the Laplae�Beltrami operator). In this setion weshall indiate expliitly the measure in the notation of Lq norms (writing,e.g., ‖ · ‖q,µ), sine we shall make more than one possible hoie of measure.
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We denote by C the lass of funtions v for whih the following integrationby parts formula holds:(3.1) \

X

v(x)(∆m)(x) dx =
\
X

(∆v)(x)m(x) dx.

We notie that if f ∈ H1(X, µ) (i.e. f,∇f ∈ L2(X, µ)) and f2 ∈ C then theLeibniz rule implies that TX f∆f dµ is �nite.Theorem 3.1 (Reverse logarithmi Sobolev inequality). Let f be a mea-surable, real-valued funtion suh that :(i) f ∈ H1(X, µ), f2 ∈ C;(ii) f satis�es the inequality(3.2) \
X

f(x)(∆f)(x) dµ(x) ≥ 0.

(iii) There exists c > 0 suh that(3.3) B(c, m) =
\
X

e(∆m)(x)/cm(x) dµ(x) < ∞.Then the following reverse LSI holds true:(3.4) 2‖∇f‖2
2,µ ≤ c

\
X

f2 log

(

f2

‖f‖2
2,µ

)

dµ + c log(B(c, m))‖f‖2
2,µ.

Proof. We adapt to our setting a method of L. Gross and S. B. Sontz [20℄.We �rst reall Young's inequality:
st ≤ s log(s) − s + et for s > 0 and t ∈ R.The hoie s = cf(x)2 > 0, t = (∆m)(x)/cm(x) together with integrationover (X, µ) leads to\

X

cf(x)2
(∆m)(x)

cm(x)
dµ(x) ≤

\
X

cf(x)2 log(cf(x)2) dµ(x)

−
\
X

cf(x)2 dµ(x) +
\
X

e(∆m)(x)/cm(x) dµ(x).

Notiing that log(cf(x)2) = log(c) + log(f(x)2), dµ(x) = m(x)dx and
B(c, m) =

T
X e(∆m)(x)/cm(x)dµ(x) < ∞ by hypothesis, we obtain

(3.5)
\
X

f(x)2(∆m)(x) dx

≤ c
\
X

f(x)2 log(f(x)2) dµ(x) + (c log(c) − c)
\
X

f(x)2 dµ(x) + B(c, m).
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Integration by parts, allowed by our assumptions, then gives\

X

f(x)2(∆m)(x) dx =
\
X

(∆f2)(x)m(x) dx

= 2
\
X

|∇f(x)|2m(x) dx + 2
\
X

f(x)(∆f)(x)m(x) dx

≥ 2
\
X

|∇f(x)|2m(x) dx.

The last inequality follows from our assumption TX f(x)(∆f)(x)m(x)dx ≥ 0.Now letting λ > 0 and replaing f by λf in (3.5) gives
2λ2

\
X

|∇f(x)|2 dµ(x) ≤ cλ2
\
X

f(x)2 log(λ2f(x)2) dµ(x)

+ (c log(c) − c)λ2
\
X

f(x)2 dµ(x) + B(c, m).

Divide both members by λ2 to obtain
2‖∇f‖2

2,µ ≤ c
\
X

f(x)2 log(f(x)2) dµ(x)(3.6)
+ [c log(λ2) + c log(c) − c]‖f‖2

2,µ +
B(c, m)

λ2
.Optimizing with respet to λ2 gives

λ2 =
B(c, m)

c‖f‖2
2,µ

.Substituting this value in (3.6) leads to
2‖∇f‖2

2,µ ≤ c
\
X

f2 log(f2) dµ +

[

c log

(

B(m, c)

c‖f‖2
2,µ

)

+ c log(c) − c

]

‖f‖2
2,µ

+ c‖f‖2
2,µ,whih is the laim.In what follows it will be useful to rewrite (3.4) in the form

2
‖∇f‖2

2,µ

‖f‖2
2,µ

≤ c
\
X

log

(

f2

‖f‖2
2,µ

)

f2

‖f‖2
2,µ

dµ + c log(B(c, m))(3.7)
= cJµ(1, f2) + K.As a diret onsequene of this theorem we obtain the followingTheorem 3.2 (Reverse Sobolev inequality). Let f ∈ L2(X, µ) satisfy areverse LSI of the form (3.7) for some onstants c, K > 0. Then for any
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ε > 0 there exists M ′

ε > 0 suh that
M ′

ε exp

(

2ε

c(2 + ε)

‖∇f‖2
2,µ

‖f‖2
2,µ

)

≤
‖f‖2

2+ε,µ

‖f‖2
2,µ

.In partiular , there exists Mε > 0 suh that the reverse Sobolev inequality(3.8) Mε‖∇f‖2,µ ≤ ‖f‖2+ε,µholds.Proof. First we rewrite (3.7) as
1

c

‖∇f‖2
2,µ

‖f‖2
2,µ

−
K

2c
≤ Jµ(2, f) =

1

ε

\
X

log

(

|f |ε

‖f‖ε
2,µ

)

|f |2

‖f‖2
2,µ

dµ

≤ log
\
X

|f |2+ε

‖f‖2+ε
2,µ

dµ =
2 + ε

2
log

‖f‖2
2+ε,µ

‖f‖2
2,µ

,

where in the �rst line we used the property Jµ(1, f2) = 2Jµ(2, f) while in theseond line we applied the Jensen inequality with respet to the probabilitymeasure (|f |2/‖f‖2
2,µ) dµ. Now we use the inequality log(x) ≤ x to obtain

log

(

2ε

c(2 + ε)

‖∇f‖2
2,µ

‖f‖2
2,µ

)

−
εK

c(2 + ε)
≤

2ε

c(2 + ε)

‖∇f‖2
2,µ

‖f‖2
2,µ

−
εK

c(2 + ε)

≤ log
‖f‖2

2+ε,µ

‖f‖2
2,µ

.Exponentiating the three terms gives
(3.9) exp

(

−
εK

c(2 + ε)

)

2ε

c(2 + ε)

‖∇f‖2
2,µ

‖f‖2
2,µ

≤ exp

(

2ε

c(2 + ε)

‖∇f‖2
2,µ

‖f‖2
2,µ

−
εK

c(2 + ε)

)

≤
‖f‖2

2+ε,µ

‖f‖2
2,µ

.As far as we know, reverse Sobolev inequalities appeared �rst in the workof S. B. Sontz [19℄, [20℄ in the ontext of Segal�Bargmann spaes. Theironnetion with reverse hyperontrativity has been disussed in [16℄.Theorem 3.3 (Reverse 4-norms inequality). Let f ∈ L2(X, µ)∩Lq(X, µ),with q>2, satisfy a reverse LSI of the form (3.7) for some onstants c, K >0.Then(3.10) ‖∇f‖2
2,µ

‖f‖2
2,µ

≤ eK/2

[

‖f‖q,µ

‖f‖p,µ

]
cqp

2(q−p)

for any 2 ≤ p ≤ q and any c > 2.
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Proof. We ombine the �rst part of the entropy inequality (1.1), with

2 ≤ p ≤ q:
‖f‖p,µe

q−p

qp
Jµ(1,fp)

≤ ‖f‖q,µ,rewritten in the form
cJµ(1, fp) ≤ c

qp

q − p
log

(

‖f‖q,µ

‖f‖p,µ

)

,with the reverse LSI (3.4) rewritten in the form
2
‖∇f‖2

2,µ

‖f‖2
2,µ

− K ≤ cJµ(1, f2).We notie that we an glue these inequalities using the monotoniity of theYoung funtional Jµ(1, u2) ≤ Jµ(1, up) for any p ≥ 2. Hene we obtain
2
‖∇f‖2

2,µ

‖f‖2
2,µ

− K ≤ cJµ(1, u2) ≤ cJµ(1, up) ≤ c
qp

q − p
log

(

‖f‖q,µ

‖f‖p,µ

)

.Exponentiating and using the inequality x ≤ ex �nally gives
‖∇f‖2

2,µ

‖f‖2
2,µ

e−K/2 ≤ exp

(

‖∇f‖2
2,µ

‖f‖2
2,µ

−
K

2

)

≤

[

‖f‖q,µ

‖f‖p,µ

]
cqp

2(q−p)

.Corollary 3.4 (Reverse Gagliardo�Nirenberg inequalities). Let f ∈
L2(X, µ) ∩ Lq(X, µ), with q > 2, satisfy a reverse LSI of the form (3.7) forsome onstants c, K > 0. Then the family of reverse GNI(3.11) ‖∇f‖ϑ

2,µ‖f‖
1−ϑ
2,µ ≤ eKϑ/4‖f‖q,µholds for any q > 2, where ϑ = 2(q − 2)/cq and K > 0 is the onstant in

(3.7).Proof. Just let p = 2 in (3.10).Remark 3.5. Notie that ondition (3.2) is obviously true for harmonifuntions in the spae (X, µ), i.e. those funtions f whih satisfy ∆f = 0on the support of µ. Condition (3.2) is also ful�lled when the integral ap-pearing there is �nite and when moreover either f is a non-negative subhar-moni funtion (i.e. f ≥ 0 and ∆f ≥ 0 a.e.) or f is a nonpositive super-harmoni funtion (i.e. f ≤ 0 and ∆f ≤ 0 a.e.). It is also satis�ed, in theEulidean ase, by positive onvex funtions or by negative onave funtionsin L2(X, µ), if the orresponding integral appearing in (3.2) exists.3.1. The Gaussian setup. In this setion �rst we draw the main onse-quenes of the above results in the Gaussian setup, i.e. when (X, µ) = (Rd, γ)where γ is the Gaussian measure
dγ(x) = (2π)−d/2e−|x|2/2 dx.We then prove some families of reverse Sobolev, 4-norms and Gagliardo�Nirenberg inequalities. The validity of the last inequalities depends on the
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reverse LSI (3.4) and hene on the ondition (3.2) whih reads, in the presentontext,(3.12) \

Rd

|f(x)|2(|x|2 − d) dγ(x) ≥ 2
\

Rd

|∇f(x)|2 dγ(x).In the present setting this inequality plays the role of the identities ofV. Bargmann (see [3, p. 210℄) and of E. A. Carlen (see [10℄), whih holdin the Segal�Bargmann spae. Inequality (3.12) holds for a lass of funtionsthat inludes harmoni funtions; this lass will play, in our ontext, the roleplayed by the Segal�Bargmann funtions in the omplex ase.Although the theorem below is stated for ompatly supported funtions,standard approximation proedures allow extending the assertion to largerlasses of funtions.Theorem 3.6 (Reverse inequalities, Gaussian ase). Let f be a smooth,ompatly supported funtion suh that(3.13) \
Rd

f(x)(∆f)(x) dγ(x) = (2π)−d/2
\

Rd

f(x)(∆f)(x)e−|x|2/2 dx ≥ 0.

Then for any c > 2 there exists a positive onstant B(c) suh that the fol-lowing reverse LSI holds true:(3.14) 2‖∇f‖2
2,γ ≤ c

\
Rd

f2 log

(

f2

‖f‖2
2,γ

)

dγ + B(c, d)‖f‖2
2,γwhere(3.15) B(c, d) = d

(

−1 +
1

2
log

(

2c

c − 2

))

.Moreover the following inequalities hold :(a) Reverse Sobolev inequality: for any ε > 0 and c > 2 there exists aonstant Gε,c > 0 suh that(3.16) Gε,c‖∇f‖2,γ ≤ ‖f‖2+ε,γwhere Gε,c = 2ε
c(2+ε)e

−
εB(c,d)
c(2+ε) and B(c, d) is given by (3.15).(b) Reverse GNI inequalities: for any c > 2 there exists a positive onstant

N(c, d, p, q) suh that(3.17) ‖∇f‖ϑ
r,γ‖f‖

1−ϑ
p,γ ≤ N‖f‖q,γfor any 0 < r ≤ 2 and 2 ≤ p < q, where ϑ = 4(q − p)/cqp, N = eB(c,d)(q−p)/cqpand B(c) is given by (3.15).Proof. First we prove (3.14). This is a onsequene of Theorem 3.1 to-gether with some alulations. In fat, assumption (i) of that theorem is
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satis�ed for the present lass of funtions. Moreover the Gaussian density
γ(x) = (2π)−d/2e−|x|2/2 on R

d satis�es the identity
(∆γ)(x) = (2π)−d/2(|x|2 − d)e−|x|2/2for any x ∈ R

d. Then we ompute the onstant B(c, γ):
B(c, γ) =

\
Rd

e(∆γ)(x)/cγ(x) dγ(x) =
\

Rd

e(|x|2−d)/cdγ(x)

= e−d/c

(

2c

c − 2

)d/2

= B(c, d).This proves (3.14).The reverse Sobolev inequality (3.16) is just a diret onsequene of(3.14), exatly as in the general ase.The reverse GNI (3.17) is a onsequene of the 4-norms inequality (3.10),whih holds in the present ase as well, together with the Hölder inequality;in fat ‖f‖r,γ ≤ ‖f‖s,γ whenever 0 < r < s, sine the Gaussian measure on
R

d is a probability measure. Moreover this implies
‖∇f‖r,γ

‖f‖s,γ
≤

‖∇f‖2,γ

‖f‖2,γ
whenever 0 < r ≤ 2, s ≥ 2,whih ombined with the reverse 4-norms inequality (3.10) gives us

‖∇f‖2
r,γ

‖f‖2
s,γ

≤ eB(c,d)/2

[

‖f‖q,γ

‖f‖p,γ

]
cqp

2(q−p) whenever





0 < r ≤ 2,

s ≥ 2,

2 ≤ p < q.Finally, let s = p and obtain
‖∇f‖

4(q−p)
cqp

r,γ ‖f‖
1−

4(q−p)
cqp

p,γ ≤ e
B(c,d)(q−p)

cqp ‖f‖qwith 0 < r ≤ 2, 2 ≤ p < q. Letting ϑ = 4(q − p)/cqp and N = eB(c,d)(q−p)/cqpgives (3.17). This onludes the proof.We remark that the above lass of reverse Gagliardo�Nirenberg inequal-ities ontains, as a speial ase, a reverse Moser inequality, by letting r =
p = 2 and q > 2:

‖∇f‖ϑ
2,γ‖f‖

1−ϑ
2,γ ≤ N‖f‖q,γ , ϑ =

2(q − 2)

cq
, c > 2.The reverse Moser inequality is obtained letting q = 2(1 + 1/d) > 2.
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