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Summary. The notion of C1-stably positively expansive differentiable maps on closed
C∞ manifolds is introduced, and it is proved that a differentiable map f is C1-stably
positively expansive if and only if f is expanding. Furthermore, for such maps, the ε-time
dependent stability is shown. As a result, every expanding map is ε-time dependent stable.

Let X be a compact metric space with metric d, and let f be a conti-
nuous map of X onto itself. We say that f is positively expansive if there
exists a constant c > 0 such that d(f i(x), f i(y)) ≤ c (x, y ∈ X) for all
i ≥ 0 implies x = y. Such a number c is called an expansive constant. This
property (although not c) is independent of the metric. It is well known that
every expanding map on a C∞ closed manifold is positively expansive (see
[1, 4, 7]).

As usual, a sequence {xi}ni=0 (1 ≤ n ≤ ∞) of points in X is called a
δ-pseudo-orbit of f if d(f(xi), xi+1) < δ for 0 ≤ i ≤ n − 1. We say that f
has the shadowing property if for every ε > 0, there is δ > 0 such that for
every δ-pseudo-orbit {xi}∞i=0, there exists y ∈ X satisfying d(f i(y), xi) < ε
for all i ≥ 0. This property is also independent of the metric. The shadowing
property usually plays an important role in the modern stability theory of
dynamical systems. It is also well known that every positively expansive
open map has the shadowing property, and the set of all periodic points
P (f) of f is dense in the non-wandering set Ω(f) of f (see [4, 5, 6]).

Let M be a closed C∞ manifold, and let d be the distance on M induced
from a Riemannian metric ‖ · ‖ on TM . Let C1(M) denote the set of all
C1-differentiable maps on M endowed with the C1-topology. We say that
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f ∈ C1(M) is expanding if there are constants C > 0 and µ > 1 such that

‖Dxf
n(v)‖ ≥ Cµn‖v‖

for all v ∈ TM and n ≥ 0. Every expanding map on M is structurally
stable (see [7]) and, as was stated, is positively expansive. But, there exists
an example of a positively expansive map on the unit circle that is not
expanding (see [1]).

In this paper, we introduce the notion of C1-stably positively expansive
differentiable maps on M , and prove that a differentiable map f is C1-stably
positively expansive if and only if f is expanding. Furthermore, we show the
ε-time dependent stability for such maps, so that every expanding map is
ε-time dependent stable.

For any sequence {gi}ni=1 ⊂ C1(M) (1 ≤ n ≤ ∞) and for any x ∈M , we
set

x0 = x, xi = gi ◦ · · · ◦ g1(x)

for all 1 ≤ i ≤ n. Such a sequence of points {xi}ni=0 (x0 = x) is called the
{gi}ni=1-orbit of x; we denote by O({gi}ni=1) the set of all {gi}ni=1-orbits.

We say that f ∈ C1(M) is C1-stably positively expansive (with constants
ν and c) if there are constants ν > 0 and c > 0 such that for any sequence
{gi}∞i=1 ⊂ C1(M) with %C1(f, gi) < ν (i ∈ N) and for any {xi}∞i=0, {yi}∞i=0 ∈
O({gi}∞i=1), d(xi, yi) ≤ c for all i ≥ 0 implies x0 = y0. Here %C1 is the
usual C1-metric on C1(M). Hereafter, we denote by SPE1(M) the set of all
C1-stably positively expansive differentiable maps on M .

The first result of the present paper will be proved by combining an idea
involved in [3] with the shadowing property.

Theorem A. The set SPE1(M) is characterized as the set of all ex-
panding maps.

The notion of time dependent stability for diffeomorphisms is introduced
in [3, p. 163] and it is proved that if a C2-diffeomorphism satisfies both Ax-
iom A and the strong transversality condition, then the map is time depen-
dent stable. Conversely, it is also proved therein that if a C1-diffeomorphism
g is time dependent stable, then g satisfies both Axiom A and the strong
transversality condition. In this paper, we introduce a slightly stronger ver-
sion of the time dependent stability for differentiable maps as follows.

We say that f ∈ C1(M) is ε-time dependent stable if for any ε > 0,
there exists a C1-neighborhood U(f) ⊂ C1(M) of f such that for any fi-
nite sequence {gi}ni=1 ⊂ U(f), there exists a homeomorphism h : M → M
satisfying

fn ◦ h(x) = h ◦ gn ◦ · · · ◦ g1(x), d(h(x), x) < ε (x ∈M).

The neighborhood U(f) is independent of n.
The following is also proved.
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Theorem B. Every f ∈ SPE1(M) is ε-time dependent stable.

Recall that every expanding map is structurally stable. As a corollary, we
have the following stronger result for expanding maps. We remark that to
prove the above result, we do not assume C2-differentiability for the maps.

Corollary. Every expanding map is ε-time dependent stable.

1. Proof of Theorem A. Let us recall that M is a closed C∞ manifold,
and d is the distance on M induced from ‖ · ‖ on TM . First of all we show
that every expanding map f ∈ C1(M) is in SPE1(M).

Suppose that f is an expanding map; that is, there are constants C > 0
and µ > 1 such that for any v ∈ TxM and n ≥ 0, ‖Dxf(v)‖ ≥ Cµn‖v‖ for
all x ∈M . Fix m > 0 such that Cµm > 1, and put λ = C1/mµ > 1.

Mather’s trick. Under the above notations, set

‖v‖′ =
m−1∑

i=0

1
λi
‖Dxf

i(v)‖

for v ∈ TxM and x ∈ M . Then ‖Dxf(v)‖′ ≥ λ‖v‖′ for any v ∈ TxM
(x ∈M).

Lemma 1. Let f , λ > 1 and ‖ · ‖′ be as above. Then there exist ν > 0
and λ > λ′ > 1 such that if %C1(f, g) < ν, then ‖Dxg(v)‖′ ≥ λ′‖v‖′ for any
v ∈ TxM (x ∈M).

Proof. Pick K > 1 such that supx∈M ‖Dxf‖ < K. Obviously

‖v‖ ≤ ‖v‖′ ≤
m−1∑

i=0

(
K

λ

)i
‖v‖

for all v ∈ TM by construction. Fix any ε > 0 small enough so that
λ−ε∑m−1

i=0 (K/λ)i> 1, and take ν > 0 such that for g ∈C1(M), %C1(f, g)<ν
implies∣∣‖Df i(Df(v))‖− ‖Df i(Dg(v))‖

∣∣ ≤ ‖Df i(Df(v))−Df i(Dg(v))‖ < εKi‖v‖
for all v ∈ TM and 0 ≤ i ≤ m− 1. Thus for any v ∈ TM ,

‖Dg(v)‖′ = ‖Dg(v)‖+
1
λ
‖Df(Dg(v))‖+

1
λ2 ‖Df

2(Dg(v))‖+ · · ·

+
1

λm−1 ‖Df
m−1(Dg(v))‖

≥ (‖Df(v)‖ − ε‖v‖) +
1
λ

(‖Df(Df(v))‖ − εK‖v‖)

+
1
λ2 (‖Df2(Df(v))‖ − εK2‖v‖) + · · ·

+
1

λm−1 (‖Dfm−1(Df(v))‖ − εKm−1‖v‖)
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=
m−1∑

i=0

1
λi
‖Df i+1(v)‖ − ε

m−1∑

i=0

(
K

λ

)i
‖v‖

= ‖Df(v)‖′ − ε
m−1∑

i=0

(
K

λ

)i
‖v‖

≥ λ‖v‖′ − ε
m−1∑

i=0

(
K

λ

)i
‖v‖′ = λ′‖v‖′,

where λ′ = λ− ε∑m−1
i=0

(
K/λ

)i. The lemma is proved.

For the sake of simplicity, let ‖ · ‖ = ‖ · ‖′ and λ = λ′ (notice that any
Riemannian metric can be approximated by C∞-metrics). We denote by
exp : TM → M the exponential map, and again by d the metric on M
arising from the above new metric on TM . Then we have ‖Dxg(v)‖ ≥ λ‖v‖
for any v ∈ TxM (x ∈ M) provided that %C1(f, g) < ν (g ∈ C1(M)) by
Lemma 1. Thus, there are constants 0 < ν1 < ν, c > 0 and λ > η > 1 such
that

d(g(x), g(y)) ≥ ηd(x, y)

whenever d(x, y) ≤ c (x, y ∈M) if %C1(f, g) < ν1 (g ∈ C1(M)).
Indeed, for sufficiently small ε > 0 such that λ − ε > 1, there are 0 <

ν1 < ν and c > 0 such that for any x ∈M ,

‖exp−1
g(x) ◦ g ◦ expx(v)−Dxg(v)‖ ≤ ε‖v‖

if ‖v‖ < c whenever %C1(f, g) < ν1 (g ∈ C1(M)). Thus, if d(x, y) =
‖exp−1

x y‖ ≤ c (x, y ∈M), then

‖exp−1
g(x) ◦ g ◦ expx(exp−1

x y)‖ ≥ ‖Dxg(exp−1
x y)‖ − ε‖exp−1

x y‖.

Thus ‖exp−1
g(x) g(y)‖ ≥ (λ−ε)‖exp−1

x y‖. Since d(g(x), g(y)) = ‖ exp−1
g(x) g(y)‖,

we see that d(g(x), g(y)) ≥ ηd(x, y), where η = λ− ε.
Therefore, for any sequence {gi}∞i=1 ⊂ C1(M) with %C1(f, gi) < ν1

(i ∈ N) and for any {xi}∞i=0, {yi}∞i=0 ∈ O({gi}∞i=1), if d(xi, yi) ≤ c for all
i ≥ 0, then it can be easily seen that

d(x0, y0) ≤ d(xi, yi)/ηi < c/ηi

for all i ≥ 0. Thus we have x0 = y0, and so the expanding map f is C1-stably
positively expansive with constants ν1 and c, that is, f ∈ SPE1(M).

To prove the converse, we need some preparations. The following so-
called Franks Lemma (see [2, Lemma 1.1]) will play an essential role several
times in the proof. This is a fundamental C1-perturbation lemma working
well only for the C1-topology.
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Lemma 2. Let f ∈ C1(M). For any ε0 > 0, there exists δ0 > 0 such that
for a given finite set {x1, . . . , xN} ⊂M , a neighborhood U of {x1, . . . , xN}
and linear maps Li : TxiM → Txi+1M , if ‖Li −Dxif‖ < δ0 for all 1 ≤ i ≤
N , then there exists g ∈ C1(M) with %C1(f, g) < ε0 such that g(x) = f(x)
if x ∈ {x1, . . . , xN} ∪ (M \ U) and Dxig = Li for all 1 ≤ i ≤ N .

Let {gi}ni=1 ⊂ C1(M) (1 ≤ n < ∞) be any finite sequence, and let
{xi}ni=0 ∈ O({gi}ni=1) be as defined before. We say that {xi}ni=0 is a periodic
{gi}ni=1-orbit if xn = x0. Let {xi}ni=0 be a periodic {gi}ni=1-orbit. We say
that {xi}ni=0 is expanding if all the eigenvalues λ of

Dx0(gn ◦ · · · ◦ g1) = Dxn−1gn ◦ · · · ◦Dx0g1

satisfy |λ| > 1. Then the following is true.

Proposition 1. Suppose f ∈ SPE1(M) with constants ν and c, and
let {pi}ni=0 be any periodic {gi}ni=1-orbit. If %C1(gi, f) < ν/2 for 1 ≤ i ≤ n,
then {pi}ni=0 is expanding.

Proof. Assuming that there is an eigenvalue λ of Dp0(gn ◦ · · · ◦ g1) with
|λ| ≤ 1, we shall derive a contradiction.

Let δ0 > 0 be given by Lemma 2 for ε0 = ν/2. Then, from the proof of
the Franks Lemma 2 (see [2, p. 303]) there exists α > 0 such that for any
i = 1, . . . , n, there is g′i ∈ C1(M) satisfying %C1(g′i, gi) < ν/2 and

g′i(x) =
{

exppi ◦Dpi−1gi ◦ exp−1
pi−1

(x) if x ∈ Bα/4(pi−1),

gi(x) if x 6∈ Bα(pi−1)

(we apply the lemma to the pair {pi−1,Dpi−1gi} for each 1 ≤ i ≤ n indi-
vidually). Here Bα(x) (x ∈ M) is the closed ball centered at x with radius
α > 0.

Note that
g′i|Bα/4(pi−1) = exppi ◦Dpi−1gi ◦ exp−1

pi−1

and g′i(pi−1) = pi for all i. Since there is an eigenvalue λ of Dp0(gn ◦ · · · ◦ g1)
with |λ| ≤ 1, for the number c, we can take x ∈ Bα/4(p0) \ {p0} and a
sequence of points {xj}∞j=0 (x0 = x) such that

xnk+i = g′nk+i ◦ · · · ◦ g′1(x0)

and d(xnk+i−1, pi−1) ≤ c for all 1 ≤ i ≤ n and k ≥ 0. Here j = nk + i − 1.
This is a contradiction because d(g′nk+i, f) < ν for all 1 ≤ i ≤ n and k ≥ 0.

Remark. (1) By mimicking the argument used above, it is easily
checked that if f ∈ SPE1(M), then there are no singular points; that is,
f is a local diffeomorphism.

(2) Since f ∈ SPE1(M) is an open map, f has the shadowing property.
Thus, P (f) is dense in Ω(f) (cf. [4, 5, 6]). Furthermore, f is topologically
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transitive, that is, f has a dense orbit (since M is connected, see [4, 6]).
Hence, M = Ω(f).

The next technically important lemma was proved in [3] for a homeo-
morphism g on a compact metric space. Roughly speaking, by compactness,
for every ε > 0 we can find a natural number n0 = n0(ε) such that for any
given g-orbit {x, g(x), g2(x), . . . , gk(x)} with arbitrarily large k, there exists
a shortcut from x to gk(x) by a pseudo-orbit of g with length less than n0.
The proof is similar for continuous maps.

Lemma 3 (cf. [3, Lemma 3]). Let g : (X, d) → (X, d) be a continuous
map on a compact metric space. For ε > 0, there exists an integer n0 =
n0(ε) > 0 such that if gk(x) = y for some k > 0, then there is a sequence of
points {xi}ni=0 ⊂ X with x0 = x, xn = y, d(g(xi), xi+1) < ε (0 ≤ i ≤ n− 1)
and n ≤ n0.

Let f ∈C1(M) be a local diffeomorphism. A backward orbit x = {x−i}∞i=0
of f is a sequence of points in M such that f(x−i) = x−i+1 for i ≥ 0. Denote
byO−f the set of backward orbits of f (notice that every local diffeomorphism
maps M onto itself, since M is connected). The inverse map

(Dx−i−1f)−1 : Tx−iM → Tx−i−1M

can be defined for i ≥ 0. Hence, for any x = {x−i}∞i=0 ∈ O−f and v ∈ Tx0M ,
we put

Dxf
−n(v) = (Dx−nf)−1 ◦ · · · ◦ (Dx−1f)−1(v) for n ≥ 1.

Let SM be the unit circle in TM , that is, SM = {v ∈ TM : ‖v‖ = 1},
and define a metric D on SM by

D(vx, wy) = max{d(x, y), ‖vx − Ax,y(wy)‖}
for vx ∈ TxM∩SM and wy ∈ TyM∩SM (x, y ∈M). Here Ax,y : TyM → TxM

is the parallel transformation defined as usual. If we denote by f̂ the local
diffeomorphism of SM defined by

f̂(v) =
Dxf(v)
‖Dxf(v)‖ for v ∈ TxM ∩ SM (x ∈M),

then f̂n(v) = Dxf
n(v)/‖Dxf

n(v)‖ for all n ≥ 0. The inverse along a given
backward orbit can be defined as follows. For any x = {x−i}∞i=0 ∈ O−f , we
let

f̂−1
x (v) =

(Dx−1f)−1(v)
‖(Dx−1f)−1(v)‖ for v ∈ Tx0M ∩ SM etc.

A pair of points (v, {x−i}∞i=0) ∈ SM ×O−f (v ∈ Tx0M) will be called an
ε-non-wandering pair of f (cf. [3]) if for any integer N > 0 and 0 < δ < ε,
there are an integer n > N and a point w ∈ Tx0M ∩ SM such that

D(v, w) < δ and D(v, f̂−nx (w)) < ε.
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Here x = {x−i}∞i=0. The notion of ε-non-wandering pair is slightly stronger
than the original one defined by [3, p. 168]. The set of all ε-non-wandering
pairs will be denoted by Σε(f) ⊂ SM ×O−f .

Recall that every f ∈ SPE1(M) is a local diffeomorphism. The following
proposition will be proved by combining an idea involved in [3, Lemma 4]
and the shadowing property.

Proposition 2. Let f ∈ SPE1(M). Then there exist an integer m0 > 0
and numbers ε > 0, 0 < % < 1 such that for any pair (v, {x−i}∞i=0) ∈ Σε(f),
we have ‖Dxf

−n(v)‖ < %n provided that n ≥ m0. Here x = {x−i}∞i=0.

Proof. Let f ∈ SPE1(M) with constants ν and c. Fix ε0 = ν/2 and
choose a constant K > 1 such that supx∈M ‖Dxf‖ < K.

Let 0 < δ0 = δ0(ε0/2) < ε0/2 be as in Lemma 2, and take 0 < ε < δ0
such that

εK

1 + ε
< δ0/2 and ‖Dxf − Af(x),f(y) ◦Dyf ◦ (Ax,y)−1‖ < δ0

2
(1)

if d(x, y) < ε (x, y ∈ M). Since f has the shadowing property (see Re-
mark (2)), for ε, there exists 0 < δ1 = δ1(ε) < ε/2 such that every δ1-
pseudo-orbit of f is ε-shadowed by some point. Let n0 = n0(δ1) > 0 be as
in Lemma 3, and fix an integer ` > 0 large enough so that

1
`

logKn0 <
1
2

log(1 + ε).

Now, assuming that the proposition is false, we shall derive a contradic-
tion. If the assertion is not true, then for all n > 0, there exist (vn, {xn−i}∞i=0)
∈ Σδ1(f) and mn > n such that

(
1− 1

n

)mn
≤ ‖Dxnf

−mn(vn)‖.

Here xn = {xn−i}∞i=0. Fix n > 0 such that mn > max{`, n0} and

−1
2

log(1 + ε) <
1
mn

log ‖Dxnf
−mn(vn)‖.

For simplicity, we denote xn by x = {x−i}∞i=0 (that is, x−i = xn−i for i ≥ 0),
v′ = vn and m = mn. By the definition of v′, for the above m and any
0 < δ < δ1, there are vx0 ∈ Tx0M ∩SM and k > m such that D(vx0 , v

′) < δ

and D(f̂−kx (vx0), v′) < δ1. We may assume

− 1
2

log(1 + ε) <
1
m

log ‖Dxf
−m(vx0)‖(2)

choosing vx0 sufficiently near to v′.
Let vy0 = f̂−kx (vx0) (and so y0 = x−k). By an application of Lemma 3

for f̂ : SM → SM and f̂k−m(vy0) = f̂−mx (vx0), there exists a sequence
{vyj}nj=0⊂ SM (n≤ n0) such that vyn = f̂−mx (vx0) and D(f̂(vyj ), vyj+1)< δ1;
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hence,

d(f(yj), yj+1) < δ1(3)

and
‖f̂(vyj )−Af(yj),yj+1(vyj+1)‖ < δ1(4)

for all 0 ≤ j ≤ n − 1. Clearly, Dx−mf
m(vyn) = ‖Dx−mf

m(vyn)‖vx0 since
f̂m(vyn) = vx0 , and thus

1
m

log ‖Dx−mf
m(vyn)‖ < 1

2
log(1 + ε)

by (2) (notice that yn = x−m). By (3), it is easy to see that the sequence of
points

{y0, y1, y2, . . . , yn−1, x−m, x−m+1, . . . , x−1}(5)

is a cyclic δ1-pseudo-orbit of f since yn = x−m and d(x0, y0) < δ1. Since f
has the shadowing property and is positively expansive (2δ1 < c), it is easy
to see that there exists a point p = f q(p) ∈ P (f) (q = m+n) whose f -orbit
is ε-shadowing (5).

Next, let us perturb f along the periodic orbit of p. We define linear
maps Lf i(p) : Tf i(p)M → Tf i+1(p)M such that

‖Lf i(p) −Df i(p)f‖ < δ0 for 0 ≤ i ≤ q − 1

as follows. By (4), there exist linear isomorphisms Bf(yj) : Tf(yj)M →
Tf(yj)M such that

Bf(yj)(f̂(vyj )) = Af(yj),yj+1(vyj+1) and ‖Bf(yj) − I‖ < ε

for 0 ≤ j ≤ n− 1, where I : Tf(yj)M → Tf(yj)M is the identity map. Put

Lfj(p) = Afj+1(p),f(yj) ◦Bf(yj) ◦Dyjf ◦ (Afj(p),yj )
−1(6)

for 0 ≤ j ≤ n− 1. For n ≤ i ≤ q − 2, put

Lf i(p) = Af i+1(p),x−m−n+i+1
◦Dx−m−n+if ◦ (Af i(p),x−m−n+i

)−1.(7)

Finally, we put

Lfq−1(p) = Bp ◦ Afq−1(p),x−1 ◦Dx−1f ◦ (Afq−1(p),x−1)−1,(8)

where Bp : TpM → TpM is a linear isomorphism satisfying Bp(Ap,x0(vx0)) =
Ap,y0(vy0) and ‖Bp − I‖ < ε. Then, by the choice of ε (see (1)), we can see
that ‖Lf i(p) − Df i(p)f‖ < δ0 for 0 ≤ i ≤ q − 1. Thus, by Lemma 2, for all
0 ≤ i ≤ q − 1 there exists gi+1 ∈ C1(M) with %C1(f, gi+1) < ε0/2 such that

gi+1(f i(p)) = f i+1(p) and Df i(p)gi+1 = Lf i(p).

Notice that gi+1 = f outside a small neighborhood of f i(p).
If we put v = Ap,y0(vy0), then

Dp(gq ◦ · · · ◦ g1)(v) = γv
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for some γ ∈ R by construction. Hence |γ| > 1 (see Proposition 1). Further-
more, from (6)–(8),

1
q

log ‖Dp(gq ◦ · · · ◦ g1)(v)‖

=
1
q

log ‖Dy0f(vy0)‖ · · · ‖Dyn−1f(vyn−1)‖ · ‖Dx−mf
m(vyn)‖

≤ 1
q

logKn · ‖Dx−mf
m(vyn)‖ =

1
q

logKn +
1
q

log ‖Dx−mf
m(vyn)‖

<
1
2

log(1 + ε) +
1
2

log(1 + ε) = log(1 + ε)

since
1
m

log ‖Dx−mf
m(vyn)‖ < 1

2
log(1 + ε).

Pick γ′ such that

log(1 + γ′) =
1
q

log ‖Dp(gq ◦ · · · ◦ g1)(v)‖.

Then 0 < γ′ < ε. If we define a new sequence of linear isomorphisms L′
f i(p) :

Tf i(p)M → Tf i+1(p)M by

L′f i(p) = (1 + γ′)−1Df i(p)gi+1 for 0 ≤ i ≤ q − 1,

then, by (1) and Lemma 2, for any 0 ≤ i ≤ q− 1 there exists g′i+1 ∈ C1(M)
such that %C1(g′i+1, gi+1) < ε0/2, g′i+1(f i(p)) = f i+1(p) and

Df i(p)g
′
i+1 = L′f i(p).

Hence

‖Dp(g′q ◦ · · · ◦ g′1)(v)‖ = (1 + γ′)−q‖Dp(gq ◦ · · · ◦ g1)(v)‖
= (1 + γ′)−q(1 + γ′)q = 1

so that
Dp(g′q ◦ · · · ◦ g′1)(v) = v.

Thus, there exists a non-expanding {g′i}qi=1-periodic orbit starting from p.
However, since the C1-distance from g′i to f is less than ε0 for all i, it follows
from Proposition 1 that {g′i}qi=1 should have only expanding periodic orbits.
This is a contradiction.

We are in a position to prove the opposite direction of Theorem A; that is,
if f ∈ SPE1(M), then f is expanding. The proof follows from Proposition 2
by modifying the arguments used in the proof of [3, Lemma 5].

Suppose that f ∈ SPE1(M), and let η,m0, ε and % be as in Proposition 2.
Take m1 ≥ m0 and 0 < λ < 1 such that % < λ and ε/12 > (%/λ)m1 . To get
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the conclusion it is enough to prove that for all periodic backward orbits
p = {p−i}∞i=0 (⊂ P (f)),

‖Dpf
−m1(v)‖ ≤ λm1‖v‖ for v ∈ TpM.(9)

Indeed, if (9) is established, then we can see that

‖Dxf
m1(v)‖ ≥ µ‖v‖ for v ∈ TxM

for all x ∈ M , where µ = λ−m1 > 1 (see Remark (2)). Thus f is expanding
by making use of Mather’s trick.

If (9) is false, then there are p ∈ P (f) (f k(p) = p) and v ∈ TpM (‖v‖ = 1)
such that ‖Dpf

−m1(v)‖ > λm1 . Thus, examining the Jordan canonical form
of Dpf

k : TpM → TpM , we can find w ∈ TpM (‖w‖ = 1) such that

‖f̂−knp (v)− f̂−knp (w)‖ → 0 as n→∞,

f̂−knip (w)→ w as i→∞
(10)

for some increasing subsequence {ni}∞i=0 ⊂ N (see [3, p. 171]).

Now, let u′ = w+ εv/4 and set u = u′/‖u′‖. Then limi→∞ f̂−knip (u) = w
by (10). Since ‖u−w‖ < ε/2, both (u,p) and (w,p) are elements of Σε(f).
Thus, by Proposition 2 we see that

‖Dpf
−m1(u)‖ ≤ %m1‖u‖, ‖Dpf

−m1(w)‖ ≤ %m1‖w‖.
On the other hand, since we may suppose that 0 < ε < 1/2,

‖Dpf
−m1(u)‖ ≥ 2

3
‖Dpf

−m1(u′)‖.

Thus

‖Dpf
−m1(u)‖ ≥ 2

3

∥∥∥∥
ε

4
Dpf

−m1(v) +Dpf
−m1(w)

∥∥∥∥ >
2
3

(
ε

4
λm1 − %m1

)

>
2
3

(3%m1 − %m1) =
4
3
%m1 > %m1 .

This is a contradiction, and so (9) is proved.

2. Proof of Theorem B. Let f ∈ SPE1(M) with constants ν and c.
Recall that f is positively expansive and has the shadowing property; that
is, for every ε > 0, there is δ > 0 such that for every δ-pseudo-orbit {xi}∞i=0,
there exists y ∈ M satisfying d(f i(y), xi) < ε for all i ≥ 0. For any 0 < ε
< c/3, let 0 < δ < min{ε, ν} be as in the shadowing property of f . We may
assume (L+ 1)ε+ δ < c. Here L ≥ 1 is a constant such that if %C1(f, g) < δ
(g ∈ C1(M)), then

d(g(x), g(y)) ≤ Ld(x, y) (x, y ∈M).
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It is easy to see that for any given sequence {gi}∞i=1 ⊂ C1(M) and
any {xi}∞i=0 ∈ O({gi}∞i=1), if %C1(f, gi) < δ for i, then the {gi}∞i=1-orbit
{xi}∞i=0 (x0 = x) of x is a δ-pseudo-orbit of f . Indeed, d(f(xi), xi+1) =
d(f(xi), gi+1(xi)) < δ for all i.

Let {gi}ni=1 ⊂ C1(M) be a given finite sequence such that %C1(f, gi) < δ
for all i. Denote by {gi}∞i=1 the cyclic infinite sequence composed of {gi}ni=1;
that is, gjn+i = gi for all j ≥ 0 and 1 ≤ i ≤ n. Then, modifying the method
used in [8] we obtain the next lemma.

Lemma 4. Under the above notations, there exists a map h : M → M
such that

fn(h(x)) = h(gn ◦ · · · ◦ g1(x)) and d(h(x), x) < ε

for all x ∈M .

Proof. Let {gi}∞i=1 be as above. Then, since any {xi}∞i=0 ∈ O({gi}∞i=1)
(x0 = x) is a δ-pseudo-orbit of f , there exists y ∈ M such that d(f i(y), xi)
< ε for all i ≥ 0. If there exists another point y′ ∈ M (y 6= y′) satisfying
d(f i(y′), xi) < ε for all i, then

d(f i(y), f i(y′)) ≤ d(f i(y), xi) + d(xi, f i(y′)) < 2ε

for all i. Thus y = y′ since f is positively expansive with constant c. This is
a contradiction.

Denote the point y by h(x). Then we have

(11) d(f jn+i(h(x)), gi ◦ · · · ◦ g1 ◦ (gn ◦ · · · ◦ g1)j(x))

= d(f jn+i(h(x)), xjn+i) < ε,

and d(h(x), x) < ε for all x ∈ M (recall that d(f i(h(x)), xi) = d(f i(y), xi)
< ε for all i).

If we replace x with xn = gn ◦ · · · ◦ g1(x) in (11), then

d(f jn+i(h(xn)), gi ◦ · · · ◦ g1(xn(j+1))) < ε.(12)

Here xn(j+1) = (gn ◦ · · · ◦ g1)j+1(x).
On the other hand, we have

d(f jn+i(fn(h(x))), gi ◦ · · · ◦ g1(xn(j+1)))

≤ d(f(f jn+i−1(fn(h(x)))), f(gi−1 ◦ · · · ◦ g1(xn(j+1))))

+ d(f(gi−1 ◦ · · · ◦ g1(xn(j+1))), gi(gi−1 ◦ · · · ◦ g1(xn(j+1))))

≤ Ld(f jn+i−1(fn(h(x))), gi−1 ◦ · · · ◦ g1(xn(j+1))) + δ

≤ Ld(f (j+1)n+i−1(h(x)), xn(j+1)+i−1) + δ < Lε+ δ

by (11). Here xn(j+1)+i−1 = gi−1 ◦ · · · ◦ g1(xn(j+1)).
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Thus, combining this with (12) we have

d(f jn+i(h(gn ◦ · · · ◦ g1(x))), f jn+i(fn(h(x)))) < (L+ 1)ε+ δ < c

for all j ≥ 0 and 1 ≤ i ≤ n. Therefore, fn(h(x)) = h(gn ◦ · · · ◦ g1(x)) is
obtained for all x ∈M since f is positively expansive.

To complete the proof of Theorem B, it only remains to show that h :
M →M is a homeomorphism. Since f is positively expansive, it is easy to see
that for any α > 0 there exists an integerN > 0 such that d(f i(x), f i(y)) ≤ c
(x, y ∈M) for all 0 ≤ i ≤ N implies d(x, y) < α.

Recall that there is a constant L ≥ 1 such that

d(gi(v), gi(w)) ≤ Ld(v, w) (v, w ∈M)

since %C1(f, gi) < δ for i. Thus, for the above N , if we choose β > 0 small
enough, then d(x, y) < β (x, y ∈ M) implies d(xi, yi) < c/3 for 0 ≤ i ≤ N .
Here {xi}∞i=0 (x0 = x) and {yi}∞i=0 (y0 = y) are {gi}∞i=1-orbits. Hence, we
have

d(f i(x), f i(y)) ≤ d(f i(x), xi) + d(xi, yi) + d(yi, f i(y))

< c/3 + c/3 + c/3 = c

for all 0 ≤ i ≤ N , and so d(h(x), h(y)) < α. Thus the map h is continuous.
To show the injectivity of h, we assume h(x) = h(y) (x, y ∈ M). Then

d(xi, yi) ≤ c for any i since

d(f i(h(x)), xi) < ε and d(f i(h(y)), yi) < ε

for any i. Here {xi}∞i=0 (x0 = x) and {yi}∞i=0 (y0 = y) are {gi}∞i=1-orbits.
Thus x = y since f is C1-stably positively expansive.
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