Transitive Properties of Ideals on Generalized Cantor Spaces

by

Jan KRASZEWSKI

Presented by Czesław Ryll-Nardzewski

Summary. We compute transitive cardinal coefficients of ideals on generalized Cantor spaces. In particular, we show that there exists a null set \(A \subseteq 2^{\omega_1} \) such that for every null set \(B \subseteq 2^{\omega_1} \) we can find \(x \in 2^{\omega_1} \) such that \(A \cup (A + x) \) cannot be covered by any translation of \(B \).

1. Introduction, definitions and basic properties. In 2001 Kraszewski [5] defined a class of productive \(\sigma \)-ideals of subsets of the Cantor space \(2^\omega \) and observed that both \(\sigma \)-ideals of meagre sets and of null sets are in this class. Next, from every productive \(\sigma \)-ideal \(J \) one can produce a \(\sigma \)-ideal \(J_\kappa \) of subsets of the generalized Cantor space \(2^\kappa \). In particular, starting from the meagre sets and null sets in \(2^\omega \) we obtain the meagre sets and null sets in \(2^\kappa \), respectively. This description gives us a powerful tool for investigating combinatorial properties of ideals on \(2^\kappa \), which was done in [5]. In this paper we continue this research, focusing on transitive cardinal coefficients of ideals of subsets of \(2^\kappa \).

We use standard set-theoretical notation and terminology from [2]. Let \((G, +)\) be an infinite abelian group. We consider a \(\sigma \)-ideal \(J \) of subsets of \(G \) which is proper, contains all singletons and is invariant (under group operations).

For an ideal \(J \) we consider the following transitive cardinal numbers:

\[
\text{add}_t(J) = \min \{|A| : A \subseteq J \land \neg(\exists B \in J)(\forall A \in A)(\exists g \in G) A \subseteq B + g\},
\]

\[
\text{add}_t^*(J) = \min \{|T| : T \subseteq G \land (\exists A \in J) A + T \notin J\},
\]

2000 Mathematics Subject Classification: 03E05, 03E17.

Key words and phrases: generalized Cantor spaces, transitive cardinal coefficients.

[115]
\[\text{cov}_t(\mathcal{J}) = \min \{|T| : T \subseteq G \land (\exists A \in \mathcal{J}) A + T = G \}, \]
\[\text{cof}_t(\mathcal{J}) = \min \{|\mathcal{B}| : \mathcal{B} \subseteq \mathcal{J} \land (\forall A \in \mathcal{J})(\exists B \in \mathcal{B})(\exists g \in G) A \subseteq B + g \}. \]

The first two are both called the \textit{transitive additivity}. The remaining two are called the \textit{transitive covering number} and \textit{transitive cofinality}, respectively.

We say that an ideal \(\mathcal{J} \) is \(\kappa \)-\textit{translatable} if
\[(\forall A \in \mathcal{J})(\exists B_A \in \mathcal{J})(\forall S \in [G]^\kappa)(\exists t_S \in G) A + S \subseteq B_A + t_S. \]

We define the \textit{translatability number} of \(\mathcal{J} \) as follows:
\[\tau(\mathcal{J}) = \min \{\kappa : \mathcal{J} \text{ is not } \kappa\text{-translatable} \}. \]

For more information about relations between classical and transitive cardinal coefficients of ideals, see [2]. For more about translatability, see [1], [3] and [6].

From now on we deal with the generalized Cantor space \(2^\kappa \) interpreted as the set of all functions from an infinite cardinal number \(\kappa \) into \{0, 1\}. This space is endowed with the standard product topology. Moreover, we consider the standard product measure and product group structure on \(2^\kappa \).

We introduce some extra notation in order to simplify further considerations. Let \(\kappa \) be an infinite cardinal number. We put \(\text{Inj}(\omega, \kappa) = \{\varphi \in \kappa^\omega : \varphi \text{ is an injection}\} \). For \(A \subseteq 2^\kappa, B \subseteq 2^n \) and \(\varphi \in \text{Inj}(\omega, \kappa) \) we put
\[\varphi \ast A = \{ x \circ \varphi : x \in A \}, \quad B_\varphi = \{ x \in 2^\kappa : x \circ \varphi \in B \}. \]

Obviously, \(\varphi \ast A \subseteq 2^\omega \) and \(B_\varphi \subseteq 2^\kappa \). Another simple observation is that for \(A \subseteq 2^\kappa, B \subseteq 2^\omega \) and \(\varphi \in \text{Inj}(\omega, \kappa) \) we have \(A \subseteq (\varphi \ast A)_\varphi \) and \(\varphi \ast B_\varphi = B \).

Let \(\mathcal{J} \) be a \(\sigma \)-ideal of subsets of \(2^\omega \). We say that \(\mathcal{J} \) is \textit{productive} if
\[(\forall A \subseteq 2^\omega)(\forall \varphi \in \text{Inj}(\omega, \omega))(\varphi \ast A \in \mathcal{J} \Rightarrow A \in \mathcal{J}). \]

It is easy to show that \(\mathcal{J} \) is productive if and only if for every \(A \subseteq 2^\omega \) and \(\varphi \in \text{Inj}(\omega, \omega) \) if \(A \in \mathcal{J} \) then \(A_\varphi \in \mathcal{J} \).

Directly from the definitions we deduce that the \(\sigma \)-ideals of meagre subsets and of null subsets of \(2^\omega \) are productive. Also the \(\sigma \)-ideal generated by closed null subsets of \(2^\omega \) is productive. Moreover, the ideal \(S_2 \) investigated in [4] is the least non-trivial productive \(\sigma \)-ideal of subsets of the Cantor space.

For any productive \(\sigma \)-ideal \(\mathcal{J} \) we define
\[\mathcal{J}_\kappa = \{ A \subseteq 2^\kappa : (\exists \varphi \in \text{Inj}(\omega, \kappa)) \varphi \ast A \in \mathcal{J} \}. \]

A standard consideration shows that \(\mathcal{J}_\kappa \) is a \(\sigma \)-ideal of subsets of \(2^\kappa \). If \(\mathcal{J} \) is invariant then so is \(\mathcal{J}_\kappa \). If \(A \in \mathcal{J}_\kappa \) then any \(\varphi \in \text{Inj}(\omega, \kappa) \) such that \(\varphi \ast A \in \mathcal{J} \) is called a \textit{witness} for \(A \).

Let us also recall one useful definition from [5]. We say that an ideal \(\mathcal{J} \) of subsets of \(2^\omega \) has \textit{WFP (Weak Fubini Property)} if for every \(\varphi \in \text{Inj}(\omega, \omega) \) and every \(A \subseteq 2^\omega \) if \(A_\varphi \in \mathcal{J} \) then so is \(A \).
The σ-ideals of subsets of 2^ω mentioned above obviously have WFP. We will need the following technical lemma proved in [5].

Lemma 1.1. If \mathcal{J} is a productive ideal of subsets of 2^ω having WFP then for every $\varphi \in \text{Inj}(\omega, \kappa)$ and every $A \subseteq 2^\omega$ if $A_\varphi \in \mathcal{J}_\kappa$ then $A \in \mathcal{J}$. ■

2. **Transitive cardinal coefficients of ideals on** 2^κ. From now on we assume that \mathcal{J} is a proper, invariant and productive σ-ideal of subsets of 2^ω containing all singletons and that $\kappa \geq \omega_1$. We investigate relations between transitive cardinal coefficients of \mathcal{J} and those of \mathcal{J}_κ. Some of them are similar to relations between standard cardinal coefficients of \mathcal{J} and \mathcal{J}_κ proved in [5]. We omit the proofs, as they are also analogous.

Theorem 2.1. $\text{add}_t(\mathcal{J}_\kappa) = \omega_1$. ■

Theorem 2.2. $\text{cof}_t(\mathcal{J}_\kappa) \leq \max\{\text{cof}([\kappa]^{<\omega}), \text{cof}(\mathcal{J})\}$. Moreover, if \mathcal{J} has WFP then $\text{cof}_t(\mathcal{J}_\kappa) \geq \text{cof}_t(\mathcal{J})$. ■

However, other transitive cardinal coefficients behave in a radically different way.

Theorem 2.3. If \mathcal{J} has WFP then $\text{add}_t^*(\mathcal{J}_\kappa) = \text{add}_t^*(\mathcal{J})$.

Proof. Let $T \subseteq 2^\kappa$ be such that $A + T \notin \mathcal{J}_\kappa$ for some $A \in \mathcal{J}_\kappa$ and let φ be a witness for A. Then $\varphi \ast A \in \mathcal{J}$ and $\varphi \ast A + \varphi \ast T = \varphi \ast (A + T) \notin \mathcal{J}$. Hence $\text{add}_t(\mathcal{J}_\kappa) \geq \text{add}_t^*(\mathcal{J})$.

To show the other inequality, let us fix $T \subseteq 2^\omega$ such that $A + T \notin \mathcal{J}$ for some $A \in \mathcal{J}$. We have $A_{id_\omega} \in \mathcal{J}_\kappa$ (because $id_\omega \in \text{Inj}(\omega, \kappa)$ and \mathcal{J} is productive). We define $T' = \{t \in 2^\kappa : t \upharpoonright \omega \in T \wedge t \upharpoonright (\kappa \setminus \omega) \equiv 0\}$. Then $A_{id_\omega} + T' = (A + T)_{id_\omega}$ and from Lemma 1.1 we get $(A + T)_{id_\omega} \notin \mathcal{J}_\kappa$, which ends the proof. ■

Theorem 2.4. $\text{cov}_t(\mathcal{J}_\kappa) = \text{cov}_t(\mathcal{J})$.

Proof. Similar to the proof of Theorem 2.3. ■

Theorem 2.5. If \mathcal{J} has WFP then $\tau(\mathcal{J}_\kappa) = \tau(\mathcal{J})$.

Proof. Suppose that \mathcal{J} is ξ-translatable. We consider any $A \in \mathcal{J}_\kappa$ and $\varphi \in \text{Inj}(\omega, \kappa)$ being its witness. Then $\varphi \ast A \in \mathcal{J}$; let us fix $B_{\varphi \ast A} \in \mathcal{J}$. If $S \in [2^\kappa]^\xi$ then without loss of generality we can assume that $\varphi \ast S \in [2^\omega]^\xi$ and thus there exists $t_{\varphi \ast S} \in 2^\omega$ such that $\varphi \ast A + \varphi \ast S \subseteq B_{\varphi \ast A} + t_{\varphi \ast S}$. Then

$$A + S \subseteq (\varphi \ast (A + S)) \subseteq (B_{\varphi \ast A} + t_{\varphi \ast S}) \varphi = (B_{\varphi \ast A}) \varphi + t$$

for some $t \in 2^\kappa$. Hence \mathcal{J}_κ is ξ-translatable.

On the other hand, let us assume that \mathcal{J}_κ is ξ-translatable and consider any $A \in \mathcal{J}$. Then $A' = A_{id_\omega} \in \mathcal{J}_\kappa$; let us fix $B_{A'} \in \mathcal{J}_\kappa$. If $T \in [2^\omega]^\xi$ then we define $T' \in [2^\kappa]^\xi$ as in the proof of Theorem 2.3. There exists an appropriate $t_{T'} \in 2^\kappa$ such that $A' + T' \subseteq B_{A'} + t_{T'}$. But $A' + T' = (A + T)_{id_\omega}$ and

...
\[(A + T + t_T | \omega)_{\text{id}_\omega} = (A + T)_{\text{id}_\omega} + t_T \subseteq B.\]

Let us define
\[C = \bigcup_{T \in [2^\omega]^\xi} (A + T + t_T | \omega).\]

Then \(C \subseteq 2^\omega\) and
\[C_{\text{id}_\omega} = \bigcup_{T \in [2^\omega]^\xi} (A + T + t_T | \omega)_{\text{id}_\omega} \subseteq B \in \mathcal{J}_K.\]

Thus \(C_{\text{id}_\omega} \in \mathcal{J}_K\) and from Lemma 1.1 we know that \(C \in \mathcal{J}\).

Let us consider any \(S \in [2^\omega]^\xi\) and put \(t_S = t_T | \omega\). Then \(A + S = A + S + t_S + t_S \subseteq C + t_S\) and we are done. \(\blacksquare\)

As an immediate corollary we obtain the following interesting result.

Corollary 2.6. There exists a null set \(A \subseteq 2^{\omega_1}\) such that for every null set \(B \subseteq 2^{\omega_1}\) we can find \(x \in 2^{\omega_1}\) such that \(A \cup (A + x)\) cannot be covered by any translation of \(B\).

Proof. From [1] we know that \(\tau(\mathcal{N}) = 2\), where \(\mathcal{N}\) stands for the ideal of null subsets of \(2^{\omega_1}\). In [5] it is shown that \(\mathcal{N}_{\omega_1}\) is exactly the ideal of null subsets of \(2^{\omega_1}\). But from Theorem 2.5 we know that \(\tau(\mathcal{N}_{\omega_1}) = 2\), and this is what we have been supposed to show. \(\blacksquare\)

References

Jan Kraszewski
Mathematical Institute
University of Wrocław
Pl. Grunwaldzki 2/4
50-384 Wrocław, Poland
E-mail: kraszew@math.uni.wroc.pl

Received May 20, 2003;
received in final form January 13, 2004 (7339)