Summary. We prove that if \(f : \mathbb{Z}^d \to \mathbb{R} \) is harmonic and there exists a polynomial \(W : \mathbb{Z}^d \to \mathbb{R} \) such that \(f + W \) is nonnegative, then \(f \) is a polynomial.

1. Introduction. Harmonic functions on the integer lattice are closely related to lattice random walks and have been studied by many authors; an introduction and detailed references can be found in a modern monograph by Woess [8]. Many different methods have been successfully applied, including the extreme point theory [2] and martingale approach [4]. The present paper grew out of the author’s bachelor thesis [7] which extended results and methods of Darkiewicz [3]. A similar result for sublinear functions on compactly generated groups of polynomial growth has been obtained by Hebisch and Saloff-Coste [6, Theorem 6.1] by using Gaussian estimates for iterated kernels of random walks.

2. Preliminaries and main results. Let \(d \in \mathbb{N} \) and let \((e_i)_{i=1}^d \) be the standard orthonormal basis for \(\mathbb{R}^d \). A function \(f : \mathbb{Z}^d \to \mathbb{R} \) is called harmonic if it has the mean value property,

\[
f(x) = \frac{1}{2d} \sum_{i=1}^d [f(x + e_i) + f(x - e_i)] \quad \text{for all } x \in \mathbb{Z}^d.
\]

We say that \(f : \mathbb{Z}^d \to \mathbb{R} \) is a polynomial if there exists a polynomial \(F : \mathbb{R}^d \to \mathbb{R} \) such that \(f = F|_{\mathbb{Z}^d} \).

2010 Mathematics Subject Classification: Primary 31C05; Secondary 60G50.
Key words and phrases: harmonic functions, integer lattice, polynomially bounded harmonic functions.
For \(t \geq 0 \) let \(Y_1^{(t)}, \ldots, Y_d^{(t)}, Z_1^{(t)}, \ldots, Z_d^{(t)} \) be independent Poisson random variables with mean \(t \).

We will use the following notation:

- \(\|x\|_p = (\sum_{i=1}^d |x_i|^p)^{1/p} \) for \(p \in [1, \infty) \) and \(x = (x_1, \ldots, x_d) \in \mathbb{R}^d \),
- \(X_i^{(t)} = Y_i^{(t)} - Z_i^{(t)} \) for \(i = 1, \ldots, d \), \(X^{(t)} = \sum_{i=1}^d X_i^{(t)} e_i \),
- \(g_t(l) = \mathbb{P}(Y_1^{(t)} - Z_1^{(t)} = l) \) for \(l \in \mathbb{Z} \),
- \(G_t(k) = \prod_{i=1}^m g_t(k_i) \) for \(k = (k_1, \ldots, k_m) \in \mathbb{Z}^m \),
- \(q_t(l) = \mathbb{P}(Y_1^{(t)} = l) = e^{-t} t^l / l! \) for \(l \in \mathbb{N}_0 = \mathbb{N} \cup \{0\} \).

Note that if \(t \in \mathbb{N} \) then \(q_t(0) \leq q_t(1) \leq \cdots \leq q_t(t-1) = q_t(t) \geq q_t(t+1) \geq q_t(t+2) \geq \cdots \).

We consider the space of all exponentially bounded functions,

\[\mathcal{L} = \{ f : \mathbb{Z}^d \to \mathbb{R} \mid \exists c_1, c_2 > 0 \ | f(x) | \leq c_1 e^{c_2 \| x \|_1} \text{ for all } x \in \mathbb{Z}^d \}, \]

and define a family of operators \((\mathcal{P}_t)_{t \geq 0}\), \(\mathcal{P}_t : \mathcal{L} \to \mathcal{L} \), by

\[
\mathcal{P}_t(f)(x) = \mathbb{E} f(x + X^{(t)}).
\]

Theorem 2.1. The family \((\mathcal{P}_t)_{t \geq 0}\) is a well-defined semigroup of operators. Moreover, harmonic functions belonging to \(\mathcal{L} \) lie in the domain \(\mathcal{D}_A \) of the infinitesimal generator \(A \) of the semigroup \((\mathcal{P}_t)_{t \geq 0}\), and for \(f \in \mathcal{D}_A \) we have

\[
(Af)(x) = \frac{d}{dt} \mathcal{P}_t(f)(x) \bigg|_{t=0} = \sum_{k \in \mathbb{Z}^d : \| k \|_1 = 1} f(x + k) - 2d f(x).
\]

In particular, if \(f \in \mathcal{L} \) is harmonic, then \((Af)(x) = 0 \) for all \(x \in \mathbb{Z}^d \), and so

\[
\mathcal{P}_t(f)(x) = \sum_{k \in \mathbb{Z}^d} G_t(k) f(x + k) = f(x) \quad \text{for all } x \in \mathbb{Z}^d.
\]

Proof. If \(f \in \mathcal{L} \), then there exist \(c_1, c_2, \tilde{c}_1(t) > 0 \) such that

\[
|\mathbb{E} f(x + X^{(t)})| \leq c_1 \mathbb{E} e^{c_2 \| x + X^{(t)} \|_1} \leq c_1 e^{c_2 \| x \|_1} (\mathbb{E} e^{c_2 \| X_1^{(t)} \|_1})^d = \tilde{c}_1(t) e^{c_2 \| x \|_1},
\]

so \(\mathcal{P}_t(f) \in \mathcal{L} \). Observe that \(\mathcal{P}_0(f) = f \). If \(s, t \geq 0 \) and \(\tilde{X}^{(s)} \) is a copy of \(X^{(s)} \) independent of \(X^{(t)} \), then \(X^{(t)} + \tilde{X}^{(s)} \sim X^{(t+s)} \), so one can easily check that \((\mathcal{P}_t)_{t \geq 0}\) is a semigroup. The last part is a simple calculation. \(\blacksquare \)

Lemma 2.2. If \((r_i)_{i \in \mathbb{N}}\) are independent \(\pm 1 \) symmetric Bernoulli random variables and \(M \) is a Poisson variable with mean \(4t \), such that \(M \) and \((r_i)_{i \in \mathbb{N}}\) are independent, then

\[
X_1^{(t)} \sim \frac{1}{2} (r_1 + \cdots + r_{2M}).
\]
Moreover, for $l \in \mathbb{N}_0$,
\[
g_t(l) = g_t(-l) = \sum_{n=0}^{\infty} e^{-4t} \frac{t^n}{n!} \left(\frac{2n}{n + l} \right),
\]
so if $l_1, l_2 \in \mathbb{Z}$ and $0 \leq l_1 \leq l_2$, then
\[
g_t(l_1) \geq g_t(l_2).
\]

Proof. To prove the first statement, it is enough to show that the characteristic functions of both random variables are equal. We have
\[
\phi_{X_1^{(t)}}(x) = \phi_{Y_1^{(t)}}(x) \phi_{Z_1^{(t)}}(-x) = e^{t(e^{ix} - 1)} e^{t(e^{-ix} - 1)} = e^{t(2 \cos x - 2)}
\]
and
\[
\phi_{(r_1 + \cdots + r_{2M})/2}(x) = \sum_{n=0}^{\infty} \mathbb{P}(M = n) \phi_{(r_1 + \cdots + r_{2n})/2}(x)
\]
\[
= \sum_{n=0}^{\infty} e^{-4t} \frac{(4t)^n}{n!} \left(\phi_{r_1/2}(x) \right)^2 = e^{4t(-1 + \cos^2(x/2))} = e^{-4t \sin^2(x/2)},
\]
as
\[
\phi_{r_1/2}(x) = \phi_{r_1}(x/2) = \frac{1}{2} (e^{-ix/2} + e^{ix/2}) = \cos(x/2).
\]

To finish the proof observe that for $l \in \mathbb{N}_0$ we have
\[
g_t(l) = \mathbb{P}\left(\frac{1}{2} (r_1 + \cdots + r_{2M}) = l \right) = \sum_{n=0}^{\infty} \mathbb{P}(M = n) \mathbb{P}(r_1 + \cdots + r_{2n} = 2l)
\]
\[
= \sum_{n=0}^{\infty} e^{-4t} \frac{(4t)^n}{n!} \frac{1}{2^{2n}} \left(\frac{2n}{n + l} \right) = \sum_{n=0}^{\infty} e^{-4t} \frac{t^n}{n!} \left(\frac{2n}{n + l} \right)
\]
and $\left(\frac{2n}{n + l_1} \right) \geq \left(\frac{2n}{n + l_2} \right)$ for $0 \leq l_1 \leq l_2$. ■

Lemma 2.3. For every $\varepsilon > 0$ and $d \in \mathbb{N}$ we can find $0 < s < t$ such that
\[
g_t(k) \geq (1 - \varepsilon) g_s(k - 1) \quad \text{for } k \in \mathbb{Z}
\]
and
\[
G_t(k) \geq (1 - \varepsilon) G_s(k - e_1) \quad \text{for } k \in \mathbb{Z}^d.
\]

Proof. If the first inequality holds for $k = 1, 2, \ldots, m$ then it holds for $k = 0, -1, \ldots, -m$. Indeed, for $k = -1, -2, \ldots, -m$ we have (see Lemma 2.2)
The function N_{234k} satisfies

$$
\mathbb{P}(X_1^{(t)} = k) = \mathbb{P}(X_1^{(t)} = -k) \geq (1 - \varepsilon)\mathbb{P}(X_1^{(s)} = -k - 1)
$$

$$
= (1 - \varepsilon)\mathbb{P}(X_1^{(s)} = k + 1) \geq (1 - \varepsilon)\mathbb{P}(X_1^{(s)} = k - 1)
$$

and

$$
\mathbb{P}(X_1^{(t)} = 0) \geq \mathbb{P}(X_1^{(t)} = 1) \geq (1 - \varepsilon)\mathbb{P}(X_1^{(s)} = 0) \geq (1 - \varepsilon)\mathbb{P}(X_1^{(s)} = -1).
$$

For $k \geq 1$ we have

$$
\mathbb{P}(X_t = k) = \sum_{l=0}^{\infty} \mathbb{P}(Y_t = l + k)\mathbb{P}(Z_t = l) = \sum_{l=0}^{\infty} e^{-2t} \frac{t^{2l+k}}{l!(l+k)!},
$$

$$
\mathbb{P}(X_s = k - 1) = \sum_{l=0}^{\infty} e^{-2s} \frac{s^{2l+k-1}}{l!(l+k-1)!}.
$$

Let $s > 1$ be such that $\sqrt{s} \in \mathbb{N}$ and set $t = s + \sqrt{s}$. We then have

$$
\mathbb{P}(X_t = k) \geq \sum_{l=0}^{\infty} e^{-2t} \frac{t^{2l+k}}{l!(l+k)!} = \sum_{l=0}^{\infty} e^{-2s} \frac{s^{2l+k-1}}{l!(l+k-1)!}.
$$

It is enough to prove that

$$
\inf_{k \geq 1, l \geq 0} \left(e^{-2t} \frac{t^{2(l+\sqrt{s})+k}}{(l+\sqrt{s})!(l+\sqrt{s}+k)!} / e^{-2s} \frac{s^{2l+k-1}}{l!(l+k-1)!} \right) \xrightarrow{s \to \infty} 1.
$$

We consider the expression

$$
p_{l,k}(s) := e^{2(s-t)}st^{2\sqrt{s}} \left(\frac{t}{s} \right)^{l+k} \left(\frac{l+k-1}{l+\sqrt{s}+k} \right) \left(\frac{t}{s} \right)^l \frac{l!}{(l+\sqrt{s})!}.
$$

The function $\mathbb{N} \ni n \mapsto (t/s)^n(n-1)!/(n+\sqrt{s})!$ has its minimum at $n = s(1 + \sqrt{s})/(t - s) = t$. Similarly, the function $\mathbb{N}_0 \ni n \mapsto (t/s)^n n!/(n+\sqrt{s})!$ has its minimum at $n = s\sqrt{s}/(t-s) = s$. Therefore

$$
p_{l,k}(s) \geq p_{s,t-s}(s) = e^{2(s-t)}st^{2\sqrt{s}} \left(\frac{t}{s} \right)^{t+s} \left(\frac{t}{s} \right)^{t} \frac{t!}{(t+\sqrt{s})!} \frac{1}{(s+\sqrt{s})!}.
$$

Using Stirling’s formula we get $s!/(s + 2\sqrt{s})! \approx e^{2\sqrt{s}s}/(s + 2\sqrt{s})^{s+2\sqrt{s}}$ as $s \to \infty$, hence we arrive at

$$
\inf_{k \geq 1, l \geq 0} p_{l,k}(s) \approx s^{-s-\sqrt{s}+1}(s + \sqrt{s})^{2s+3\sqrt{s}-1}(s + 2\sqrt{s})^{-s-2\sqrt{s}}
$$

$$
= \sqrt{s^{-2s-2\sqrt{s}+2+2s+3\sqrt{s}-1}}(1 + \sqrt{s})^{-\sqrt{s}-1}(1 + \sqrt{s})^{2s+4\sqrt{s}}(s + 2\sqrt{s})^{-s-2\sqrt{s}}
$$

$$
= \left(\frac{\sqrt{s}}{1 + \sqrt{s}} \right)^{\sqrt{s}+1} \left(\frac{s + 2\sqrt{s} + 1}{s + 2\sqrt{s}} \right)^{s+2\sqrt{s}} \xrightarrow{s \to \infty} e^{-1} e = 1.
$$
To prove the second part observe that the first inequality yields

\[G_t(k) = g_t(k_1) \cdots g_t(k_d) \geq (1 - \varepsilon) g_s(k_1 - 1) g_t(k_2) \cdots g_t(k_d) \]

\[\geq (1 - \varepsilon)^d G_s(k - e_1), \]

since

\[g_t(l) = g_t(\|l\|) \geq g_t(\|l\| + 1) \geq (1 - \varepsilon) g_s(\|l\|) = (1 - \varepsilon) g_s(l). \]

A sequence \((x_i)_{i=0}^n \subset \mathbb{Z}^d\) is called a path in \(\mathbb{Z}^d\) between \(x_0\) and \(x_n\) if \(\|x_i - x_{i+1}\|_1 = 1\) for \(i = 0, \ldots, n - 1\). For \(k \in \mathbb{Z}^d\) let \(L_n(k)\) denote the number of paths in \(\mathbb{Z}^d\) between 0 and \(k\).

Lemma 2.4. Let \(f : \mathbb{Z}^d \to \mathbb{R}\) be harmonic. Suppose there exists a polynomial \(W : \mathbb{Z}^d \to \mathbb{R}\) such that \(f(x) \geq -W(x)\). Then \(f \in L\).

Proof. Using simple induction we can prove that for \(f\) harmonic and \(n \in \mathbb{N}\) we have

\[f(0) = \frac{1}{(2d)^n} \sum_{k \in \mathbb{Z}^d} f(k) L_n(k). \]

Let \(l \in \mathbb{Z}^d\). Then \(L_{\|l\|_1}(l) \geq 1\) and

\[f(0)(2d)^{\|l\|_1} = \sum_{k \in \mathbb{Z}^d} (f(k) + W(k)) L_{\|l\|_1}(k) - \sum_{k \in \mathbb{Z}^d} W(k) L_{\|l\|_1}(k) \]

\[\geq (f(l) + W(l)) - \max_{k : \|k\|_1 \leq \|l\|_1} |W(k)| \cdot (2d)^{\|l\|_1}, \]

hence

\[f(l) \leq f(0)(2d)^{\|l\|_1} + (2d)^{\|l\|_1} \max_{k : \|k\|_1 \leq \|l\|_1} |W(k)| - W(l) \leq c_1 e^{c_2 \|l\|_1} \]

for some \(c_1, c_2 > 0\) which depend only on \(f\) and \(W\) but not on \(l\). Since \(f\) is polynomially bounded from below we have \(f \in L\). □

Now we may recover the classical strong Liouville property of harmonic functions on \(\mathbb{Z}^d\). Woess \([8]\) traces back its weak form to Blackwell \([1]\); see also \([2]\) and \([5]\).

Theorem 2.5. If \(f : \mathbb{Z}^d \to \mathbb{R}\) is harmonic and \(f \geq 0\) then \(f\) is constant.

Proof. By Lemma 2.4 we have \(f \in L\). Let \(x \in \mathbb{Z}^d\). Lemma 2.3 implies that there exist \(t > s > 0\) such that

\[\cdots \]
\[
f(x) - f(x + e_1) = P_t(f)(x) - P_s(f)(x + e_1)
= \sum_{k \in \mathbb{Z}^d} f(x + k)G_t(k) - \sum_{k \in \mathbb{Z}^d} f(x + k + e_1)G_s(k)
= \sum_{k \in \mathbb{Z}^d} f(x + k)(G_t(k) - G_s(k - e_1))
\geq -\varepsilon \sum_{k \in \mathbb{Z}^d} f(x + k)G_s(k - e_1) = -\varepsilon f(x + e_1).
\]

By letting \(\varepsilon \to 0\) we get \(f(x) \geq f(x + e_1)\). Applying this inequality to the harmonic function \(x \mapsto g(x) = f(-x)\) we get \(f(x) = f(x + e_1)\) and similarly \(f(x) = f(x + e_i)\) for \(i = 1, \ldots, d\). \(\blacksquare\)

We will now prove some auxiliary lemmas.

Lemma 2.6. Let \(n \in \mathbb{N}\) and let \(k \in \mathbb{Z}\) satisfy \(|k| \leq n\). Then
\[
\frac{1}{2\sqrt{n}} \left(1 - \frac{k^2}{n}\right) \leq \frac{1}{2^{2n}} \left(\frac{2n}{n + k}\right) \leq \frac{1}{\sqrt{2n+1}} e^{-\frac{k^2}{2n}} \leq \frac{1}{2n + 1} e^{-\frac{k^2}{2n}}.
\]

Proof. We can assume \(k \geq 0\). By multiplying the obvious inequalities \((2j - 1)^2 \geq 2j(2j - 2)\) for \(j = 2, 3, \ldots, n\) and \((2j)^2 \geq (2j - 1)(2j + 1)\) for \(j = 1, 2, \ldots, n\) we arrive at \(((2n - 1)!!)^2 \geq \frac{1}{2}(2n)!!(2n - 2)!!\) and \(((2n)!!)^2 \geq (2n - 1)!!(2n + 1)!!\), so that
\[
\frac{1}{4n} \leq \left(\frac{(2n - 1)!!}{(2n)!!}\right)^2 \leq \frac{1}{2n + 1}.
\]

To finish the proof it suffices to observe that
\[
\frac{1}{2^{2n}} \left(\frac{2n}{n + k}\right) = \frac{(2n - 1)!!}{(2n)!!} \cdot \prod_{j=1}^{k} \left(1 - \frac{k}{n + j}\right)
\]
and
\[
1 - \frac{k^2}{n} \leq \left(1 - \frac{k}{n}\right)^k \leq \prod_{j=1}^{k} \left(1 - \frac{k}{n + j}\right) \leq \left(1 - \frac{k}{2n}\right)^k \leq e^{-\frac{k^2}{2n}}. \quad \blacksquare
\]

Lemma 2.7. There exists a constant \(C > 0\) such that for \(k \in \mathbb{Z}^d \setminus \{0\},\)
\[
G_{\|k\|_1^2}(k) \geq C^d \|k\|_{1}^{-2d}.
\]

Proof. Let \(t > 0\) and \(k = (k_1, \ldots, k_d) \in \mathbb{Z}^d\). We have (see Lemma 2.2)
\[
g_t(k_i) \geq e^{-4t} \frac{t^n}{n!} \left(\frac{2n}{n + k_i}\right) \geq e^{-4t} \frac{t^n}{n!} \left(\frac{2n}{n + \|k\|_1}\right) \quad (i = 1, \ldots, d, n \in \mathbb{N}).
\]

We set \(t = \|k\|_1^2\) and \(n = 4t\). Then \(e^{-4t} t^n = e^{-n} n^n / 4^n\), so that
\[
g_t(k_i) \geq q_n(n) \cdot \frac{1}{2^{2n}} \left(\frac{2n}{n + \|k\|_1}\right) \geq q_n(n) \cdot \frac{1}{2\sqrt{n}} \left(1 - \frac{\|k\|_1^2}{n}\right) = \frac{3}{16} q_n(n) / \|k\|_1,
\]
where we have used Lemma 2.6. Note that by Chebyshev’s inequality,
\[P(|Y_1^{(n)} - n| \geq 2\sqrt{n}) = P(|Y_1^{(n)} - \mathbb{E}Y_1^{(n)}| \geq 2\sqrt{n}) \leq \frac{D^2Y_1^{(n)}}{4n} = 1/4, \]
so that
\[3/4 \leq P(|Y_1^{(n)} - n| < 2\sqrt{n}) = \sum_{m \in \mathbb{N}_0: |m-n| < 2\sqrt{n}} q_n(m) \leq \text{card}\{m \in \mathbb{N}_0: |m-n| < 2\sqrt{n}\} \cdot q_n(n) \leq 8\|k\|_1 \cdot q_n(n). \]

Hence
\[g_t(k_i) \geq \frac{3}{32\|k\|_1} \cdot \frac{3}{16\|k\|_1} = \frac{C}{\|k\|_1^2} \]
and therefore
\[G_{\|k\|_1^2}(k) = \prod_{i=1}^{d} g_t(k_i) \geq C^d\|k\|_1^{-2d}. \]

Lemma 2.8. Let \(W : \mathbb{R}^d \to \mathbb{R} \) be a polynomial. Define \(H_W : \mathbb{R} \to \mathbb{R} \) by
\[H_W(t) = \mathbb{P}_t(W)(0) = \sum_{k \in \mathbb{Z}^d} G_t(k)W(k). \]
Then \(H_W \) is a polynomial.

Proof. \(H_W \) is well defined since \(W|_{\mathbb{Z}^d} \in \mathcal{L} \). Because of the product structure of \(G_t \) it is enough to consider the case \(d = 1 \) and \(W(z) = z^l \) for \(l \in \mathbb{N} \). The characteristic function
\[\phi_X^{(t)}(z) = e^{-4t \sin^2(z/2)} \]
is smooth, so that
\[H_W(t) = \mathbb{E}[(X_1^{(t)})^l] = (-i)^l \frac{d^l\phi_X^{(t)}}{dz^l}(0), \]
which is clearly a polynomial in \(t \). □

Lemma 2.9. Let \(f : \mathbb{Z}^d \to \mathbb{R} \) be harmonic. Suppose there exists a polynomial \(W : \mathbb{Z}^d \to \mathbb{R} \) such that \(f \geq -W \). Then \(|f| \leq R \) for some polynomial \(R : \mathbb{Z}^d \to \mathbb{R} \).

Proof. We have \(f \in \mathcal{L} \) (see Lemma 2.4). Proposition 2.1 yields
\[f(0) = \sum_{k \in \mathbb{Z}^d} G_t(k)f(k), \]
hence for all \(l \in \mathbb{Z}^d \),
\[f(0) = \sum_{k \in \mathbb{Z}^d} G_t(k)(f(k) + W(k)) - \sum_{k \in \mathbb{Z}^d} G_t(k)W(k) \geq G_t(l)(f(l) + W(l)) - H_W(t). \]
Therefore

\[f(0) + H_W(t) \geq G_t(l)(f(l) + W(l)). \]

There exists a constant \(c = c(d) > 0 \) such that (see Lemma 2.7) for all \(l \neq 0 \),

\[G_{\|l\|_1^2}(l) \geq c\|l\|_1^{-2d}. \]

Hence for \(l \neq 0 \),

\[f(0) + H_W(\|l\|_1^2) \geq c(f(l) + W(l))\|l\|_1^{-2d} \]

and therefore

\[f(l) \leq c^{-1}\|l\|_1^{2d} f(0) + H_W(\|l\|_1^2) - W(l). \]

Since the right-hand side is polynomially bounded from above in \(l \), we have

\[f(l) \leq P(l) \]

for some polynomial \(P: \mathbb{R}^d \to \mathbb{R} \) and all \(l \in \mathbb{Z}^d \). One can easily check that \(|f(l)| \leq 1 + P(l)^2 + [W(l)]^2 \).

Lemma 2.10. For all \(x \in \mathbb{Z}, n \in \mathbb{N}, a, b \in \mathbb{R} \) and \(p \geq 0 \) we have

\[|a + b|^p \leq 2^p(|a|^p + |b|^p) \]

and

\[|x|^n - |x + 1|^n | \leq 1 + 2^n |x|^{n-1}. \]

Proof. Without loss of generality we may assume that \(|a| \leq |b| \). Then \(|a + b|^p \leq (2|b|)^p \leq 2^p(|a|^p + |b|^p) \).

To prove the second inequality note that

\[|(x + 1)^n| - |x^n| \leq |(x + 1)^n - x^n| = \left| \sum_{k=0}^{n-1} \binom{n}{k} x^k \right| \leq 1 + \sum_{k=1}^{n-1} \binom{n}{k} |x|^{n-1} \leq 1 + 2^n |x|^{n-1}. \]

Lemma 2.11. If \(t > 0 \) then

\[g_t(0) \leq \frac{1}{2\sqrt{t}} \]

and

\[\mathbb{E}|X_1^{(t)}|^m \leq b(m)t^{m/2} + c(m) \]

for some constants \(b(m), c(m) > 0 \) and \(m \in \mathbb{N} \).

Proof. Let \(M \) be the Poisson variable with mean \(4t \). By Lemma 2.2, Lemma 2.6 and Jensen’s inequality we have

\[g_t(0) = \sum_{n=0}^{\infty} e^{-4t} \frac{(4t)^n}{n!} \frac{1}{2^{2n}} \binom{2n}{n} \leq \sum_{n=0}^{\infty} e^{-4t} \frac{(4t)^n}{n!} \frac{1}{\sqrt{n+1}} = \mathbb{E} \frac{1}{\sqrt{M + 1}} \leq \left(\mathbb{E} \frac{1}{M + 1} \right)^{1/2} \]
and
\[\mathbb{E} \frac{1}{M+1} = \sum_{n=0}^{\infty} e^{-4t} \frac{(4t)^n}{(n+1)!} = \frac{1}{4t} \sum_{n=0}^{\infty} e^{-4t} \frac{(4t)^{n+1}}{(n+1)!} \leq \frac{1}{4t}. \]

To prove the second part, let \(M, r_1, r_2, \ldots \) be as in Lemma 2.2. For fixed \(k \in \mathbb{N} \) and all \(i \leq k \) we have \(\mathbb{E} \exp \left(\frac{r_i}{\sqrt{k}} \right) = 1 + \sum_{s=1}^{\infty} k^{-s} / (2s)! \leq 1 + ek^{-1} \leq e^e/k \), so that

\[
\frac{1}{m!} \mathbb{E} \left(\frac{r_1 + \cdots + r_k}{\sqrt{k}} \right)^m \leq \mathbb{E} \exp \left(\frac{r_1 + \cdots + r_k}{\sqrt{k}} \right) = \prod_{i=1}^{k} \mathbb{E} \exp \left(\frac{r_i}{\sqrt{k}} \right) \leq e^e.
\]

Hence

\[\mathbb{E} |r_1 + \cdots + r_k|^m = 2 \mathbb{E} (r_1 + \cdots + r_k)^m \leq 2e^e m! \cdot k^{m/2} \]

and therefore, by Lemma 2.2

\[\mathbb{E} |X_1^{(t)}|^m \leq 2e^e m! \cdot 2^{-m} \cdot (\mathbb{E} (2M))^{m/2} \leq 2e^e m! \cdot (\mathbb{E} M)^{1/2}. \]

Now,

\[\mathbb{E} M^m = \mathbb{E} M^m I_{M<m} + \mathbb{E} M^m I_{M \geq m} \leq m^m + m^m \mathbb{E} (M - m + 1)^m \]

\[\leq m^m \left(1 + \sum_{k=m}^{\infty} e^{-4t} \frac{(4t)^k}{k!} k(k-1) \cdots (k-m+1) \right) \]

\[= m^m (1 + (4t)^m) \]

and it is obvious (see Lemma 2.10) that

\[\mathbb{E} |X_1^{(t)}|^m \leq b(m) t^{m/2} + c(m) \]

for some constants \(b(m), c(m) > 0 \).

Now we state the key lemma of this paper. Similar estimates for sublinear harmonic functions have been obtained in a more general setting in [6, Theorem 6.1].

Lemma 2.12. Let \(n \in \mathbb{N} \) and let \(f : \mathbb{Z}^d \rightarrow \mathbb{R} \) be harmonic. Suppose that there exists a constant \(a_n \) such that

\[|f(x)| \leq a_n (1 + \|x\|_n^n) \]

for all \(x \in \mathbb{Z}^d \). Then there exists a constant \(a_{n-1} \) such that for all \(x \in \mathbb{Z}^d \),

\[|f(x + e_1) - f(x)| \leq a_{n-1} (1 + \|x\|_{n-1}^{n-1}). \]

Proof. For \(x \in \mathbb{Z}^d \) and any \(t > 0 \) we have

\[f(x) = \sum_{k \in \mathbb{Z}^d} G_t(k) f(x + k) \]

and

\[f(x + e_1) = \sum_{k \in \mathbb{Z}^d} G_t(k) f(x + e_1 + k) = \sum_{k \in \mathbb{Z}^d} G_t(k - e_1) f(x + k), \]

hence
\begin{equation*}
|f(x + e_1) - f(x)| \leq \sum_{k \in \mathbb{Z}^d} |G_t(k - e_1) - G_t(k)| |f(x + k)|
\end{equation*}

\begin{equation*}
\leq \sum_{k \in \mathbb{Z}^d} |G_t(k - e_1) - G_t(k)| a_n(1 + \|x + k\|^n_n)
\end{equation*}

\begin{equation*}
= \sum_{k \in \mathbb{Z}^d : k_1 \leq 0} (G_t(k) - G_t(k - e_1)) a_n(1 + \|x + k\|^n_n)
+ \sum_{k \in \mathbb{Z}^d : k_1 > 0} (G_t(k - e_1) - G_t(k)) a_n(1 + \|x + k\|^n_n)
\end{equation*}

\begin{equation*}
= \sum_{k \in \mathbb{Z}^d : k_1 \leq -1} G_t(k)a_n(|x_1 + k_1|^n - |x_1 + k_1 + 1|^n)
+ \sum_{k \in \mathbb{Z}^d : k_1 \geq 1} G_t(k)a_n(|x_1 + k_1 + 1|^n - |x_1 + k_1|^n)
+ \sum_{k \in \{0\} \times \mathbb{Z}^{d-1}} G_t(k)a_n(1 + \|x + k\|^n_n)
+ \sum_{k \in \{0\} \times \mathbb{Z}^{d-1}} G_t(k)a_n(1 + \|x + k + e_1\|^n_n).
\end{equation*}

We have used the product structure of \(G_t\) and Lemma \ref{lem:product}. By using Lemma \ref{lem:product} we get

\begin{equation*}
\sum_{k_1 \leq -1, k \in \mathbb{Z}^d} G_t(k)(|x_1 + k_1|^n - |x_1 + k_1 + 1|^n)
\end{equation*}

\begin{equation*}
+ \sum_{k_1 \geq 1, k \in \mathbb{Z}^d} G_t(k)(|x_1 + k_1 + 1|^n - |x_1 + k_1|^n)
\end{equation*}

\begin{equation*}
\leq \sum_{k \in \mathbb{Z}^d} G_t(k)(2^n|x_1 + k_1|^{n-1} + 1) = 1 + 2^n \sum_{k_1 \in \mathbb{Z}} g_t(k_1)|x_1 + k_1|^{n-1}
\end{equation*}

\begin{equation*}
\leq 1 + 2^{2n-1} \sum_{k_1 \in \mathbb{Z}} g_t(k_1)(|x_1|^{n-1} + |k_1|^{n-1})
\end{equation*}

\begin{equation*}
= 1 + 2^{2n-1}(|x_1|^{n-1} + \mathbb{E}|X_1^{(t)}|^{n-1}).
\end{equation*}

We also have, again by using Lemma \ref{lem:product} several times,

\begin{equation*}
\sum_{k \in \{0\} \times \mathbb{Z}^{d-1}} G_t(k)(1 + \|x + k\|^n_n) + \sum_{k \in \{0\} \times \mathbb{Z}^{d-1}} G_t(k)(1 + \|x + k + e_1\|^n_n)
\end{equation*}

\begin{equation*}
\leq \sum_{k \in \{0\} \times \mathbb{Z}^{d-1}} G_t(k)(2 + 2^n\|x\|^n_n + 2^n\|x + e_1\|^n_n + 2^{n+1}\|k\|^n_n)
\end{equation*}

\begin{equation*}
\leq g_t(0)(2 + 2^n\|x\|^n_n + 2^n\|x + e_1\|^n_n + d 2^{n+1}\mathbb{E}|X_1^{(t)}|^{n})
\end{equation*}

\begin{equation*}
\leq 4^{n+1} g_t(0)(1 + \|x\|^n_n + d \mathbb{E}|X_1^{(t)}|^n),
\end{equation*}
so we arrive at
\[|f(x + e_1) - f(x)| \]
\[\leq a_n[1 + 2^{2n-1}(|x_1|^{n-1} + \|X_1^{(t)}\|^{n-1}) + 4^{n+1}g_k(0)(1 + \|x\|_n^n + d \|X_1^{(t)}\|^{n})] \]
\[\leq 4^{n+2}a_n d[(1 + \|x\|_n^{n-1} + \|X_1^{(t)}\|^{n-1}) + g_k(0)(\|x\|_n^n + \|X_1^{(d)}\|^{n})]. \]

From Lemma 2.11 we infer that there exists a constant \(C = C(n, d) \) such
that for every \(t > 0 \) and every \(x \in \mathbb{Z}^d \),
\[|f(x + e_1) - f(x)| \leq C a_n[1 + \|x\|_n^{n-1} + t^{(n-1)/2} + t^{-1/2}(\|x\|_n^n + t^{n/2})]. \]

By setting \(t = 1 + \|x\|_1^n \) we complete the proof. ■

Lemma 2.13. Let \(f : \mathbb{Z}^d \to \mathbb{R} \) be such that \(f_i(x) = f(x + e_i) - f(x) \) are polynomials for \(i = 1, \ldots, d \). Then \(f \) is a polynomial.

Proof. First we consider the case \(d = 1 \). Note that \(f(x) = f(0) \) is determined by values of \(f_1 \). Define a sequence of polynomials \((W_k)_{k=0}^\infty\) by
\[x^m = \sum_{k=0}^{m-1} \binom{m}{k} W_k(x), \quad m = 1, 2, \ldots. \]

A simple induction yields \(W_k(x+1) - W_k(x) = x^k \) and \(W_k(0) = 0 \). It follows that if \(f_1(x) = \sum_{i=0}^d a_i x^i \) then \(f(x) = f(0) + \sum_{i=0}^d a_i W_i(x) \). If \(d > 1 \) then
\[f(x_1, \ldots, x_d) = f(x_1, x_2, \ldots, x_d) - f(0, x_2, \ldots, x_d) + f(0, x_2, \ldots, x_d) - f(0, 0, x_3, \ldots, x_d) + \cdots + f(0, \ldots, 0, x_1) - f(0, \ldots, 0) + f(0). \]

By using the same argument as in the case \(d = 1 \) we see that
\[f(0, \ldots, x_i, \ldots, x_d) - f(0, \ldots, x_{i+1}, \ldots, x_d) \quad (i = 1, \ldots, d) \]
are polynomials. ■

Main Theorem 2.14. Let \(f : \mathbb{Z}^d \to \mathbb{R} \) be harmonic. Suppose there exists a polynomial \(W : \mathbb{Z}^d \to \mathbb{R} \) such that \(f(k) \geq -W(k) \) for \(k \in \mathbb{Z}^d \). Then \(f \) is a polynomial.

Proof. There exists \(n \in \mathbb{N} \) such that \(|f(x)| \leq a_n(1 + \|x\|_n^n) \) (see Lemma 2.9). We claim that together with the harmonicity of \(f \) this already implies that \(f \) is a polynomial. We prove this by induction on \(n \). For \(n = 0 \) the claim is a consequence of Proposition 2.5. For \(n > 1 \) let \(f_i(x) = f_i(x + e_1) - f(x) \). Note that \(f_i, i = 1, \ldots, d, \) are also harmonic. By Lemma 2.12 and induction hypothesis, \(f_i \) are polynomials, hence by Lemma 2.13 we conclude that \(f \) is a polynomial as well. ■
Acknowledgments. I would like to thank Prof. Krzysztof Oleszkiewicz for his helpful comments and suggestions, especially for ideas of Theorem 2.1 and Lemma 2.2.

References

Piotr Nayar
Institute of Mathematics
University of Warsaw
02-097 Warszawa, Poland
E-mail: p.nayar@students.mimuw.edu.pl

Received December 20, 2009