Transitive Properties of Ideals on Generalized Cantor Spaces

by
Jan KRASZEWSKI
Presented by Czestaw RYLL-NARDZEWSKI

Summary. We compute transitive cardinal coefficients of ideals on generalized Cantor spaces. In particular, we show that there exists a null set $A \subseteq 2^{\omega_{1}}$ such that for every null set $B \subseteq 2^{\omega_{1}}$ we can find $x \in 2^{\omega_{1}}$ such that $A \cup(A+x)$ cannot be covered by any translation of B.

1. Introduction, definitions and basic properties. In 2001 Kraszewski [5] defined a class of productive σ-ideals of subsets of the Cantor space 2^{ω} and observed that both σ-ideals of meagre sets and of null sets are in this class. Next, from every productive σ-ideal \mathcal{J} one can produce a σ-ideal \mathcal{J}_{κ} of subsets of the generalized Cantor space 2^{κ}. In particular, starting from the meagre sets and null sets in 2^{ω} we obtain the meagre sets and null sets in 2^{κ}, respectively. This description gives us a powerful tool for investigating combinatorial properties of ideals on 2^{κ}, which was done in [5]. In this paper we continue this research, focusing on transitive cardinal coefficients of ideals of subsets of 2^{κ}.

We use standard set-theoretical notation and terminology from [2]. Let $(G,+)$ be an infinite abelian group. We consider a σ-ideal \mathcal{J} of subsets of G which is proper, contains all singletons and is invariant (under group operations).

For an ideal \mathcal{J} we consider the following transitive cardinal numbers:

$$
\begin{aligned}
\operatorname{add}_{t}(\mathcal{J}) & =\min \{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{J} \wedge \neg(\exists B \in \mathcal{J})(\forall A \in \mathcal{A})(\exists g \in G) A \subseteq B+g\}, \\
\operatorname{add}_{t}^{*}(\mathcal{J}) & =\min \{|T|: T \subseteq G \wedge(\exists A \in \mathcal{J}) A+T \notin \mathcal{J}\},
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
\operatorname{cov}_{t}(\mathcal{J}) & =\min \{|T|: T \subseteq G \wedge(\exists A \in \mathcal{J}) A+T=G\} \\
\operatorname{cof}_{t}(\mathcal{J}) & =\min \{|\mathcal{B}|: \mathcal{B} \subseteq \mathcal{J} \wedge(\forall A \in \mathcal{J})(\exists B \in \mathcal{B})(\exists g \in G) A \subseteq B+g\}
\end{aligned}
$$
\]

The first two are both called the transitive additivity. The remaining two are called the transitive covering number and transitive cofinality, respectively.

We say that an ideal \mathcal{J} is κ-translatable if

$$
(\forall A \in \mathcal{J})\left(\exists B_{A} \in \mathcal{J}\right)\left(\forall S \in[G]^{\kappa}\right)\left(\exists t_{S} \in G\right) A+S \subseteq B_{A}+t_{S}
$$

We define the translatability number of \mathcal{J} as follows:

$$
\tau(\mathcal{J})=\min \{\kappa: \mathcal{J} \text { is not } \kappa \text {-translatable }\}
$$

For more information about relations between classical and transitive cardinal coefficients of ideals, see [2]. For more about translatability, see [1], [3] and [6].

From now on we deal with the generalized Cantor space 2^{κ} interpreted as the set of all functions from an infinite cardinal number κ into $\{0,1\}$. This space is endowed with the standard product topology. Moreover, we consider the standard product measure and product group structure on 2^{κ}.

We introduce some extra notation in order to simplify further considerations. Let κ be an infinite cardinal number. We put $\operatorname{Inj}(\omega, \kappa)=\left\{\varphi \in \kappa^{\omega}\right.$: φ is an injection $\}$. For $A \subseteq 2^{\kappa}, B \subseteq 2^{\omega}$ and $\varphi \in \operatorname{Inj}(\omega, \kappa)$ we put

$$
\varphi * A=\{x \circ \varphi: x \in A\}, \quad B_{\varphi}=\left\{x \in 2^{\kappa}: x \circ \varphi \in B\right\} .
$$

Obviously, $\varphi * A \subseteq 2^{\omega}$ and $B_{\varphi} \subseteq 2^{\kappa}$. Another simple observation is that for $A \subseteq 2^{\kappa}, B \subseteq 2^{\omega}$ and $\varphi \in \operatorname{Inj}(\omega, \kappa)$ we have $A \subseteq(\varphi * A)_{\varphi}$ and $\varphi * B_{\varphi}=B$.

Let \mathcal{J} be a σ-ideal of subsets of 2^{ω}. We say that \mathcal{J} is productive if

$$
\left(\forall A \subseteq 2^{\omega}\right)(\forall \varphi \in \operatorname{Inj}(\omega, \omega))(\varphi * A \in \mathcal{J} \Rightarrow A \in \mathcal{J})
$$

It is easy to show that \mathcal{J} is productive if and only if for every $A \subseteq 2^{\omega}$ and $\varphi \in \operatorname{Inj}(\omega, \omega)$ if $A \in \mathcal{J}$ then $A_{\varphi} \in \mathcal{J}$.

Directly from the definitions we deduce that the σ-ideals of meagre subsets and of null subsets of 2^{ω} are productive. Also the σ-ideal generated by closed null subsets of 2^{ω} is productive. Moreover, the ideal \mathbb{S}_{2} investigated in [4] is the least non-trivial productive σ-ideal of subsets of the Cantor space.

For any productive σ-ideal \mathcal{J} we define

$$
\mathcal{J}_{\kappa}=\left\{A \subseteq 2^{\kappa}:(\exists \varphi \in \operatorname{Inj}(\omega, \kappa)) \varphi * A \in \mathcal{J}\right\}
$$

A standard consideration shows that \mathcal{J}_{κ} is a σ-ideal of subsets of 2^{κ}. If \mathcal{J} is invariant then so is \mathcal{J}_{κ}. If $A \in \mathcal{J}_{\kappa}$ then any $\varphi \in \operatorname{Inj}(\omega, \kappa)$ such that $\varphi * A \in \mathcal{J}$ is called a witness for A.

Let us also recall one useful definition from [5]. We say that an ideal \mathcal{J} of subsets of 2^{ω} has $W F P$ (Weak Fubini Property) if for every $\varphi \in \operatorname{Inj}(\omega, \omega)$ and every $A \subseteq 2^{\omega}$ if A_{φ} is in \mathcal{J} then so is A.

The σ-ideals of subsets of 2^{ω} mentioned above obviously have WFP. We will need the following technical lemma proved in [5].

Lemma 1.1. If \mathcal{J} is a productive ideal of subsets of 2^{ω} having WFP then for every $\varphi \in \operatorname{Inj}(\omega, \kappa)$ and every $A \subseteq 2^{\omega}$ if $A_{\varphi} \in \mathcal{J}_{\kappa}$ then $A \in \mathcal{J}$.
2. Transitive cardinal coefficients of ideals on 2^{κ}. From now on we assume that \mathcal{J} is a proper, invariant and productive σ-ideal of subsets of 2^{ω} containing all singletons and that $\kappa \geq \omega_{1}$. We investigate relations between transitive cardinal coefficients of \mathcal{J} and those of \mathcal{J}_{κ}. Some of them are similar to relations between standard cardinal coefficients of \mathcal{J} and \mathcal{J}_{κ} proved in [5]. We omit the proofs, as they are also analogous.

Theorem 2.1. $\operatorname{add}_{t}\left(\mathcal{J}_{\kappa}\right)=\omega_{1}$.
Theorem 2.2. $\operatorname{cof}_{t}\left(\mathcal{J}_{\kappa}\right) \leq \max \left\{\operatorname{cof}\left([\kappa]^{\leq \omega}\right), \operatorname{cof}_{t}(\mathcal{J})\right\}$. Moreover, if \mathcal{J} has WFP then $\operatorname{cof}_{t}\left(\mathcal{J}_{\kappa}\right) \geq \operatorname{cof}_{t}(\mathcal{J})$.

However, other transitive cardinal coefficients behave in a radically different way.

Theorem 2.3. If \mathcal{J} has WFP then $\operatorname{add}_{t}^{*}\left(\mathcal{J}_{\kappa}\right)=\operatorname{add}_{t}^{*}(\mathcal{J})$.
Proof. Let $T \subseteq 2^{\kappa}$ be such that $A+T \notin \mathcal{J}_{\kappa}$ for some $A \in \mathcal{J}_{\kappa}$ and let φ be a witness for A. Then $\varphi * A \in \mathcal{J}$ and $\varphi * A+\varphi * T=\varphi *(A+T) \notin \mathcal{J}$. Hence $\operatorname{add}_{t}^{*}\left(\mathcal{J}_{\kappa}\right) \geq \operatorname{add}_{t}^{*}(\mathcal{J})$.

To show the other inequality, let us fix $T \subseteq 2^{\omega}$ such that $A+T \notin \mathcal{J}$ for some $A \in \mathcal{J}$. We have $A_{\operatorname{id}_{\omega}} \in \mathcal{J}_{\kappa}$ (because $\operatorname{id}_{\omega} \in \operatorname{Inj}(\omega, \kappa)$ and \mathcal{J} is productive). We define $T^{\prime}=\left\{t \in 2^{\kappa}: t \upharpoonright \omega \in T \wedge t \upharpoonright(\kappa \backslash \omega) \equiv 0\right\}$. Then $A_{\mathrm{id}_{\omega}}+T^{\prime}=(A+T)_{\mathrm{id}_{\omega}}$ and from Lemma 1.1 we get $(A+T)_{\mathrm{id}_{\omega}} \notin \mathcal{J}_{\kappa}$, which ends the proof.

Theorem 2.4. $\operatorname{cov}_{t}\left(\mathcal{J}_{\kappa}\right)=\operatorname{cov}_{t}(\mathcal{J})$.
Proof. Similar to the proof of Theorem 2.3.
Theorem 2.5. If \mathcal{J} has WFP then $\tau\left(\mathcal{J}_{\kappa}\right)=\tau(\mathcal{J})$.
Proof. Suppose that \mathcal{J} is ξ-translatable. We consider any $A \in \mathcal{J}_{\kappa}$ and $\varphi \in \operatorname{Inj}(\omega, \kappa)$ being its witness. Then $\varphi * A \in \mathcal{J}$; let us fix $B_{\varphi * A} \in \mathcal{J}$. If $S \in\left[2^{\kappa}\right]^{\xi}$ then without loss of generality we can assume that $\varphi * S \in\left[2^{\omega}\right]^{\xi}$ and thus there exists $t_{\varphi * S} \in 2^{\omega}$ such that $\varphi * A+\varphi * S \subseteq B_{\varphi * A}+t_{\varphi * S}$. Then

$$
A+S \subseteq(\varphi *(A+S))_{\varphi} \subseteq\left(B_{\varphi * A}+t_{\varphi * S}\right)_{\varphi}=\left(B_{\varphi * A}\right)_{\varphi}+t
$$

for some $t \in 2^{\kappa}$. Hence \mathcal{J}_{κ} is ξ-translatable.
On the other hand, let us assume that \mathcal{J}_{κ} is ξ-translatable and consider any $A \in \mathcal{J}$. Then $A^{\prime}=A_{\mathrm{id}_{\omega}} \in \mathcal{J}_{\kappa}$; let us fix $B_{A^{\prime}} \in \mathcal{J}_{\kappa}$. If $T \in\left[2^{\omega}\right]^{\xi}$ then we define $T^{\prime} \in\left[2^{\kappa}\right]^{\xi}$ as in the proof of Theorem 2.3. There exists an appropriate $t_{T^{\prime}} \in 2^{\kappa}$ such that $A^{\prime}+T^{\prime} \subseteq B_{A^{\prime}}+t_{T^{\prime}}$. But $A^{\prime}+T^{\prime}=(A+T)_{\mathrm{id}_{\omega}}$ and

$$
\left(A+T+t_{T^{\prime}} \upharpoonright \omega\right)_{\mathrm{id}_{\omega}}=(A+T)_{\mathrm{id}_{\omega}}+t_{T^{\prime}} \subseteq B
$$

Let us define

$$
C=\bigcup_{T \in\left[2^{\omega}\right] \xi}\left(A+T+t_{T^{\prime}} \upharpoonright \omega\right) .
$$

Then $C \subseteq 2^{\omega}$ and

$$
C_{\mathrm{id}}^{\omega} \text { }=\bigcup_{T \in\left[2^{\omega}\right] \xi}\left(A+T+t_{T^{\prime}} \upharpoonright \omega\right)_{\mathrm{id}_{\omega}} \subseteq B \in \mathcal{J}_{\kappa}
$$

Thus $C_{\mathrm{id}_{\omega}} \in \mathcal{J}_{\kappa}$ and from Lemma 1.1 we know that $C \in \mathcal{J}$.
Let us consider any $S \in\left[2^{\omega}\right]^{\xi}$ and put $t_{S}=t_{T^{\prime}} \upharpoonright \omega$. Then $A+S=$ $A+S+t_{S}+t_{S} \subseteq C+t_{S}$ and we are done.

As an immediate corollary we obtain the following interesting result.
Corollary 2.6. There exists a null set $A \subseteq 2^{\omega_{1}}$ such that for every null set $B \subseteq 2^{\omega_{1}}$ we can find $x \in 2^{\omega_{1}}$ such that $A \cup(A+x)$ cannot be covered by any translation of B.

Proof. From [1] we know that $\tau(\mathcal{N})=2$, where \mathcal{N} stands for the ideal of null subsets of 2^{ω}. In [5] it is shown that $\mathcal{N}_{\omega_{1}}$ is exactly the ideal of null subsets of $2^{\omega_{1}}$. But from Theorem 2.5 we know that $\tau\left(\mathcal{N}_{\omega_{1}}\right)=2$, and this is what we have been supposed to show.

References

[1] T. Bartoszyński, A note on duality between measure and category, Proc. Amer. Math. Soc. 128 (2000), 2745-2748.
[2] T. Bartoszyński and H. Judah, Set Theory: On the Structure of the Real Line, A. K. Peters, Wellesley, MA, 1995.
[3] T. J. Carlson, Strong measure zero and strongly meager sets, Proc. Amer. Math. Soc. 118 (1993), 577-586.
[4] J. Cichoń and J. Kraszewski, On some new ideals on the Cantor and Baire spaces, ibid. 126 (1998), 1549-1555.
[5] J. Kraszewski, Properties of ideals on generalized Cantor spaces, J. Symbolic Logic 66 (2001), 1303-1320.
[6] M. Kysiak, On Erdős-Sierpiński duality for Lebesgue measure and Baire category, Master's thesis, Warszawa, 2000 (in Polish).

Jan Kraszewski
Mathematical Institute
University of Wrocław
Pl. Grunwaldzki 2/4
50-384 Wrocław, Poland
E-mail: kraszew@math.uni.wroc.pl

[^0]: 2000 Mathematics Subject Classification: 03E05, 03E17.
 Key words and phrases: generalized Cantor spaces, transitive cardinal coefficients.

