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Summary. We introduce the concept of truncated variation of Brownian motion with
drift, which differs from regular variation by neglecting small jumps (smaller than some
c > 0). We estimate the expected value of the truncated variation. The behaviour resem-
bling phase transition as c varies is revealed. Truncated variation appears in the formula
for an upper bound for return from any trading based on a single asset with flat commis-
sion.

1. Introduction. Let (Wt, t ≥ 0) be a Wiener process on the interval
[0, T ] with drift µ, Wt = µt+ Bt, where (Bt, t ≥ 0) is a standard Brownian
motion.

It is well known (cf. [4]) that for any a < b, the variation of this process
on [a, b] is infinite:

sup
n

sup
a≤t1<···<tn≤b

n−1∑
i=1

|Wti+1 −Wti | = +∞.

However, if we restrict ourselves to jumps greater than some c > 0 and
define the truncated variation of (Wt, t ≥ 0) on [a, b], V c

µ [a, b], as

V c
µ [a, b] = sup

n
sup

a≤t1<···<tn≤b

n−1∑
i=1

max{|Wti+1 −Wti | − c, 0},

then we obtain a random variable which is finite almost surely. (A technical
remark: for a > b we put V c,p

µ [a, b] = 0.) Truncated variation is shift invari-
ant, i.e. for 0 ≤ a < b, V c

µ [a, b] has the same distribution as V c
µ [0, b − a].
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However, this functional is no longer additive, i.e. for 0 ≤ a < b < d we do
not have a.s. the equality

V c
µ [a, d] = V c

µ [a, b] + V c
µ [b, d].

In this paper we will estimate, up to universal constants, the expected
value of V c

µ [0, T ], i.e. we will find a function of parameters µ, c and T ,
F (µ, c, T ), such that the ratio EV c

µ [0, T ]/F (µ, c, T ) is separated from 0 and
infinity. We give some numerical constants for this separation, but we do not
attempt to obtain the best possible ones.

Since the truncated variation has the same value for the process (Wt,
t ≥ 0) as for the process (−Wt, t ≥ 0), we will assume µ ≥ 0. Let us also
define

χ(c, µ) =

√
e2µc − 1− 2µc

2µ2
= c

√
1 +

2
3
µc+ · · · .

The function F has the form

F (µ, c, T ) =


T/c+ µT if

√
T ≥ χ(c, µ);

2
√
T + µT − c if c− µT ≤

√
T < χ(c, µ);

T 3/2 exp(−(c− µT )2/(2T ))
(c− µT )2

if
√
T ≤ c− µT.

If we notice that χ(c, µ) is of order c when µc ≤ 1 and of order eµc/µ when
µc ≥ 1 we get even simpler formulae than above.

Thus EV c
µ [0, T ] reveals some interesting behaviour. It is approximately

linear in T for large T but decreases rapidly for small T . Small changes of c
may also lead to dramatic changes of V c

µ [0, T ].
Truncated variation appears naturally when profit from a trading strat-

egy based on a single asset is considered in the presence of transaction
costs. If the dynamics of the prices of the asset, Pt, is a geometric Brow-
nian motion process, Pt = exp(µt+ σBt), and the cost of every transaction
dealing with this asset is proportional to the value of the transaction (flat
commission), then the highest possible rate of return from any trading of
this single asset during the time interval [0, T ] is bounded from above by
exp(σV c/σ

µ/σ ([0, T ]))− 1 with c = ln 1+γ
1−γ , where γ is the fraction of the trans-

action value paid for commission.
The paper is organized as follows. In the next section estimates of the

expected value of the truncated variation for long time intervals are presented
and in the last section we deal with short time intervals. In the appendix we
explain how truncated variation appears in the upper bound for return from
trading a single asset in the geometric Brownian motion model.
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2. Preparatory lemmas and estimates for long time intervals.
In order to estimate EV c

µ [a, b] we first define

Tc = inf{t ≥ 0 : Wt ≤ sup
0≤s≤t

Ws − c},

i.e. Tc is the first time the processWt drops below its maximum to date by c.
Let T csup be the last instant when the maximum of Wt on [0, Tc] is at-

tained, and let T cinf ≤ T csup be such that WT c
inf

= inf0≤s≤T c
sup
Ws.

In order to ease notation we put (a)+ = max{a, 0} for any real a.
Let us start with the following

Lemma 1. The random time Tc is a stopping time which is a.s. finite,
and

(2.1) V c
µ [0, Tc] = (WT c

sup
−WT c

inf
− c)+.

Proof. By results of Taylor (cf. [7]) we know that ETc < ∞, which im-
mediately yields Tc <∞ a.s.

Now we prove (2.1). Let 0 ≤ t1 < · · · < tl ≤ Tc be a partition of the
random interval [0, Tc]. For any 1 ≤ i ≤ j ≤ l we have Wtj −Wti ≥ −c,
hence (|Wti+1 −Wti | − c)+ > 0 if and only if Wti+1 > Wti + c. Let j < k
be two consecutive indices such that Wtj+1 > Wtj + c and Wtk+1

> Wtk + c.
Then

(|Wtk+1
−Wtk | − c)+ + (|Wtj+1 −Wtj | − c)+

= Wtk+1
−Wtj − c− (Wtk −Wtj+1 + c)

≤Wtk+1
−Wtj − c = (|Wtk+1

−Wtj | − c)+.
Iterating the above procedure we obtain

l−1∑
i=1

(|Wti+1 −Wti | − c)+ ≤ (WT c
sup
−WT c

inf
− c)+.

Taking the supremum over all partitions 0 ≤ t1 < · · · < tl ≤ Tc we get
V c
µ [0, Tc] ≤ (WT c

sup
−WT c

inf
− c)+. Since the opposite inequality is obvious,

we finally get (2.1).

We also have

Lemma 2. The following inequalities hold :

V c
µ ([0, T ]) ≤ V c

µ [0, Tc] + c+ V c
µ [Tc, T ],(2.2)

V c
µ ([0, T ]) ≤ V c

µ [0, Tc] +
(
WT c

sup
− inf
Tc≤t≤T

Wt − c
)

+
(2.3)

+ V c
µ [Tc, T ].

Proof. Since for Tc ≥ T the inequalities (2.2) and (2.3) are self-evident,
we will assume Tc < T.
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We will prove that for any partition 0 ≤ t1 < · · · < tn ≤ T of the interval
[0, T ] and S =

∑n−1
i=1 (|Wti+1 −Wti | − c)+ we have

(2.4) S ≤ V c
µ [0, Tc] + c+ V c

µ [Tc, T ]

and

(2.5) S ≤ V c
µ [0, Tc] +

(∣∣∣WT c
sup
− inf
Tc≤t≤T

Wt

∣∣∣− c)
+

+ V c
µ [Tc, T ].

Taking the supremum over all partitions 0 ≤ t1 < · · · < tn ≤ T in (2.4) and
(2.5) we obtain (2.2) and (2.3) respectively.

Let 0 ≤ t1 < · · · < tn ≤ T . If tn < Tc then (2.4) and (2.5) are obvious,
hence we may assume that tl ≤ Tc < tl+1 for some l < n. Further, let us set

S1 =
l−1∑
i=1

(|Wti+1 −Wti | − c)+ ≤ V c
µ [0, Tc],

S2 =
n−1∑
i=l+1

(|Wti+1 −Wti | − c)+ ≤ V c
µ [Tc, T ].

Since
S = S1 + (|Wtl+1

−Wtl | − c)+ + S2,

we may assume that (|Wtl+1
−Wtl | − c)+ > 0. Hence Wtl+1

> Wtl + c or
Wtl+1

< Wtl − c.
Let us consider a few cases.

• Wtl+1
> Wtl + c and Wtl ≥WTc . In this case

(|Wtl+1
−Wtl | − c)+ ≤ (|Wtl+1

−WTc | − c)+
and we have (|Wtl+1

−WTc | − c)+ + S2 ≤ V c
µ [Tc, T ] so

S = S1 + (|Wtl+1
−Wtl | − c)+ + S2 ≤ V c

µ [0, Tc] + V c
µ [Tc, T ].

• Wtl+1
> Wtl + c, Wtl < WTc = WT c

sup
− c and Wtl+1

≤ WT c
sup
. In this

case tl < T csup (since for T csup ≤ t ≤ Tc, Wt ≥WTc) and

(|Wtl+1
−Wtl | − c)+ ≤ (|WT c

sup
−Wtl | − c)+.

Just as before, S1 + (|WT c
sup
−Wtl | − c)+ ≤ V c

µ [0, Tc] and

S = S1 + (|Wtl+1
−Wtl | − c)+ + S2 ≤ V c

µ [0, Tc] + V c
µ [Tc, T ].

• Wtl+1
> Wtl + c, Wtl < WTc = WT c

sup
− c and Wtl+1

> WT c
sup
. In this

case again tl < T csup and

(|Wtl+1
−Wtl | − c)+ = Wtl+1

−Wtl − c = Wtl+1
−WTc +WT c

sup
−Wtl − 2c

= (|WT c
sup
−Wtl | − c)+ + (|Wtl+1

−WTc | − c)+.
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Again S1+(|WT c
sup
−Wtl |−c)+ ≤ V c

µ [0, Tc] as well as (|Wtl+1
−WTc |−c)++S2

≤ V c
µ [Tc, T ], so we get

S = S1 + (|Wtl+1
−Wtl | − c)+ + S2 ≤ V c

µ [0, Tc] + V c
µ [Tc, T ].

• Wtl+1
< Wtl − c. In this case |Wtl+1

−Wtl | > c, hence

(|Wtl+1
−Wtl | − c)+ = |Wtl+1

−Wtl | − c
≤ (|WTc −Wtl | − c) + c+ (|Wtl+1

−WTc | − c)
≤ (|WTc −Wtl | − c)+ + c+ (|Wtl+1

−WTc | − c)+.

We also have

(|Wtl+1
−Wtl | − c)+ ≤

(∣∣∣WT c
sup
− inf
Tc≤t≤T

Wt

∣∣∣− c)
+
.

Thus we get (2.4) and (2.5), completing the proof.

We will also need the following

Lemma 3. For any µ ≥ 0 and c > 0,

P

(
Tc <

1
2

ETc
)
≤ 7

8
.

Proof. By results of Taylor (cf. [7]), Tc has the following moment gener-
ating function:

E exp(−βTc) =

√
µ2 + 2β exp(−µc)√

µ2 + 2β cosh(
√
µ2 + 2βc)− µ sinh(

√
µ2 + 2βc)

.

From the above formula one can derive moments of Tc:

ETc =
{

(e2µc − 1− 2µc)/(2µ2) for µ > 0
c2 for µ = 0

= c2
(

1 +
2
3
µc+

1
3
µ2c2 + · · ·

)
and

ET 2
c =

{
(e4µc − 6e2µcµc+ e2µc + 2µ2c2 − 2)/(2µ4) for µ > 0
5
3c

4 for µ = 0

=
5
3
c4
(

1 +
36
25
µc+

94
75
µ2c2 + · · ·

)
.

By the Paley–Zygmund inequality, for λ ∈ (0, 1),

P(Tc ≥ λETc) ≥ (1− λ)2
(ETc)2

ET 2
c

.

For µ = 0 we have (ETc)2/ET 2
c = 3/5, and for µ > 0 with standard calculus
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one can show that
(ETc)2

ET 2
c

=
1
2

(e2µc − 1− 2µc)2

e4µc − 6e2µcµc+ e2µc + 2µ2c2 − 2
≥ 1

2
.

Finally, from the above inequalities, for λ = 1/2 we obtain

P
(
Tc <

1
2

ETc
)

= 1− P
(
Tc ≥

1
2

ETc
)
≤ 1− 1

4
1
2

=
7
8
.

Now we are ready to prove estimates of EV c
µ ([0, T ]) for T comparable

with ETc. We have

Theorem 1. For any T ≥ 1
2ETc,

1
120

(
c

ETc
+ µ

)
T ≤ EV c

µ ([0, T ]) ≤ 64
(

c

ETc
+ µ

)
T.

Proof. First we estimate EV c
µ [0, T ] from above. Let us observe that

V c
µ [0, Tc] = (WT c

sup
− WT c

inf
− c)+ ≤ WT c

sup
, since WT c

inf
≥ −c. Now, from

this, (2.2) and independence of (Wt −WTc , t ≥ Tc) and Tc it follows that

EV c
µ ([0, T ]) ≤ EWT c

sup
+ c+ E

[
V c
µ [Tc, T ];Tc <

1
2

ETc
]

+ E
[
V c
µ [Tc, T ];Tc ≥

1
2

ETc
]

≤ EWT c
sup

+ c+ EV c
µ [0, T ] · P

(
Tc <

1
2

ETc
)

+ EV c
µ

[
1
2

ETc, T
]
· P
(
Tc ≥

1
2

ETc
)
.

Since EWT c
sup

= c+ µETc ≥ c (cf. [7]), the last inequality and Lemma 3 give

EV c
µ ([0, T ]) ≤

EWT c
sup

+ c

P(Tc ≥ 1
2ETc)

+ EV c
µ

[
1
2

ETc, T
]

≤
2EWT c

sup

1/8
+ EV c

µ

[
1
2

ETc, T
]

≤ 16EWT c
sup

+ EV c
µ

[
1
2

ETc, T
]
.

Applying shift invariance of V c
µ and iterating this inequality b2T/ETcc times

we get EV c
µ ([0, T ]) ≤ 16EWT c

sup
· (b2T/ETcc + 1). Applying the identity

EWTsup = c+ µETc and the inequality b2T/ETcc ≥ 1 we finally obtain

EV c
µ ([0, T ]) ≤ 16EWT c

sup
· (b2T/ETcc+ 1)

≤ 16(c+ µETc)
4T
ETc

≤ 64
(

c

ETc
+ µ

)
T.
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In order to get an estimate from below let us divide [0, T ] into b2T/ETcc
intervals of length 1

2ETc: [0, T ] =
[
0, 1

2ETc
]
∪
[

1
2ETc,ETc

]
∪ · · · ∪ [b2T/ETcc ·

ETc, T ]. Let aj = (j/2)ETc, j = 0, 1, . . . , b2T/ETcc, ∆T = 1
2ETc ≥ 1

2c
2 and

y = 3
2c+ µ∆T. We have

EV c
µ ([0, T ]) ≥

b2T/ETcc−1∑
j=0

EV c
µ ([aj , aj +∆T ])(2.6)

≥
b2T/ETcc−1∑

j=0

E
(

sup
0≤s≤∆T

Waj+s −Waj − c
)

+

≥ b2T/ETcc(y − c)P
(

sup
0≤s≤∆T

Ws ≥ y
)
.

For the process (Wt, t ≥ 0) we have

P( sup
0≤s≤∆T

Ws ≥ y) ≥ P(W∆T ≥ y) = P(B∆T ≥ y − µ∆T )(2.7)

=
1
2

Erfc
(
y − µ∆T√

2∆T

)
,

where Erfc(x) is the complementary error function, Erfc(x) = 2√
π

	∞
x e−t

2
dt.

Since ∆T ≥ 1
2c

2 we have

P
(

sup
0≤s≤∆T

Ws ≥ y
)
≥ 1

2
Erfc

( 3
2c+ µ∆T − µ∆T

√
c2

)
(2.8)

=
1
2

Erfc
(

3
2

)
.

Now, from (2.6) and (2.8) we get the estimate from below

EV c
µ ([0, T ]) ≥ b2T/ETcc(y − c)P

(
sup

0≤s≤∆T
Ws ≥ y

)
≥ T

ETc

(
3
2
c+

1
2
µETc − c

)
1
2

Erfc
(

3
2

)
=

1
4

Erfc
(

3
2

)(
c

ETc
+ µ

)
T ≥ 1

120

(
c

ETc
+ µ

)
T.

Corollary 1. For T ≥ 1
2ETc,

1
264

(
1
c

+ µ

)
T ≤ EV c

µ [0, T ] ≤ 64
(

1
c

+ µ

)
T.

Proof. The upper bound follows immediately from Theorem 1 and the
inequality

ETc =
e2µc − 1− 2µc

2µ2
= c2

(
1 +

2
3
µc+

1
3
µ2c2 + . . .

)
≥ c2.

In order to prove the lower bound let us consider two cases.
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• µc ≥ 1. In this case we have 1/c ≤ µ and, by Theorem 1,

EV c
µ [0, T ] ≥ 1

120
µT ≥ 1

120

(
1
2

1
c

+
1
2
µ

)
T

=
1

240

(
1
c

+ µ

)
T.

• µc < 1. In this case, since ETc/c2 is an increasing function of µc, we
have ETc/c2 ≤ (e2 − 1− 2)/2 < 2.2. Thus c/ETc ≥ 1/2.2c, and by Theo-
rem 1,

EV c
µ [0, T ] ≥ 1

120

(
1

2.2c
+ µ

)
T ≥ 1

120

(
1

2.2c
+

1
2.2

µ

)
T

=
1

264

(
1
c

+ µ

)
T.

3. Estimates for short time intervals. In order to prove estimates of
V c
µ ([0, T ]) for small T s (smaller than 1

2ETc) we will need two more lemmas.

Lemma 4. For any T ≤ 1
2ETc,

E
(

sup
0≤t≤T

Wt − inf
0≤t≤T

Wt − c
)

+
≤ EV c

µ ([0, T ])

≤ 16E
(

sup
0≤t≤T

Wt − inf
0≤t≤T

Wt − c
)

+
.

Proof. The estimate from below is self-evident. In order to obtain the es-
timate from above we apply Lemma 1, Lemma 2, independence of
(Wt −WTc , t ≥ Tc) and Tc, and Lemma 3:

EV c
µ ([0, T ]) ≤ E(WT c

sup
−WT c

inf
− c)+

+ E
(
WT c

sup
− inf
Tc≤t≤T

Wt − c
)

+

+ E[V c
µ [Tc, T ];Tc < T ]

≤ 2E
(

sup
0≤t≤T

Wt − inf
0≤t≤T

Wt − c
)

+

+ EV c
µ [Tc, T ] · P

(
Tc <

1
2

ETc
)

≤ 2E
(

sup
0≤t≤T

Wt − inf
0≤t≤T

Wt − c
)

+
+

7
8

EV c
µ [0, T ].

Thus we get

EV c
µ ([0, T ]) ≤ 16E

(
sup

0≤t≤T
Wt − inf

0≤t≤T
Wt − c

)
+
.



Truncated Variation of Brownian Motion with Drift 275

Lemma 5. If
√
T + µT ≥ c, then

1
44

(2
√
T + µT − c) ≤ E

(
sup

0≤t≤T
Wt − inf

0≤t≤T
Wt − c

)
+

≤ 1.6(2
√
T + µT − c),

and if
√
T + µT < c, then

1
12
T 3/2 e

−(c−µT )2/(2T )

(c− µT )2
≤ E

(
sup

0≤t≤T
Wt − inf

0≤t≤T
Wt − c

)
+

≤ 3.2T 3/2 e
−(c−µT )2/(2T )

(c− µT )2
.

Proof. Let us first consider the case
√
T + µT ≥ c. We have

E
(

sup
0≤t≤T

Wt − inf
0≤t≤T

Wt − c
)

+

≤ E
(

sup
0≤t≤T

Bt − inf
0≤t≤T

Bt +
√
T + µT − c

)
+

= E
(

sup
0≤t≤T

Bt − inf
0≤t≤T

Bt +
√
T + µt− c

)
= (
√

8/π + 1)
√
T + µT − c

≤ 1.6(2
√
T + µt− c).

In order to get the estimate from below we apply formula (2.7). We have
inf0≤t≤T Wt ≤W0 = 0, so that

E
(

sup
0≤t≤T

Wt − inf
0≤t≤T

Wt − c
)

+

≥ (2
√
T + µT − c)P

(
sup

0≤t≤T
Ws ≥ 2

√
T + µT

)
≥ (2
√
T + µT − c) 1

2
Erfc

(
2
√
T + µT − µT√

2T

)
= (2
√
T + µT − c) 1

2
Erfc(

√
2)

≥ 1
44

(2
√
T + µT − c).

In the case
√
T + µT < c we have to apply more exact formulae. For the

estimate from below we calculate
E
(

sup
0≤t≤T

Wt − inf
0≤t≤T

Wt − c
)

+
≥ E

(
sup

0≤t≤T
Wt − c

)
+

=
∞�

c

P
(

sup
0≤t≤T

Ws ≥ y
)
dy

≥ 1
2

∞�

c

Erfc
(
y − µT√

2T

)
dy.
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For the estimate from above we use the following formula valid for a standard
Brownian motion (Bt, t ≥ 0) and y ≥ 0 (cf. [1] or [3]):

P
(

sup
0≤t≤T

Bt − inf
0≤t≤T

Bt ≥ y
)

= 4
∞∑
k=1

(−1)k+1kErfc
(

ky√
2T

)
.

For k ≥ 1 and y ≥
√
T we have

Erfc
(

(2k + 1)y√
2T

)
=

2√
π

∞�

(2k+1)y/
√

2T

e−t
2
dt

=
2√
π

∞�

2ky/
√

2T

e−(t+y/
√

2T )2 dt

≤ 2√
π

∞�

2ky/
√

2T

e−t
2−2k dt

≤ 2k
2k + 1

Erfc
(

2ky√
2T

)
,

hence

P
(

sup
0≤t≤T

Bt − inf
0≤t≤T

Bt ≥ y
)
≤ 4 Erfc

(
y√
2T

)
and

E
(

sup
0≤t≤T

Wt − inf
0≤t≤T

Wt − c
)

+
≤ E

(
sup

0≤t≤T
Bt − inf

0≤t≤T
Bt + µT − c

)
+

=
∞�

c−µT
P
(

sup
0≤t≤T

Bt − inf
0≤t≤T

Bt ≥ y
)
dy

≤ 4
∞�

c−µT
Erfc

(
y√
2T

)
dy

= 4
∞�

c

Erfc
(
y − µT√

2T

)
dy.

The last step is to estimate
∞�

c

Erfc
(
y − µT√

2T

)
dy =

√
2T

∞�

(c−µT )/
√

2T

Erfc(z) dz

for c ≥ µT +
√
T . The known estimate

2√
π

e−d
2

d+
√
d2 + 2

< Erfc(d) ≤ 2√
π

e−d
2

d+
√
d2 + π/4
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for d ≥ 0 (cf. [5]) and the equality
	∞
d Erfc(z) dz = e−d

2
/
√
π − dErfc(d) for

d ≥ 1/
√

2 yield
∞�

d

Erfc(z) dz ≥ e−d
2

√
π
− 2√

π

e−d
2
d

d+
√
d2 + π/4

=
e−d

2

d2

√
π

4(1 +
√

1 + π/(4d2))2
≥ 1

16
e−d

2

d2

and
∞�

d

Erfc(z) dz ≤ e−d
2

√
π
− 2√

π

e−d
2
d

d+
√
d2 + 2

=
e−d

2

d2

2
√
π(1 +

√
1 + 2/d2)2

≤ 1
2
√
π

e−d
2

d2
.

Putting together the above inequalities for d = (c − µT )/
√

2T > 1/
√

2 we
finally get the assertion.

Remark 1. In the proof above we could have tried to use the ex-
act formula for E(sup0≤t≤T Wt − inf0≤t≤T Wt − c)+, since the formula for
P(sup0≤t≤T Wt− inf0≤t≤T Wt ≥ y) is known (cf. [1], [2] or [6]); however, we
preferred to avoid this because the latter formula seems much more compli-
cated than the one for Bt.

Lemmas 4 and 5 immediately yield

Theorem 2. If c− µT ≤
√
T <

√
1
2ETc then

1
44

(2
√
T + µT − c) ≤ EV c

µ ([0, T ]) ≤ 26(2
√
T + µT − c),

and if
√
T < min{c− µT,

√
1
2ETc} then

1
12
T 3/2 e

−(c−µT )2/(2T )

(c− µT )2
≤ EV c

µ ([0, T ]) ≤ 52T 3/2 e
−(c−µT )2/(2T )

(c− µT )2
.

Combining Corollary 1 and Theorem 2 we get

Corollary 2. Set χ(c, µ) =
√

ETc = c
√

1 + 2
3µc+ 1

3µ
2c2 + · · · .

• If
√
T ≥ χ(c, µ), then

1
264

(
1
c

+ µ

)
T ≤ EV c

µ [0, T ] ≤ 64
(

1
c

+ µ

)
T.

• If c− µT ≤
√
T < χ(c, µ), then

1
747

(2
√
T + µT − c) ≤ EV c

µ [0, T ] ≤ 340(2
√
T + µT − c).
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• If
√
T < c− µT , then

1
227

T 3/2 e
−(c−µT )2/(2T )

(c− µT )2
≤ EV c

µ [0, T ] ≤ 493T 3/2 e
−(c−µT )2/(2T )

(c− µT )2
.

Proof. The estimates for
√
T ≥ χ(c, µ) follow from Corollary 1. By The-

orem 2 we need only prove that if max{c−µT, χ(c, µ)/
√

2} ≤
√
T ≤ χ(c, µ),

then

(3.1)
1

747
(2
√
T + µT − c) ≤ EV c

µ [0, T ] ≤ 340(2
√
T + µT − c),

and if χ(c, µ)/
√

2 ≤
√
T < c− µT, then

(3.2)
1

227
T 3/2 e

−(c−µT )2/(2T )

(c− µT )2
≤ EV c

µ [0, T ] ≤ 493T 3/2 e
−(c−µT )2/(2T )

(c− µT )2
.

In order to prove the lower bound in (3.1) let us notice that for T ≥
χ2(c, µ)/2 ≥ c2/2 we have 1/c ≥ 1/

√
2T , and by Corollary 1,

EV c
µ [0, T ] ≥ 1

264

(
1
c

+ µ

)
T ≥ 1

264

(
1√
2T

+ µ

)
T

=
1

264

(
1√
2

√
T + µT

)
≥ 1

747
(2
√
T + µT − c).

To prove the upper bound we consider two cases.

• µc ≥ 1. In this case 1/c ≤ µ. By Corollary 1, since
√

2
√
T ≥ c we have

EV c
µ [0, T ] ≤ 1

64

(
1
c

+ µ

)
T ≤ 1

32
µT ≤ 1

32
(2
√
T + µT − c).

• µc < 1. In this case, since χ2(c, µ)/c2 = (e2µc − 1− 2µc)/(2µ2c2) is an
increasing function of µc and T ≤ χ2(c, µ) we have

T

c
≤ c χ

2(c, µ)
c2

≤ c e
2 − 1− 2

2
< 2.2c.

Now, by Corollary 1 and the inequality c ≤
√

2
√
T ,

EV c
µ [0, T ] ≤ 64

(
1
c

+ µ

)
T ≤ 64(2.2c+ µT )

≤ 64(2.2
√

2
√
T + µT )

≤ 64 · 2.2
√

2
2−
√

2
((2−

√
2)
√
T + µT +

√
2
√
T − c)

≤ 340(2
√
T + µT − c).

Now let us prove (3.2). Again, for T ≥ χ2(c, µ)/2 we have 1/c ≥ 1/
√

2T ,
and by Corollary 1 and the inequality

√
T < c−µT we have e−(c−µT )2/(2T ) ≤
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e−1/2, so

EV c
µ [0, T ] ≥ 1

264

(
1
c

+ µ

)
T ≥ 1

264

(
1√
2T

+ µ

)
T

≥ 1
264
√

2

√
T ≥ 1

264
√

2 e−1/2
T 3/2 e

−(c−µT )2/(2T )

(c− µT )2

≥ 1
227

T 3/2 e
−(c−µT )2/(2T )

(c− µT )2
.

In order to prove the upper bound let us observe that c/
√

2 ≤
√
T < c−µT,

so (c− µT )/
√
T ≤

√
2, T/c ≤

√
T and µT < (1− 1/

√
2)c. By Corollary 1,

EV c
µ [0, T ] ≤ 64

(
1
c

+ µ

)
T ≤ 64(

√
T + (1− 1/

√
2)c)

≤ 64(
√
T + (1− 1/

√
2)
√

2
√
T )

= 64
√

2
√
T ≤ 64

√
2
√
T 2e

e−(c−µT )2/(2T )

((c− µT )/
√
T )2

≤ 493T 3/2 e
−(c−µT )2/(2T )

(c− µT )2
.

4. Appendix. Now we will explain how truncated variation appears
in the upper bound of return from trading a single asset in a geometric
Brownian motion model. Let us assume that the dynamics of the prices Pt
of some financial asset (e.g. stock) is Pt = exp(µt+ σBt). We are interested
in the maximal possible profit coming from trading this single instrument
during the time interval [0, T ]. This means that we buy the instrument at
times 0 ≤ tb1 < · · · < tbn < T and sell it at times ts1 < · · · < tsn ≤ T, such
that tb1 < ts1 < tb2 < ts2 < · · · < tbn < tsn , in order to obtain the maximal
possible profit.

Furthermore, we assume that for every transaction we have to pay a
flat commission and γ is the fraction of the transaction value paid for the
commission.

The maximal possible rate of return from our strategy is

sup
n

sup
0≤tb1<ts1<···<tbn<tsn≤T

Pts1
Ptb1

1− γ
1 + γ

· · ·
Ptsn

Ptbn

1− γ
1 + γ

− 1.

Indeed, if at time tb1 we buy e.g. n1 stocks for Ptb1 , then we have to invest
n1 · Ptb1 · (1 + γ). At time ts1 we sell n1 stocks and after paying commission
we obtain n1 ·Pts1 · (1−γ). The rate of return from these two tradings equals
Pts1
Ptb1

1−γ
1+γ − 1. We again invest the money obtained and after n transactions
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we get the rate of return
n∏
i=1

{
Ptsi

Ptbi

1− γ
1 + γ

}
− 1.

Let Mn be the set of all partitions
π = {0 ≤ tb1 < ts1 < · · · < tbn < tsn ≤ T}.

To see that exp(σV c/σ
µ/σ [0, T ])− 1 with c = ln 1+γ

1−γ is an upper bound for the
rate of return let us compute

sup
n

sup
Mn

n∏
i=1

{
Ptsi

Ptbi

1− γ
1 + γ

}
= sup

n
sup
Mn

n∏
i=1

{exp(µtsi + σBtsi
)

exp(µtbi + σBtbi
)
e−c
}

= sup
n

sup
Mn

exp
(
σ

n∑
i=1

{(
µ

σ
tsi +Btsi

)
−
(
µ

σ
tbi +Btbi

)
− c

σ

})

= exp
(
σ sup

n
sup
Mn

n∑
i=1

{(
µ

σ
tsi +Btsi

)
−
(
µ

σ
tbi +Btbi

)
− c

σ

})
≤ exp(σV c/σ

µ/σ [0, T ]).
This gives the bound claimed.

Remark 2. We have proved that the maximal possible rate of return
is bounded by the exponential moment of the truncated variation with the
appropriate truncation level c. It is possible to prove, using similar techniques
to the proof of Theorem 1, that the exponential moment of the truncated
variation is finite. However, no bounds for the exponential moment and even
for moments of order greater than one are known to the author.
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