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Summary. Let `j := −d2/dx2 + k2qj(x), k = const > 0, j = 1, 2, 0 < ess inf qj(x) ≤
ess sup qj(x) <∞. Suppose that (∗)

	1
0
p(x)u1(x, k)u2(x, k) dx = 0 for all k > 0, where p is

an arbitrary fixed bounded piecewise-analytic function on [0, 1], which changes sign finitely
many times, and uj solves the problem `juj = 0, 0 ≤ x ≤ 1, u′

j(0, k) = 0, uj(0, k) = 1.
It is proved that (∗) implies p = 0. This result is applied to an inverse problem for a heat
equation.

1. Introduction. Property C stands for completeness of the set of prod-
ucts of solutions to homogeneous equations. This notion was introduced by
the author in [3], [4], [8], and used widely as a powerful tool for proving
uniqueness theorems for many inverse problems ([5]–[12]). In [8] Property C
was proved for the pair of operators{

d2

dx2
+ k2 − q1(x),

d2

dx2
+ k2 − q2(x)

}
,

where

q1, q2 ∈ L1,1 :=
{
q : q = q,

∞�

0

(1 + x)|q(x)| dx <∞
}
.

The novel point in our paper is the proof of Property C for a pair of differ-
ential operators with a different dependence on the spectral parameter. This
new version of Property C turns out to be basic, for example, in the proof of
uniqueness for an inverse problem for a heat equation with a discontinuous
thermal conductivity.
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The aim of this paper is to prove Property C for the pair {`1, `2}, where

`j := − d2

dx2
+ k2qj(x), j = 1, 2,

0 < ess inf qj(x) ≤ ess sup qj(x) <∞,
and k is a positive number. These standing assumptions about qj are not
repeated in the formulation of the theorems below.

Denote by M0 the set of L1(0, 1) functions which change sign at most
finitely many times in the interval [0, 1].

We say that a function p has finitely many changes of sign in [0, 1] if there
is a partition of this interval into finitely many subintervals on which the
function does not change sign, that is, p is either non-negative or non-positive
on each of the subintervals of this partition.

Definition 1. Let

(1) `juj(x, k) = 0, u′j(0, k) = 0, uj(0, k) = 1, 0 ≤ x ≤ 1,

and let W ⊂ L1(0, 1) be some set. If, for all h ∈ W , the orthogonality
relation

(2)
1�

0

h(x)u1(x, k)u2(x, k) dx = 0 ∀k > 0,

implies h = 0, then we say that the pair {`1, `2} has Property C for the
set W .

Our first result is:

Theorem 1. The pair {`1, `2} has Property C for the set M0.

Remark. The set M0 is dense in L2(0, 1). Therefore one might expect
that the result of Theorem 1 implies that the pair {`1, `2} has Property C
in L2(0, 1). However, such a conclusion does not follow from Theorem 1: one
can construct an example of a set W , dense in L2(0, 1), and a set {φj}∞j=1,
such that the conditions f ∈ W and (f, φj) = 0 for all j imply f = 0, but
there exists an h ∈ L2(0, 1), h 6= 0, such that (h, φj) = 0 for all j. See an
example in [13, pp. 164–165]. Here is another example. Let W = C(0, 1).
Then W is dense in L2(0, 1). Choose h 6∈ W , h ∈ L2(0, 1), h 6= 0. Let V be
the orthogonal complement to h in L2(0, 1), and {φj}∞j=1 be an orthonormal
basis of V . If f ∈ C(0, 1) and (f, φj) = 0 for all j, then f = ch, where
c = const. Since f ∈ C(0, 1) on the one hand, and f = ch 6∈ C(0, 1), unless
c = 0, on the other hand, we conclude that c = 0 and f = 0. However,
h 6= 0 and (h, φj) = 0 for all j. Therefore the set {φj}∞j=1 is not complete in
L2(0, 1), but there is no f ∈ C(0, 1), f 6= 0, such that (f, φj) = 0 for all j.

It is an open problem whether the pair {`1, `2} has Property C in L2(0, 1).
Let us give an example of applications of Property C.
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Denote byM a set of real-valued integrable functions such that if qj ∈M ,
j = 1, 2, are arbitrary members of M , then the function p(x) := q2(x)−q1(x)
is in M0.

Let us mention some examples of such sets M :

1) M1 is the set of piecewise-constant functions on [0, 1] with finitely
many discontinuity points (see [2]),

2) M2 is the set of piecewise-analytic real-valued functions on [0, 1] with
finitely many discontinuity points,

3) M3 is the set of functions of the form q0 + q, where q0 is a fixed
real-valued integrable function, and q ∈M2.

Consider the problem

Ut = (a(x)U ′)′, 0 ≤ x ≤ 1, t > 0; U ′ :=
∂U

∂x
,(3)

U(x, 0) = 0, U(0, t) = 0, U(1, t) = F (t),(4)
a(1)U ′(1, t) = G(t).(5)

Denote by M ′2 the subset of functions in M2 which satisfy the inequalities

(6) 0 < inf a(x) ≤ sup a(x) <∞.

The function F satisfies F 6≡ 0, F ≥ 0, F (t) = 0 if t > T , where T > 0
is an arbitrary fixed number, and F ∈ L1([0, T ]).

Problem (3)–(4) has a unique solution.
The above assumptions about a and F will not be repeated in the for-

mulation of Theorem 2.
The function G is an (extra) measured datum, which is the heat flux at

the point x = 1.
The extra datum G cannot be given arbitrarily: it is determined by F

since problem (3)–(4) is uniquely solvable. If G is an arbitrary function, no
matter how smooth it is, problem (3)–(5) may have no solutions.

In this paper we are concerned with the uniqueness of solution to the
inverse problem, stated below, and do not discuss the problem of existence
of solutions, that is, conditions on the data F and G under which the data
are compatible.

The inverse problem is:

IP1: Given {F (t), G(t)}t>0, find a ∈M ′2.

The function a ∈ M ′2 has finitely many discontinuity points, and the
solution to (3)–(4) is understood in the weak sense.
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Let us formulate IP1 in an equivalent but different form. Let

v(x, λ) :=
∞�

0

U(x, t)e−λt dt, f(λ) :=
∞�

0

F (t)e−λt dt,

g(λ) :=
∞�

0

G(t)e−λt dt.

(7)

Take the Laplace transform of (3)–(5) to get

−(a(x)v′)′ + λv = 0, 0 ≤ x ≤ 1, λ > 0,(8)
v(0, λ) = 0, v(1, λ) = f(λ), a(1)v′(1, λ) = g(λ).(9)

Let u(x, λ) := a(x)v′(x, λ). Differentiate (8) to get

−u′′ + λa−1(x)u = 0, 0 ≤ x ≤ 1, u′(0, λ) = 0,(10)
u(1, λ) = g(λ), u′(1, λ) = λf(λ).(11)

Let
λ = k2, k > 0; a−1(x) := q(x).

Then q(x) ≥ c0 > 0, c0 = const,

(12) − u′′ + k2q(x)u = 0, 0 ≤ x ≤ 1, u′(0, k2) = 0, u(1, k2) = g(k2),

and the data are {g(k2), k2f(k2)}k>0.
Note that if a ∈M ′2, then q ∈M ′2.
Now, IP1 can be reformulated as follows:

IP2: Given the data {g(k2), k2f(k2)}k>0, find q ∈M ′2.

Our second result is:

Theorem 2. IP2 has at most one solution.

Theorem 2 implies the uniqueness of solution to IP1 in the class of
piecewise-analytic strictly positive functions a with finitely many discon-
tinuity points in [0, 1].

In the literature, IP1 has been considered earlier (see, e.g., [9], [10] and
references therein) in the case when a ∈ H2([0, 1]), where H2 is the Sobolev
space. For piecewise-constant thermal conductivity coefficients a(x) with
finitely many discontinuity points, IP1 was studied recently in [2]. An inverse
problem for equation (3) with different extra data, namely U(ξn, t) for t > 0,
ξn ∈ [0, 1], 1 ≤ n ≤ N , min1≤n≤N |ξn − ξn+1| ≥ σ > 0, where σ is a fixed
number, N = 3ν, and ν is the number of discontinuity points of a, was
studied in [1].

In IP1 the extra data are collected at just one point x = 1.
Our arguments prove the uniqueness result of Theorem 2 in the case

when the data in IP1 are the values {F (t), G(t)}t∈[0,T+ε] for an arbitrarily
small ε > 0. These data determine a uniquely because the solution U(x, t)
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is an analytic function of t in a neighborhood of the set (T,∞), so the
knowledge of U(x, t) on [0, T + ε] determines U(x, t) uniquely for all t > 0.

2. Proofs

Proof of Theorem 1. The solution to (1) solves the equation

(13) uj(x, k) = 1 + k2
x�

0

(x− s)qj(s)uj(s, k) ds, x ≥ 0, j = 1, 2.

This is a Volterra equation. It has a unique solution uj(x, k). This solution
has the following properties:

uj(x, k) ≥ 1, u′j(x, k) ≥ 0, u′′j (x, k) > 0, 0 ≤ x ≤ 1,(14)

∂iuj
(∂k2)i

≥ 0, i = 1, 2, . . . ,(15)

lim
k→∞

uj(y, k)
uj(x, k)

= 0, 0 ≤ y < x ≤ 1.(16)

Properties (14)–(15) are immediate consequences of (13). Let us prove (16).
One has

(17) uj(x, k) = uj(y, k) +
x�

y

u′j(s, k) ds.

From (13) and (14) one obtains

(18) u′j(x, k) = k2
x�

0

qj(s)uj(s, k) ds ≥ k2
x�

0

qj(s) ds.

From (17) and (18) one gets

uj(x, k)
uj(y, k)

= 1 +
x�

y

u′j(s, k)
uj(y, k)

ds = 1 + k2
x�

y

	s
0 qj(z)uj(z, k) dz

uj(y, k)
ds(19)

≥ 1 + k2
x�

y

ds

s�

y

qj(z) ds ≥ 1 +
1
2
k2c0(x− y)2 →∞

as k →∞, where qj(x) ≥ c0 = const > 0.
Thus, (16) is proved.
Since h ∈M0, the interval [0, 1] is a union of finitely many intervals with-

out common interior points on each of which the function h keeps constant
sign. Let [z, 1] be such an interval. We want to prove that h = 0 on this
interval. If this is done then similarly, in a finite number of steps, one proves
that h = 0 on the whole interval [0, 1], and thus the proof of Theorem 1 is
complete.
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Let us rewrite relation (2) as
1�

z

h(x)u1(x, k)u2(x, k) dx = −
z�

0

h(x)u1(x, k)u2(x, k) dx(20)

≤ u1(z, k)u2(z, k)
z�

0

|h(x)| dx,

where the monotonicity and positivity of uj were used (see (14)). Without
loss of generality assume that h(x) > 0 on [z, 1] and fix an arbitrary y ∈
(z, 1). Then

(21)
1�

z

h(x)u1(x, k)u2(x, k) dx ≥
1�

y

h(x) dxu1(y, k)u2(y, k).

From (20) and (21) one gets

(22)
1�

y

h(x) dx ≤ u1(z, k)u2(z, k)
u1(y, k)u2(y, k)

z�

0

|h(x)| dx, y > z.

Let k → ∞ in (22) and use (16) to get
	1
y h(x) dx = 0. Since h(x) ≥ 0 on

[z, 1], it follows that h = 0 on [y, 1]. Since the point y ∈ (z, 1) is arbitrary,
it follows that h = 0 on [z, 1]. Theorem 1 is proved.

Proof of Theorem 2. Assume there are pairs of functions {ψ1, q1} and
{ψ2, q2} which solve (12) and (11) with λ = k2. Let w = ψ1 − ψ2. Then

(23) w′(0, k) = w(1, k) = w′(1, k) = 0,

and

(24) − w′′ + k2q1(x)w = k2p(x)ψ2, p(x) := q2(x)− q1(x).

Multiply (24) by u1(x, k), integrate over [0, 1], and then integrate by parts
using (23) to obtain

(25) k2
1�

0

p(x)u1(x, k)ψ2(x, k) dx = 0 ∀k > 0.

Since ψ2(x) = c(k)u2(x, k), where c(k) = const 6= 0, and p ∈ M0, it follows
from (25) and Theorem 1 that p = 0, so q1 = q2.

Theorem 2 is proved.
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