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Summary. The model of the Minkowski plane in the projective plane with a fixed conic
sheds a new light on the connection between the Minkowski and hyperbolic geometries.
The construction of the Minkowski plane in a hyperbolic plane over a Euclidean field is
given. It is also proved that the geometry in an orthogonal bundle of circles is hyperbolic
in a natural way.

Introduction. Using ideas of H. Beck (cf. [2]) W. Benz observed the
possibility to represent circles of the incidence Minkowski plane over the
reals as the sets of oriented lines tangent to horocycles, equidistant curves
and circles of hyperbolic geometry (cf. [3], [5]). Using the projective model
of Minkowski geometry (cf. [8]) we prove that we get in fact the model of the
incidence Minkowski plane in a hyperbolic plane over any Euclidean field.
This result is analogous to the connection between Laguerre and Euclidean
geometry (cf. [10]). In Section 3 we establish that hyperbolic geometry occurs
in a bundle of circles of the symmetric Minkowski plane.

1. Notations and basic definitions. Let C be a fixed proper conic in a
Fano–Pappus projective plane Π and PGL(C) be the group of projectivities
of this conic. This group is isomorphic to the group PGL(2, F ) for some com-
mutative field F with charF 6= 2. According to connections between sym-
metric Minkowski planes (cf. [6]) and PGL(2, F ) (cf. [7]) we obtain (cf. [8])
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Theorem 1.1. Every symmetric Minkowski plane M with charM 6= 2
is isomorphic to the structure (PC , ΛC , ΣC

1 , Σ
C
2 ,∈), where

PC = {(x, y) | x, y ∈ C},
ΛC = {{(x, y) | x, y ∈ C, y = α(x)} | α ∈ PGL(C)},
ΣC

1 = {{(x, y) | x, y ∈ C, x = a} | a ∈ C}},
ΣC

2 = {{(x, y) | x, y ∈ C, y = b} | b ∈ C}},
and C is an arbitrary fixed proper conic.

In analogy with the projective model of hyperbolic geometry, we will call
the structure from Theorem 1.1 the projective model of Minkowski geometry.
The element of the set ΛC corresponding to a circle determined by the
projectivity α of C will be denoted by Kα. The center and axis of the
projectivity α will be denoted by oα, Oα resp. (cf. [11]). The circle Kα is
orthogonal to Kid in this model (written Kα ⊥ Kid) when α is an involution.
For any involution α and projectivity β 6= id we have Kα ⊥ Kβ ⇔ oα ∈ Oβ
(cf. [8]).

Corollary 1.1. For every circle E of the symmetric Minkowski plane
M with charM 6= 2 there exists an isomorphism betweenM and its projec-
tive model such that Kid corresponds to the circle E.

The isomorphism described in Corollary 1.1 will be denoted by ΦEM. The
pencil of circles orthogonal to two different circles K,L will be denoted by
(K,L)⊥, and the bundle of circles orthogonal to the circle K will be denoted
by K⊥ (cf. [7], [12]). We will use the following results from [8]:

Theorem 1.2. For any triple of pairwise orthogonal circles K,L,M of
the symmetric Minkowski plane with charM 6= 2 there exists exactly one
circle N such that N ⊥ K,L,M .

Proposition 1.1. If M 6= N and M,N ∈ (K,L)⊥ then (K,L)⊥ =
(M,N)⊥, i.e. the pencil of circles is determined by two different circles.

Proposition 1.2. Each nonparabolic pencil is determined by a pair of
orthogonal circles of this pencil , one of which can be chosen arbitrarily.

Proposition 1.3. In the projective model of Minkowski geometry the
pencil conjugate to (Kid,Kα)⊥ is the set {Kβ | Oβ = Oα} ∪ {Kid}.

Let Π = (P,L,∈) be the Fano–Pappus projective plane and C be a
fixed conic. An extended hyperbolic plane is the structure H = (P,L,∈,⊥h)
where A ⊥h B when A and B are conjugate with respect to C ([4], [9]).
When the plane is over a Euclidean field we get the classical Klein model
H = (U ,LU ,∈,⊥U ) of hyperbolic geometry, where U is the interior of the
conic, LU = {U ∩ L | L ∈ L ∧ L ∩ U 6= ∅}, U ∩ A ⊥U U ∩ B ⇔ A ⊥h B.
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Every structure isomorphic to this model will be called a hyperbolic plane.
For a comprehensive axiomatic exposition of such hyperbolic geometry we
refer the reader to [1].

2. The hyperbolic model of Minkowski geometry. The projec-
tive model of Minkowski geometry and its geometric interpretation indicate
the possibility to construct a model of Minkowski plane in classical hy-
perbolic geometry (cf. [3]). Let us consider classical hyperbolic geometry
such that every line contains exactly two ideal points and its Klein model
H = (U ,LU ,∈,⊥U ) in the projective plane over a Euclidean field. Because
every line contains two different ideal points, we can define an orientation
of the line by singling out one of the ideal points. This means that in the
Klein model an oriented line is an ordered pair of points of C.

As the set PH of points of the hyperbolic model of Minkowski geometry
we take the oriented lines of the hyperbolic plane and the ideal points. In
the Klein model they correspond to oriented pairs (x, y) of points of C and
points of C (pairs (x, x), x ∈ C).

To define the set of lines we use the following lemma:

Lemma 2.1. For every projectivity α of C such that α(x) = x′ 6= x,
α(y) = y′ 6= y there exist involutions β, γ of C with oβ, oγ ∈ Oα, γβ(x) =
x′, γβ(y) = y′.

Proof. We define oβ = xx′∩Oα and oγ = xy′∩x′y. By definition of axis,
oγ ∈ Oα. We obtain γβ(x) = γ(x′) = y, γβ(x′) = γ(x) = y′.

In classical hyperbolic geometry a circle, a horocycle and an equidistant
curve are defined as orbits of points with respect to the group of displace-
ments generated by symmetries with axes of a proper pencil, parallel line
pencil and ultraparallel line pencil, respectively. More exactly in the last
case we obtain one segment of an equidistant curve and to get the complete
curve one has to add to the set of generators of the group the symmetry
with respect to the common perpendicular. In the Klein model these are
conics with appropriate properties. According to the definition of points
of the projective model of the Minkowski plane we introduce the following
convention.

A circle (resp. horocycle) of oriented lines is defined to be the orbit of
an oriented line with respect to the subgroup of the proper isometries of
the group generated by symmetries with axes belonging to a proper pencil
(resp. pencil of parallel lines). An equidistant curve of oriented lines is the
union of the orbit of an oriented line with respect to the subgroup of proper
isometries of the group generated by symmetries with axes belonging to a
pencil of ultraparallel lines and their symmetric image with respect to the
axes of the pencil.
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We remark that in the case of a circle and an equidistant curve we allow
the case in which the oriented line is incident with the center of the pencil
(resp. is perpendicular to the axis of the pencil). Such circles and equidistant
curves are called degenerate in analogy to the classical picture, in which the
circle degenerates to a point and the equidistant curve to a line.

The set of circles of the hyperbolic model of Minkowski geometry, de-
noted by ΛH , consists of the following sets of points:

(i) the set of all ideal points,
(ii) circles of oriented lines,
(iii) horocycles of oriented lines with ideal points corresponding to pen-

cils,
(iv) equidistant curves of lines with ideal points of the axes of correspond-

ing pencils.

Fig. 1. Circles of the hyperbolic model of the Minkowski plane illustrated in the Klein
model

(i) Ideal points of a hyperbolic plane correspond to points of C in the
Klein model, i.e. the circle Kid of the projective model.

(ii) Let Kα be an arbitrary circle of the projective model of Minkowski
geometry such that α has no fixed points. The projectivity α is uniquely
determined by its axis Oα and the image x′ = α(x) of one point, so the
center oα is a proper point because Oα is disjoint from C. By Lemma 2.1 for
any other pair y, y′ = α(y) there exist involutions β, γ such that γβ(x) =
y, γβ(x′) = y′ and oα ∈ Oβ ∩Oγ. In the Klein model that means that every
oriented line determined by the pair (y, y′) is the image of an oriented line
represented by the pair (x, x′) under an isometry which is a superposition
of two symmetries with axes through the point oα. Hence the circle Kα

corresponds to a hyperbolic circle of oriented lines.
(iii) If the projectivity is parabolic, then Oα is tangent to C with the

point of contact oα, which is the unique fixed point of α. The other points of
Oα are outside C. Analogously to (ii) we see that to Kα there corresponds
a horocycle of oriented lines with ideal points of a suitable pencil which is
associated to the point (oα, oα) of Kα.
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(iv) The axis Oα contains points inside C because it intersects C in two
different points. Involutions from Lemma 2.1 are not necessarily axial sym-
metries. One or both of them are symmetries with respect to a point (when
oβ or oγ is inside C). It is known that such a symmetry is a superposition of
axial symmetries: one with axis Oα and another with an axis through oα. It
follows that to Kα corresponds an equidistant curve of oriented lines with
ideal points belonging to the axis of the relevant pencil, so the ideal points
are (p, p) and (q, q) where p, q are fixed points of α.

As a class of generators ΣH
1 of the hyperbolic model of Minkowski geom-

etry we take pencils of parallel lines oriented from their common ideal point
to the ideal point. The second class of generators ΣH

2 consists of pencils of
parallel lines oriented from their specific ideal point to the common ideal
point. Of course such generators uniquely correspond to generators of the
projective model of Minkowski geometry.

Summarizing, the above remarks give

Theorem 2.1. The hyperbolic model 〈PH , ΛH , ΣH
1 , Σ

H
2 ,∈〉 of Minkow-

ski geometry is isomorphic to the projective model of Minkowski geometry
in a projective plane over a Euclidean field.

Remark 2.1. It follows from Theorem 1.1 that to horocycles, nondegen-
erate equidistant curves and hyperbolic circles of oriented lines correspond
conics of oriented lines in the projective model. A degenerate circle and
an equidistant curve are pencils of oriented lines respectively proper and
ultraparallel.

Fig. 2

Remark 2.2. Our definition of equidistant curve of oriented lines con-
tains a case which has no dual description as orbits of points of the hy-
perbolic plane. Such an equidistant curve may be obtained as the orbit of
the oriented line intersecting the axis of the pencil. The dual curve in the
projective model is an oriented conic which does not contain points inside C
(Fig. 2).
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3. Hyperbolic geometry in a bundle of circles of Minkowski
plane. In this section we show that the geometry in a bundle of circles of
any symmetric Minkowski plane is an extended hyperbolic geometry.

Theorem 3.1. Let M = 〈P, Λ,Σ1, Σ2,∈〉 be a symmetric Minkowski
plane with charM 6= 2 and E a fixed circle. Then the structure 〈PE ,LE ,∈E ,
⊥Eh 〉 is an extended hyperbolic plane, where

PE = E⊥ ∪ {p | p ∈ E}, LE = {(E,M)⊥ |M ∈ Λ},
K ∈E (E,M)⊥ ⇔ K ∈ (E,M)⊥, p ∈E (E,M)⊥ ⇔ {p} = E ∩M,

(E,M)⊥ ⊥Eh (E,N)⊥ ⇔ {((E,M)⊥ = (E,N)⊥ ∧ E ∩M = 1) ∨
(∃M ′, N ′ (M ′ ∈ (E,M)⊥ ∧N ′ ∈ (E,N)⊥ ∧M ′, N ′ ⊥ E ∧M ′ ⊥ N ′))}.

Proof. Let us fix the isomorphism ΦEM. Then to circles of the bundle E⊥

correspond circles Kα where α is an involution. To any such circle we assign
a point oα (the center of α). To any point (x, x) of the projective model we
assign the point x ∈ C. Such a correspondence is a bijection of PE with
the set of points of the projective plane P, because every point of P \ C is
the center of a uniquely defined involution of C. To every pencil (E,M)⊥

represented by (Kid,Kβ)⊥ in a projective model we assign the axis Oβ. This
definition according to Proposition 1.3 is independent of the choice of the
circle M and yields a bijection. We have K ∈E (E,M)⊥ ⇔ oα ∈ Oβ, where
ΦEM(K) = Kα, ΦEM(M) = Kβ by Proposition 1.3. Moreover p ∈E (E,M)⊥

exactly when x is the only fixed point of the projectivity β, where (x, x)
corresponds to p in the projective model. This means that Oβ is tangent at
the point (x, x) to the absolute C. If M is tangent to E, then ΦEM = Kβ

where β is a projectivity with unique fixed point. It follows that Oβ is an
isotropic line of the extended hyperbolic plane.

If (E,M)⊥ 6= (E,N)⊥ then by Theorem 1.2 there exist circles M ′, N ′

such that M ′ ∈ (E,M)⊥, N ′ ∈ (E,N)⊥ and M ′, N ′ ⊥ E. Setting ΦEM′(K) =
Kα′ , ΦEM(M) = Kβ′ we find that hyperbolic orthogonality of the lines Oβ′
and Oγ′ is equivalent to orthogonality of the circles M ′ and N ′ in the
Minkowski plane (the involutions β ′ and γ′ are conjugate).

The above construction of a hyperbolic geometry is complicated and
nonhomogeneous. In the case of a Euclidean field the construction becomes
simpler and it leads to the classical Klein model.

Corollary 3.1. For any fixed circle E of a symmetric Minkowski plane
over a Euclidean field the structure 〈UE ,LEU ,∈,⊥EU 〉 is a hyperbolic plane,
where

UE = {K∈E⊥ | K∩E = ∅}, LEU = {(E,M)⊥∩UE |M ∈E⊥, E ∩M = 2},
(E,M)⊥ ∩ UE ⊥EU (E,N)⊥ ∩ UE ⇔ M ⊥ N.
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Proof. In the isomorphism used in the proof of Theorem 2.1, to circles of
the set E⊥ which are disjoint from E there correspond centers of involutions
without fixed points. For any projective plane over a Euclidean field this is
equivalent to the statement that the center of the involution is inside the
conic. Because by definition there is no parabolic pencil in LEU , by Proposi-
tion 1.2 any pencil (E,M)⊥ can be represented by a circle orthogonal to E.
This also leads to simplification of the condition defining orthogonality.

A synthetic description of Minkowski planes over Euclidean fields will be
presented in another paper.
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