MATHEMATICAL LOGIC AND FOUNDATIONS

A Note on Indestructibility and Strong Compactness

by

Arthur W. APTER

Presented by Czesław BESSAGA

Summary. If $\kappa < \lambda$ are such that κ is both supercompact and indestructible under κ -directed closed forcing which is also (κ^+ , ∞)-distributive and λ is 2^{λ} supercompact, then by a result of Apter and Hamkins [J. Symbolic Logic 67 (2002)], { $\delta < \kappa \mid \delta$ is δ^+ strongly compact yet δ is not δ^+ supercompact} must be unbounded in κ . We show that the large cardinal hypothesis on λ is necessary by constructing a model containing a supercompact cardinal κ in which no cardinal $\delta > \kappa$ is $2^{\delta} = \delta^+$ supercompact, κ 's supercompactness is indestructible under κ -directed closed forcing which is also (κ^+, ∞)-distributive, and for every measurable cardinal δ , δ is δ^+ strongly compact iff δ is δ^+ supercompact.

1. Introduction and preliminaries. In [3], it was shown (see Theorem 5) that if $\kappa < \lambda$ are such that κ is indestructibly supercompact and λ is 2^{λ} supercompact, then $\{\delta < \kappa \mid \delta \text{ is } \delta^+ \text{ strongly compact yet } \delta \text{ is not } \delta^+$ supercompact} must be unbounded in κ . The only use of indestructibility in this proof is that κ remains supercompact after forcing with the partial ordering which first (if necessary) makes $2^{\lambda} = \lambda^+$ and $2^{\lambda^+} = \lambda^{++}$ and then does a reverse Easton iteration of length λ which adds a nonreflecting stationary set of ordinals of cofinality κ to each measurable cardinal in a final segment of the open interval (κ, λ) . Thus, we actually have the following result.

THEOREM 1. Suppose $\kappa^+ \leq \gamma < \lambda$ are such that κ is supercompact, κ 's supercompactness is indestructible under κ -directed closed forcing which is also (γ, ∞) -distributive, and λ is 2^{λ} supercompact. Then $A = \{\delta < \kappa \mid \delta \text{ is } \delta^+ \text{ strongly compact yet } \delta \text{ is not } \delta^+ \text{ supercompact} \}$ is unbounded in κ .

²⁰⁰⁰ Mathematics Subject Classification: 03E35, 03E55.

Key words and phrases: supercompact, strongly compact, indestructibility, nonreflecting stationary set of ordinals.

The author's research was partially supported by PSC-CUNY Grants and CUNY Collaborative Incentive Grants.

The purpose of this note is to show that the large cardinal hypothesis on λ in Theorem 1 is necessary. Specifically, we prove the following theorem.

THEOREM 2. Suppose $V \models "ZFC + GCH + \kappa$ is supercompact + No cardinal $\delta > \kappa$ is $2^{\delta} = \delta^+$ supercompact + For every cardinal δ , δ is δ^+ strongly compact iff δ is δ^+ supercompact". There is then a partial ordering $\mathbb{P} \in V$ such that $V^{\mathbb{P}} \models "ZFC + \kappa$ is supercompact + No cardinal $\delta > \kappa$ is $2^{\delta} = \delta^+$ supercompact". In $V^{\mathbb{P}}$, κ 's supercompactness is indestructible under κ -directed closed forcing which is also (κ^+, ∞) -distributive. Further, in $V^{\mathbb{P}}$, δ is δ^+ strongly compact iff δ is δ^+ supercompact.

The existence of models V satisfying the hypotheses of Theorem 2 (and much more) was first shown in [4]. By a result of Menas [12], $V \models$ "No cardinal $\delta < \kappa$ is both measurable and a limit of cardinals γ which are either δ^+ strongly compact or δ^+ supercompact", since if δ is the least such cardinal, then $V \models$ " δ is δ^+ strongly compact but not δ^+ supercompact". Hence, there must of necessity be some restrictions on the large cardinal structure of V below κ .

We conclude Section 1 with a very brief discussion of some preliminary material. We presume a basic knowledge of large cardinals and forcing. A good reference in this regard is [8]. We also mention that the partial ordering \mathbb{P} is κ -directed closed if for every directed set D of conditions of size less than κ , there is a condition in \mathbb{P} extending each member of D. The ordering \mathbb{P} is (κ, ∞) -distributive if the intersection of κ many dense open subsets of \mathbb{P} is dense open. It therefore follows that forcing with any partial ordering \mathbb{P} which is both κ -directed closed and (κ^+, ∞) -distributive preserves either the κ^+ strong compactness or κ^+ supercompactness of κ , since forcing with \mathbb{P} adds no new subsets of $P_{\kappa}(\kappa^+)$.

We abuse notation slightly and take $V^{\mathbb{P}}$ as being the generic extension of V by \mathbb{P} . An *indestructibly supercompact cardinal* is one as first given by Laver in [10], i.e., κ is indestructibly supercompact if κ 's supercompactness is preserved in any generic extension via a κ -directed closed partial ordering. For δ any ordinal, δ' is the least cardinal $\gamma > \delta$ such that $V \models ``\gamma$ is γ^+ supercompact".

A corollary of Hamkins' work on gap forcing found in [6, 7] will be employed in the proof of Theorem 2. We therefore state as a separate theorem what is relevant for this paper, along with some associated terminology, quoting from [6, 7] when appropriate. Suppose \mathbb{P} is a partial ordering which can be written as $\mathbb{Q} * \dot{\mathbb{R}}$, where $|\mathbb{Q}| < \delta$, \mathbb{Q} is nontrivial, and $\Vdash_{\mathbb{Q}}$ " $\dot{\mathbb{R}}$ is δ^+ -directed closed". In Hamkins' terminology of [6, 7], \mathbb{P} admits a gap at δ . In his terminology, \mathbb{P} is mild with respect to a cardinal κ iff every set of ordinals x in $V^{\mathbb{P}}$ of size below κ has a "nice" name τ in V of size below κ , i.e., there is a set y in V, $|y| < \kappa$, such that any ordinal forced by a condition in \mathbb{P} to be in τ is an element of y. Also, as in the terminology of [6, 7] and elsewhere, an embedding $j: \overline{V} \to \overline{M}$ is *amenable to* \overline{V} when $j \upharpoonright A \in \overline{V}$ for any $A \in \overline{V}$. The specific corollary of Hamkins' work from [6, 7] we will be using is then the following.

THEOREM 3 (Hamkins). Suppose that V[G] is a generic extension obtained by forcing with \mathbb{P} that admits a gap at some regular $\delta < \kappa$. Suppose further that $j: V[G] \to M[j(G)]$ is an embedding with critical point κ for which $M[j(G)] \subseteq V[G]$ and $M[j(G)]^{\delta} \subseteq M[j(G)]$ in V[G]. Then $M \subseteq V$; indeed, $M = V \cap M[j(G)]$. If the full embedding j is amenable to V[G], then the restricted embedding $j | V : V \to M$ is amenable to V. If j is definable from parameters (such as a measure or extender) in V[G], then the restricted embedding j | V is definable from the names of those parameters in V. Finally, if \mathbb{P} is mild with respect to κ and κ is λ strongly compact in V[G] for any $\lambda \geq \kappa$, then κ is λ strongly compact in V.

2. The proof of Theorem 2. We turn now to the proof of Theorem 2. Suppose $V \models$ "ZFC + GCH + κ is supercompact + No cardinal $\delta > \kappa$ is $2^{\delta} = \delta^+$ supercompact + For every cardinal δ , δ is δ^+ strongly compact iff δ is δ^+ supercompact". Let f be a Laver function [10] for κ , i.e., $f : \kappa \to V_{\kappa}$ is such that for every $x \in V$ and every $\lambda \geq |\text{TC}(x)|$, there is an elementary embedding $j: V \to M$ generated by a supercompact ultrafilter over $P_{\kappa}(\lambda)$ such that $j(f)(\kappa) = x$. The partial ordering \mathbb{P} which is used to establish Theorem 2 is the reverse Easton iteration of length κ which begins by adding a Cohen subset of ω and then (possibly) does nontrivial forcing only at those cardinals $\delta < \kappa$ which are at least δ^+ supercompact in V. At such a stage δ , if $f(\delta) = \dot{\mathbb{Q}}$ and $\Vdash_{\mathbb{P}_{\delta}}$ " $\dot{\mathbb{Q}}$ is a δ -directed closed, (δ^+, ∞) -distributive partial ordering having rank below δ' ", then $\mathbb{P}_{\delta+1} = \mathbb{P}_{\delta} * \dot{\mathbb{Q}}$. If this is not the case, then $\mathbb{P}_{\delta+1} = \mathbb{P}_{\delta} * \dot{\mathbb{Q}}$, where $\dot{\mathbb{Q}}$ is a term for trivial forcing.

LEMMA 2.1. $V^{\mathbb{P}} \vDash$ " κ 's supercompactness is indestructible under κ -directed closed forcing which is also (κ^+, ∞) -distributive".

Proof. We follow the proof of [2, Lemma 2.1]. Let $\mathbb{Q} \in V^{\mathbb{P}}$ be such that $V^{\mathbb{P}} \models "\mathbb{Q}$ is κ -directed closed and (κ^+, ∞) -distributive". Take $\dot{\mathbb{Q}}$ as a term for \mathbb{Q} such that $\Vdash_{\mathbb{P}} "\dot{\mathbb{Q}}$ is κ -directed closed and (κ^+, ∞) -distributive". Suppose $\lambda \geq \max(\kappa^{++}, |\mathrm{TC}(\dot{\mathbb{Q}})|)$ is an arbitrary cardinal, and let $\gamma = 2^{|[\lambda] \leq \kappa|}$. Take $j: V \to M$ as an elementary embedding witnessing the γ supercompactness of κ generated by a supercompact ultrafilter over $P_{\kappa}(\gamma)$ such that $j(f)(\kappa) = \dot{\mathbb{Q}}$. Since $V \models$ "No cardinal δ above κ is $2^{\delta} = \delta^+$ supercompact", $\gamma \geq 2^{[\kappa^+]^{\leq \kappa}}$, and $M^{\gamma} \subseteq M$, it follows that $M \models$ " κ is $2^{\kappa} = \kappa^+$ supercompact". Hence, the definition of \mathbb{P} implies that $j(\mathbb{P} * \dot{\mathbb{Q}}) = \mathbb{P} * \dot{\mathbb{Q}} * \dot{\mathbb{R}} * j(\dot{\mathbb{Q}})$, where

the first stage at which \mathbb{R} is forced to do nontrivial forcing is well above γ . Laver's original argument from [10] now applies and shows $V^{\mathbb{P}*\dot{\mathbb{Q}}} \models "\kappa$ is λ supercompact". (Simply let $G_0 * G_1 * G_2$ be V-generic over $\mathbb{P}*\dot{\mathbb{Q}}*\dot{\mathbb{R}}$, lift j in $V[G_0][G_1][G_2]$ to $j: V[G_0] \to M[G_0][G_1][G_2]$, take a master condition p for $j''G_1$ and a $V[G_0][G_1][G_2]$ -generic object G_3 over $j(\mathbb{Q})$ containing p, lift j again in $V[G_0][G_1][G_2][G_3]$ to $j: V[G_0][G_1] \to M[G_0][G_1][G_2][G_3]$, and show by the γ^+ -directed closure of $\mathbb{R}*j(\dot{\mathbb{Q}})$ that the supercompactness measure over $(P_{\kappa}(\lambda))^{V[G_0][G_1]}$ generated by j is actually a member of $V[G_0][G_1]$.) As λ and \mathbb{Q} were arbitrary, this completes the proof of Lemma 2.1.

Since trivial forcing is both κ -directed closed and (κ^+, ∞) -distributive, Lemma 2.1 implies that $V^{\mathbb{P}} \vDash "\kappa$ is supercompact". Also, because \mathbb{P} may be defined so that $|\mathbb{P}| = \kappa$, standard arguments in tandem with the results of [11] show that $V^{\mathbb{P}} \vDash$ "No cardinal $\delta > \kappa$ is either $2^{\delta} = \delta^+$ strongly compact or supercompact".

LEMMA 2.2. If $V \vDash$ " δ is δ^+ supercompact", then $V^{\mathbb{P}} \vDash$ " δ is δ^+ supercompact".

Proof. Suppose $V \vDash "\delta$ is δ^+ supercompact". As $V \vDash$ "No cardinal $\delta > \kappa$ is $2^{\delta} = \delta^+$ supercompact" and $V^{\mathbb{P}} \vDash "\kappa$ is supercompact", we may assume that $\delta < \kappa$.

Write $\mathbb{P} = \mathbb{P}_{\delta} * \dot{\mathbb{P}}^{\delta}$. Since by the definition of \mathbb{P} , $\Vdash_{\mathbb{P}_{\delta}} \quad `\dot{\mathbb{P}}^{\delta}$ is both δ directed closed and (δ^+, ∞) -distributive", to show $V^{\mathbb{P}} = V^{\mathbb{P}_{\delta} * \dot{\mathbb{P}}^{\delta}} \vDash `\delta \text{ is } \delta^+$ supercompact", it suffices to show that $V^{\mathbb{P}_{\delta}} \vDash `\delta \text{ is } \delta^+$ supercompact". To do this, we consider the following two cases.

CASE 1: $|\mathbb{P}_{\delta}| < \delta$. If this occurs, then by the results of [11], $V^{\mathbb{P}_{\delta}} \vDash "\delta$ is δ^+ supercompact".

CASE 2: $|\mathbb{P}_{\delta}| \geq \delta$. In this situation, by the definition of \mathbb{P} , $|\mathbb{P}_{\gamma}| < \delta$ for every $\gamma < \delta$, and δ is a limit of cardinals γ which are γ^+ supercompact. Hence, $|\mathbb{P}_{\delta}| = \delta$. Let $j : V \to M$ be an elementary embedding witnessing the δ^+ supercompactness of δ generated by a supercompact ultrafilter over $P_{\delta}(\delta^+)$ such that $M \models "\delta$ is not δ^+ supercompact". We may now infer that only trivial forcing is done at stage δ in M in the definition of $j(\mathbb{P}_{\delta})$. It then follows that $j(\mathbb{P}_{\delta}) = \mathbb{P}_{\delta} * \dot{\mathbb{Q}}$, where the first stage at which $\hat{\mathbb{Q}}$ is forced to do nontrivial forcing is well above δ^+ . A standard diagonalization argument (see, e.g., the proof of [3, Lemma 8.1]) now shows that $V^{\mathbb{P}_{\delta}} \models "\delta$ is δ^+ supercompact".

Cases 1 and 2 complete the proof of Lemma 2.2. \blacksquare

LEMMA 2.3. $V^{\mathbb{P}} \vDash \delta$ is δ^+ strongly compact iff δ is δ^+ supercompact". *Proof.* Suppose $V^{\mathbb{P}} \vDash \delta$ is δ^+ strongly compact". By Lemma 2.2 and our remarks above, we may assume without loss of generality that $\delta < \kappa$ and $V \vDash "\delta$ is not δ^+ supercompact". Let $\gamma = \sup(\{\alpha < \delta \mid \alpha \text{ is } \alpha^+ \text{ supercompact}\})$, and write $\mathbb{P} = \mathbb{P}_{\gamma} \ast \dot{\mathbb{Q}}$. By the definition of $\mathbb{P}, \Vdash_{\mathbb{P}_{\gamma}} "\dot{\mathbb{Q}}$ is both δ' -directed closed and $((\delta')^+, \infty)$ -distributive" (from which it follows that $\Vdash_{\mathbb{P}_{\gamma}} "\dot{\mathbb{Q}}$ is both δ -directed closed and (δ^+, ∞) -distributive"). Consequently, $V^{\mathbb{P}_{\gamma}} \vDash "\delta \text{ is } \delta^+ \text{ strongly compact"}$. Further, by its definition, \mathbb{P}_{γ} admits a gap at \aleph_1 .

If $|\mathbb{P}_{\gamma}| < \delta$, then by the results of [11], $V \models "\delta$ is δ^+ strongly compact". Hence, by our hypotheses on $V, V \models "\delta$ is δ^+ supercompact", which is contradictory to our assumptions. If $|\mathbb{P}_{\gamma}| \ge \delta$, then we first assume that \mathbb{P}_{γ} is mild with respect to δ . Under these circumstances, by Theorem 3, $V \models "\delta$ is δ^+ strongly compact", which means we reach the same contradiction as when $|\mathbb{P}_{\gamma}| < \delta$. Thus, we may assume without loss of generality that \mathbb{P}_{γ} is not mild with respect to δ .

We consider now the following two cases. Our argument is analogous to the one given in the proof of [1, Lemma 2.3].

CASE 1: $(\delta^+)^V < (\delta^+)^{V^{\mathbb{P}_{\gamma}}}$. If this is the situation, then as δ is measurable and hence a cardinal in $V^{\mathbb{P}_{\gamma}}$, $V^{\mathbb{P}_{\gamma}} \models "|(\delta^+)^V| = \delta$ ". Therefore, since for any ordinal ρ having cardinality δ , δ is measurable iff δ is ρ strongly compact iff δ is ρ supercompact, $V^{\mathbb{P}_{\gamma}} \models "\delta$ is $(\delta^+)^V$ supercompact". By Theorem 3, $V \models "\delta$ is $(\delta^+)^V = \delta^+$ supercompact", an immediate contradiction.

CASE 2: $(\delta^+)^V = (\delta^+)^{V^{\mathbb{P}\gamma}}$. To handle when this occurs, we use an idea due to Hamkins, which has also appeared in [5] in a more general context (as well as in this context in [1, Lemma 2.3]). Hamkins' argument is as follows. Let G be V-generic over \mathbb{P}_{γ} , and let $j: V[G] \to M[j(G)]$ be an elementary embedding witnessing the δ^+ strong compactness of δ generated by a δ -additive, fine ultrafilter over $P_{\delta}(\delta^+)$ present in V[G]. As $M[j(G)]^{\delta} \subseteq$ M[j(G)], by Theorem 3, the embedding $j^* = j | V : V \to M$ is definable in V. Note that j and j^{*} agree on the ordinals. Since j is a δ^+ strong compactness embedding in V[G], there is some $X \subseteq j(\delta^+)$ such that $X \in M[j(G)]$ with $j''\delta^+ \subseteq X$ and $M[j(G)] \models "|X| < j(\delta^+)$ ". Therefore, since δ^+ is regular in $V[G], j(\delta^+)$ is regular in M[j(G)], so we can find an $\alpha < j(\delta^+)$ with $\alpha > j(\delta^+)$ $\sup(X) \ge \sup(j''\delta^+)$. This means that if $x \subseteq \delta^+$ is such that $x \subseteq \beta < \delta^+$, then $j(\alpha) \notin j(x) \subseteq j(\beta)$. But then $\mathcal{U} = \{x \subseteq \delta^+ \mid \alpha \in j^*(x)\}$ defines in V a δ -additive, uniform ultrafilter over δ^+ which gives measure 1 to sets having size δ^+ . By a theorem of Ketonen [9], δ is δ^+ strongly compact in V. Again by our hypotheses on $V, V \vDash$ " δ is δ^+ supercompact", a contradiction.

Thus, assuming $V^{\mathbb{P}} \models "\delta$ is δ^+ strongly compact" leads to the conclusion that $V \models "\delta$ is δ^+ supercompact". Since this contradicts our initial assumptions, the proof of Lemma 2.3 is now complete.

Lemmas 2.1–2.3 and the intervening remarks complete the proof of Theorem 2. \blacksquare

We take this opportunity to observe that our preceding work actually shows that if $V^{\mathbb{P}} \models "\mathbb{Q}$ is both κ -directed closed and (κ^+, ∞) -distributive", then $V^{\mathbb{P}*\mathbb{Q}} \models "\delta$ is δ^+ strongly compact iff δ is δ^+ supercompact". This easily follows for $\delta \leq \kappa$, since any forcing which is both κ -directed closed and (κ^+, ∞) -distributive will preserve the conclusions of Lemma 2.3. For $\delta > \kappa$, the arguments of Lemma 2.3 with $\mathbb{P} * \mathbb{Q}$ replacing \mathbb{P}_{γ} show that if $V^{\mathbb{P}*\mathbb{Q}} \models "\delta$ is δ^+ strongly compact", then $V \models "\delta$ is δ^+ supercompact". This, of course, contradicts our initial hypotheses on V. Thus, we may in fact infer that $V^{\mathbb{P}*\mathbb{Q}} \models$ "No cardinal $\delta > \kappa$ is δ^+ strongly compact".

The methods we have used still leave open some interesting questions, with which we conclude this note. Specifically, is it possible to prove an analogue of Theorem 2 in which κ is (fully) indestructibly supercompact? Is it possible to prove an analogue of Theorem 2 in which, e.g., for every cardinal δ , δ is δ^{++} strongly compact iff δ is δ^{++} supercompact? Hamkins' idea of [5] used in the proof of Lemma 2.3 does not yet seem to generalize to the situation where δ is γ strongly compact but $\gamma \geq \delta^{++}$. Finally, in a question first posed in [3], is it possible to construct a model containing an indestructibly supercompact cardinal κ in which for every pair of regular cardinals $\delta < \gamma$, δ is γ strongly compact iff δ is γ supercompact? As Theorem 1 indicates, an answer to this final question would take place in a model with some restrictions on its large cardinal structure.

References

- A. Apter, Indestructibility, strongness, and level by level equivalence, Fund. Math. 177 (2003), 45–54.
- [2] —, Supercompactness and level by level equivalence and inequivalence, Math. Logic Quart. 53 (2007), 78–85.
- [3] A. Apter and J. D. Hamkins, Indestructibility and the level-by-level agreement between strong compactness and supercompactness, J. Symbolic Logic 67 (2002), 820–840.
- [4] A. Apter and S. Shelah, On the strong equality between supercompactness and strong compactness, Trans. Amer. Math. Soc. 349 (1997), 103–128.
- J. D. Hamkins, Extensions with the approximation and cover properties have no new large cardinals, Fund. Math. 180 (2003), 257–277.
- [6] —, Gap forcing, Israel J. Math. 125 (2001), 237–252.
- [7] —, Gap forcing: generalizing the Lévy-Solovay theorem, Bull. Symbolic Logic 5 (1999), 264–272.
- [8] T. Jech, Set Theory: The Third Millennium Edition, Revised and Expanded, Springer, Berlin, 2003.
- [9] J. Ketonen, Strong compactness and other cardinal sins, Ann. Math. Logic 5 (1972), 47–76.

- [10] R. Laver, Making the supercompactness of κ indestructible under κ-directed closed forcing, Israel J. Math. 29 (1978), 385–388.
- [11] A. Lévy and R. Solovay, Measurable cardinals and the continuum hypothesis, ibid. 5 (1967), 234–248.
- T. Menas, On strong compactness and supercompactness, Ann. Math. Logic 7 (1974), 327–359.

Arthur W. Apter Department of Mathematics Baruch College of CUNY New York, NY 10010, U.S.A. and The CUNY Graduate Center, Mathematics 365 Fifth Avenue New York, NY 10016, U.S.A. E-mail: awapter@alum.mit.edu http://faculty.baruch.cuny.edu/apter

Received February 20, 2008

(7648)