
BULLETIN OF THE POLISH

ACADEMY OF SCIENCES

MATHEMATICS

Vol. 57, No. 3-4, 2009

FUNCTIONAL ANALYSIS

An Isomorphic Classification of C(2m × [0, α]) Spaces
by

Elói Medina GALEGO

Presented by Czesław BESSAGA

Summary. We present an extension of the classical isomorphic classification of the Ba-
nach spaces C([0, α]) of all real continuous functions defined on the nondenumerable inter-
vals of ordinals [0, α]. As an application, we establish the isomorphic classification of the
Banach spaces C(2m×[0, α]) of all real continuous functions defined on the compact spaces
2m × [0, α], the topological product of the Cantor cubes 2m with m smaller than the first
sequential cardinal, and intervals of ordinal numbers [0, α]. Consequently, it is relatively
consistent with ZFC that this yields a complete isomorphic classification of C(2m× [0, α])
spaces.

1. Introduction and statement of the main result. Throughout the
paper, we use standard notation and basic concepts in set theory [11] and
theory of Banach spaces [12]. However, we want to explain some frequently
used terms and fix some notations. For a compact Hausdorff topological
space K and X a Banach space, let C(K,X) denote the Banach space of
all continuous X-valued functions defined on K, equipped with the usual
supremum norm. When X = R, the set of real numbers, this space will be
denote by C(K). As usual, if K1 and K2 are compact spaces, we denote by
K1 ⊕K2 and K1 ×K2 respectively the topological sum and the topological
product of K1 and K2. For a fixed cardinal m, 2m denotes the product
of m family of copies of the two-point space 2, provided with the product
topology. For α an ordinal number, [0, α] denotes the interval of ordinals
{ξ : 0 ≤ ξ ≤ α} endowed with the order topology. If X and Y are Banach
spaces, then X ∼ Y means that X is isomorphic to Y . Finally, the symbol
X ⊕ Y denotes the Cartesian product of X and Y .
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Very recently [8], it has been shown that is relatively consistent with
Zermelo–Fraenkel set theory plus the axiom of choice (ZFC) that for any
infinite cardinals m and n and nondenumerable ordinals ξ and η we have

C(2m⊕[0, ξ])∼C(2n⊕[0, η]) if and only if m = n and C([0, ξ])∼C([0, η]).

In other words, the isomorphic classification of C(2m ⊕ [0, α]) spaces is re-
duced to the isomorphic classification of C([0, α]) spaces, in the case where
α ≥ ω1. Recall that the isomorphic classification of C([0, α]) spaces is due to
Bessaga and Pełczyński [2] in the case where ω ≤ α < ω1; Semadeni [26] in
the case where ω1 < α ≤ ω1ω; Labbé [15] in the case where ω1ω < α < ωω1 ;
and independently Kislyakov [14] and Gul’ko and Os’kin [10] in the general
case.

In the present paper, we turn our attention to C(2m × [0, α]) spaces. In
contrast with the isomorphic classification of C(2m⊕[0, α]) spaces mentioned
above, the situation becomes quite different when we consider this new family
of C(K) spaces. This happens even in the isometric case. Indeed, it is well
known that for every infinite cardinal m, 2m is homeomorphic to 2m × 2m.
Consequently, 2m × [0, ω1] is homeomorphic to 2m × [0, ω1 2]. Therefore by
[14, Theorem 1] we deduce that

C(2m×[0, ω1]) is isometric to C(2m×[0, ω1 2]) but C([0, ω1])�C([0, ω1 2]).

This motivates us to study the isomorphic classification of C(2m × [0, α])
spaces. In order to do this, we will prove Theorem 1.7, which is an extension
of the isomorphic classification of C([0, α]) spaces, with α ≥ ω1.

Remark 1.1. First notice that if 0 ≤ m < ℵ0, then C(2m × [0, α]) ∼
C([0, α2m]). Assume now that m ≥ ℵ0 and α < ω1. According to the classical
Milyutin theorem [27, Theorem 21.5.10] about the isomorphic classification
of C(K) spaces with K compact metric nondenumerable, C(2ℵ0 × [0, α]) ∼
C(2ℵ0). Consequently, by [27, Theorem 20.5.6] we deduce C(2m × [0, α]) ∼
C(2m × 2ℵ0 × [0, α]) ∼ C(2m, C(2ℵ0 × [0, α])) ∼ C(2m × 2ℵ0) ∼ C(2m).

Observe also that for every m ≥ ℵ0, n ≥ ℵ0 and α ≥ ω1, we have
C(2m) � C(2n × [0, α]). Indeed, otherwise C([0, α]) would be isomorphic to
a subspace of C(2m), which is absurd by [23, Theorem 4.5] and [5, Theorem
2.3.17].

So it remains to consider the cases m ≥ ℵ0 and α ≥ ω1. In order to de-
scribe our results, we recall that a cardinal m is called sequential if there ex-
ists a sequentially continuous but not continuous real-valued function on 2m.
We also recall that a function f : 2m → R is said to be sequentially continu-
ous when f(kn) converges to f(k) whenever the sequence (kn)n<ω converges
to k in 2m (see [1] and [19]). The cardinality of the ordinal ξ will be denoted
by ξ̄. Our first result is as follows.
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Theorem 1.2. Suppose that m and n are nonsequential infinite cardinals
and ξ and η are nondenumerable ordinals. Then

C(2m × [0, ξ]) ∼ C(2n × [0, η]) implies that m = n and ξ̄ = η̄.

The following is an analogue of the above mentioned result of [8].

Theorem 1.3. Let m be a nonsequential infinite cardinal, α a nondenu-
merable initial ordinal and ξ ≤ η ordinals with ξ̄ = η̄ = ᾱ. If α is singular
or α2 ≤ ξ, then

C(2m × [0, ξ]) ∼ C(2m × [0, η]) if and only if C([0, ξ]) ∼ C([0, η]).

The next theorems complete the isomorphic classification of C(2m×[0, α])
spaces with m a nonsequential cardinal.

Theorem 1.4. Let m be a nonsequential infinite cardinal, α a nondenu-
merable regular ordinal and ξ and η in [α, α2]. Let ξ′, η′, γ and δ be ordinals
such that ξ = αξ′ + γ, η = αη′ + δ, ξ′, η′ ≤ α and γ, δ < α. Then

C(2m × [0, ξ]) ∼ C(2m × [0, η]) if and only if ξ̄′ η̄′ ≤ ℵ0 or ξ̄′ = η̄′.

Theorem 1.5. Let m be a nonsequential infinite cardinal, α a nonde-
numerable regular ordinal and ξ and η with ξ̄ = η̄ and α ≤ ξ < α2 ≤ η.
Then

C(2m × [0, ξ]) � C(2m × [0, η]).

Remark 1.6. It is well known that it is relatively consistent with ZFC
that there exist no sequential cardinals (see [20]). So it is relatively consistent
with ZFC that Theorems 1.2–1.5 provide a complete isomorphic classification
of C(2m × [0, α]) spaces. Furthermore, since ℵ0 is not sequential [17], the
above theorems give a complete isomorphic classification of C(2ℵ0 × [0, α])
spaces, without using the continuum hypothesis. Thus, we have got an answer
to Question 3.5 raised in [7].

Although our work is motivated by the search for the isomorphic classi-
fication of C(2m × [0, α]) spaces, our main result holds for a more general
setting. Indeed, from now on, our task is to prove Theorem 1.7. The preced-
ing theorems are immediate consequences of Theorem 1.7 and Lemma 2.5.

Henceforth following [2], the C([0, α], X) spaces will also be denoted
by Xα. Theorem 1.7 states that the isomorphic classification of Xα spaces,
with α ≥ ω1 and X having the Mazur property and containing no subspace
isomorphic to c0, obtained recently in [9] is also true under the weaker hy-
pothesis thatX has the Mazur property and contains no subspace isomorphic
to c0(Γ ), where Γ is a set of cardinality ℵ1.

We recall that a Banach space X is said to have the Mazur property
if every element of X∗∗, the bidual space of X, which is sequentially weak∗
continuous is weak∗ continuous and thus is an element ofX. Such spaces were
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investigated in [4], [16] and also in [13] and [28] where they were called d-
complete and µB-spaces, respectively. The class of Banach spaces having the
Mazur property includes the C(2m) spaces for every nonsequential cardinal m
[20] (see also [21, Theorem 5.2.c]). Given a set Γ , we denote by |Γ | the
cardinality of Γ .

Theorem 1.7. Let X be a Banach space having the Mazur property and
containing no subspace isomorphic to c0(Γ ), where |Γ | = ℵ1, let α be an
initial ordinal and ξ ≤ η two infinite ordinals.

(1) If Xξ ∼ Xη then ξ̄ = η̄.
(2) Suppose ξ̄ = η̄ = ᾱ and assume that α is a singular ordinal, or α is a

nondenumerable regular ordinal with α2 ≤ ξ. Then Xξ ∼ Xη if and
only if η < ξω.

(3) Suppose that α is a nondenumerable regular ordinal, ξ, η ∈ [α, α2]
and let ξ′, η′, γ and δ be ordinals such that ξ = αξ′ + γ, η = αη′ + δ,
ξ′, η′ ≤ α and γ, δ < α. Then Xξ ∼ Xη if and only if either ξ̄′ η̄′ ≤ ℵ0

and c0(I,X) ∼ c0(J,X) where I and J are sets with |I| = ξ̄′ and
|J | = η̄′, or ξ̄′ = η̄′.

(4) Suppose that α is a nondenumerable regular ordinal and α ≤ ξ <
α2 ≤ η. Then Xξ � Xη.

2. Preliminary lemmas. In this section we state and prove several lem-
mas from which Theorem 1.7 follows easily. The first three lemmas provide
sufficient conditions for a Banach space X to contain a subspace isomorphic
to c0(Γ ), where |Γ | = ℵ1. If X and Y are Banach spaces, then X ↪→ Y
means that X is isomorphic to a subspace of Y .

Lemma 2.1. Let X be a Banach space and α an nondenumerable infinite
initial ordinal. Suppose that Rα ↪→ Xη for some η < α. Then c0(Γ ) ↪→ X,
where |Γ | = ℵ1.

Proof. Assume first that α is a regular ordinal. Let I be the set of isolated
points of [0, α]. Then c0(I) ↪→ Rα. So there exists an isomorphism T from
c0(I) onto a subspace of Xη. Let M ∈ ]0,+∞[ be such that M ≤ ‖T (x)‖
for all x ∈ c0(I), ‖x‖ = 1. Denote by (ei)i∈I the unit-vectors basis of c0(I),
that is, ei(j) = 1 if i = j, ei(j) = 0 if i 6= j, for all i, j ∈ I. Let K be
the set of isolated points of [0, η]. Thus, by hypothesis |K| < ᾱ. For fixed
k ∈ K, we define Ik = {i ∈ I : M/2 ≤ ‖T (ei)(k)‖}. Therefore I =

⋃
k∈K Ik.

Hence there is a k ∈ K satisfying |Ik| = |I|. We identify c0(Ik) with the
subspace of c0(I) consisting of those elements f such that f(γ) = 0 for every
γ 6∈ Ik. Let Pk : Xη → X be the natural projection, that is, Pk(f) = f(k)
for all f ∈ Xη. Next, consider the operator L = PkT|c0(Ik) : c0(Ik) → X.
Then inf {‖L(ei)‖ : i ∈ Ik} > 0. So, according to Remark 1 which follows
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[22, Theorem 3.4], there exists Γ ⊂ Ik with |Γ |= |Ik| such that L|c0(Γ ) is an
isomorphism onto its image. So we are done.

Let us now suppose that α is a singular ordinal. Then there exists an ordi-
nal limit λ such that α = ωλ. Let γ be an ordinal satisfying η < ωγ+1 < ωλ. It
is known that ωγ+1 is regular. Moreover, by hypothesis Rωγ+1 ↪→ Rωλ ↪→ Xη.
Hence by what we have just proved, we conclude that c0(Γ ) ↪→ X, where
|Γ | = ℵ1.

In the same fashion we can prove:

Lemma 2.2. Let X be a Banach space such that c0(I) ↪→ c0(J,X) for
some sets I and J with |J | < |I| and |I| ≥ ℵ1. Then c0(Γ ) ↪→ X, where
|Γ | = ℵ1.

Before stating the next lemma, we recall some definitions from [6] and [9].
Let γ be an ordinal. A γ-sequence in a set A is a function f : [1, γ[→ A and
will be denoted by (xθ)θ<γ . If A is a topological space and β is an ordinal, we
will say that the γ-sequence (xθ)θ<γ is β-continuous if for every β-sequence
of ordinals (θξ)ξ<β of [0, γ] which converges to θβ when ξ converges to β, the
β-sequence xθξ converges to xθβ .

Let X be a Banach space, α an ordinal number and ϕ a cardinal number.
By Xϕ

α we will denote the space of all x∗∗ ∈ X∗∗ having the following prop-
erty: for every set B with |B| = ϕ, β < α and B-family xb = (x∗ξ(b))ξ<β ,
b ∈ B, of β-sequences of X∗ such that there existsM ∈ R with ‖x∗ξ(b)‖ ≤M

for every b ∈ B and ξ < β and such that x∗ξ(b)(x)
ξ→β−−−→ 0 for all x ∈ X,

uniformly in b, we have x∗∗(x∗ξ(b))
ξ→β−−−→ 0 uniformly in b.

Clearly Xϕ
α is a closed subspace of X∗∗ and cX ⊂ Xϕ

α , where cX is the
canonical image of X in X∗∗. Observe that if X has the Mazur property,
then Xϕ

α = cX.
Let X be a Banach space and α a nondenumerable regular ordinal. Fol-

lowing [9, Definition 2.2], we set [X]α =
⋂
ϕ<αX

ϕ
α .

We are ready to generalize [9, Lemma 2.8].

Lemma 2.3. Let X be a Banach space having the Mazur property and
α a nondenumerable regular ordinal. If Rα2

↪→ Xη for some η < α2, then
c0(Γ ) ↪→ X, where |Γ | = ℵ1.

Proof. We distinguish two cases:

Case 1: η < α. In this case, Rα ↪→ Xη. Hence by Lemma 2.1, c0(Γ ) ↪→
X, where |Γ | = ℵ1, and we are done.

Case 2: α ≤ η < α2. Thus η = αξ + θ for some ordinals ξ < α and
θ < α. Since then Rη ∼ Rαξ [14, Theorem 2], we have

Rα
2
↪→ Rη ↪→ C([0, η], X) ∼ C([0, αξ], X).
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Let I and J be two sets with |I| = ᾱ and |J | = ξ̄. According to [9, Lemma
2.4 and Proposition 2.8], we have

c0(I) ∼ [Rα2
]α

cRα2 ↪→ [Xαξ]α
cXαξ

∼ c0(J,X).

Thus by Lemma 2.2 we infer that c0(Γ ) ↪→ X, where |Γ | = ℵ1. So we are
also done.

The main step in proving Theorem 1.7 is the following result. It is a
generalization of part of [9, Lemma 2.10] (see also [25, Theorem 3.2]).

Lemma 2.4. Let α be a nondenumerable initial ordinal and ξ ≤ η ordinals
with ξ̄ = η̄ = ᾱ. Put α0 = α if α is a singular ordinal and α0 = α2 if α
is a regular ordinal. Suppose that X is a Banach space having the Mazur
property and containing no subspace isomorphic to c0(Γ ), where |Γ | = ℵ1.
If Rη ↪→ Xξ with α0 ≤ ξ, then Rη ↪→ Rξ.

Proof. We introduce two sets of ordinals

I1 = {θ : θ̄ = ᾱ, α0 ≤ θ, Rθ X↪→ Rγ , ∀γ < θ},
I2 = {θ : θ̄ = ᾱ, α0 ≤ θ, Rθ X↪→ Xγ , ∀γ < θ}.

First of all we will prove that I1 = I2. Clearly I2 ⊂ I1. Observe that
by Lemmas 2.1 and 2.3 we deduce that α0 ∈ I2. Now, assume that I2 is a
proper subset of I1. Let α1 be the least element of I1 \ I2. We have α0 < α1.
Since α1 6∈ I2, there exists an ordinal γ1 < α1 such that Rα1 ↪→ Xγ1 .

Let α2 = min{γ : α0 ≤ γ < α1, Rα1 ↪→ Xγ}. We have α2 ≤ γ1. Now,
we will show that α2 ∈ I1. If this is not the case, there exists an ordinal
γ2 < α2 such that Rα2 ↪→ Rγ2 . Therefore C([0, α2], X) ↪→ C([0, γ2], X).
Consequently, Rα1 ↪→ Xγ2 , in contradiction with the definition of α2.

So α2 ∈ I1 and since α2 < α1, it follows from the definition of α1 that
α2 ∈ I2. That is, Rα2 X↪→ Xγ for all γ < α2. Thus by [7, Lemma 3.3], we
conclude that Rαω2 X↪→ Xα2 .

On the other hand, note that if α1 < αω2 , then by [14, Theorems 1
and 2], Rα1 ∼ Rα2 , which is absurd by the definition of α1. Consequently,
αω2 ≤ α1 and Rαω2 ↪→ Rα1 . Furthermore, by the definition of α2, Rα1 ↪→ Xα2 .
Therefore Rαω2 ↪→ Xα2 , in contradiction with what we have just proved
above. Hence I1 = I2.

Next, to complete the proof of the lemma, suppose that Rη X↪→ Rξ and
let ξ1 = min{θ : Rη ↪→ Rθ}. Hence ξ < ξ1 ≤ η and Rξ1 X↪→ Rγ for all γ < ξ1.
In particular, ξ1 ∈ I1 = I2, which is absurd, because Rξ1 ↪→ Rη ↪→ Xξ.

We conclude this section by proving part of Theorem 1.2.

Lemma 2.5. If C(2m× [0, ξ]) ∼ C(2n× [0, η]) for some infinite cardinals
m and n and ordinals ξ and η, then m = n.
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Proof. Assume that m < n and let Γ and Λ be two sets of the same
cardinality of ξ and η, respectively. Therefore l1(Γ,C(2m)∗) ∼ l1(Λ,C(2n)∗).
According to [23, Proposition 5.2] we infer that

l1

(
Γ,
(∑

2m

⊕L1[0, 1]m
)

1

)
∼ l1

(
Λ,
(∑

2n

⊕L1[0, 1]n
)

1

)
.

Recall that given a Banach space X, the dimension of X is the smallest
cardinal δ for which there exists a subset of cardinality δ with linear span
norm-dense in X. Pick a subspace H of L1[0, 1]n which is isomorphic to a
Hilbert space of dimension n [24, Proposition 1.5]. Hence

H ↪→ l1

(
Γ,
(∑

2m

⊕L1[0, 1]m
)

1

)
.

Since H contains no subspace isomorphic to l1, by a standard gliding hump
argument (see [3]), we infer that there exist a finite sum of L1[0, 1]m and
1 ≤ p < ω such that

H ↪→ L1[0, 1]m ⊕ L1[0, 1]m ⊕ · · · ⊕ L1[0, 1]m ⊕ Rp,

which is absurd, because it is easy to see that the dimension of L1[0, 1]m

is m.

3. Proof of Theorem 1.7. (1) Assume that Xξ ∼ Xη and ξ̄ < η̄. Let α
be the initial ordinal of cardinality η̄. Then Rα ↪→ Xη ∼ Xξ and by Lemma
2.1, c0(I) ↪→ X, where |I| = ℵ1, which is absurd.

To prove the sufficiency of the statements (2) and (3) it is enough to keep
in mind [14, Theorems 1 and 2] and observe that if Rξ ∼ Rη then Xξ ∼ Xη.

Next we prove the necessity of the statements (2) and (3).
(2) Suppose that Xη ∼ Xξ. If η > ξω, then Rη ↪→ Xη ∼ Xξ. According

to Lemma 2.4 we obtain Rη ↪→ Rξ, which is absurd by [14, Theorem 1].
(3) Let I and J be two sets with |I| = ξ̄′ and |J | = η̄′. Since X has the

Mazur property, by [9, Remark 2.3] and [9, Proposition 2.8], we infer that

c0(I,X) ∼ [Xαξ′ ]α
cXαξ′

∼ [Xαη′ ]α
cXαη′

∼ c0(J,X).

Therefore if ξ̄′η̄′ ≤ ℵ0 we are done. Suppose now that ξ̄′η̄′ > ℵ0 and ξ̄′ 6= η̄′.
We can assume without loss of generality that ξ̄′ > η̄′ and ξ̄′ ≥ ℵ1. Since
c0(I) ↪→ c0(J,X), it follows by Lemma 2.2 that c0(Γ ) ↪→ X, where |Γ | = ℵ1,
a contradiction.

(4) Suppose thatXξ ∼ Xη with α ≤ ξ < α2 ≤ η. Then Rα2
↪→ Xξ. Hence

by Lemma 2.3, c0(Γ ) ↪→ X, where |Γ | = ℵ1. This contradiction finishes the
proof.
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4. Some questions. If we are working only in ZFC theory, then the
following question arises naturally.

Question 4.1. Is the assumption that the cardinal m is not sequential
in Theorems 1.2–1.5 necessary?

We close the paper by recalling that the isometric classification of C([0, α])
spaces is a direct consequence of the homeomorphic classification of [0, α]
spaces accomplished by Mazurkiewicz and Sierpiński [18] and the classical
Banach–Stone Theorem [27, Theorem 7.8.4]. Therefore our result also leads
naturally to the following question:

Question 4.2. Give an isometric classification of C(2m× [0, α]) spaces.
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