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Summary. In the context of spaces of homogeneous type, we develop a method to deter-
ministically construct dyadic grids, specifically adapted to a given combinatorial situation.
This method is used to estimate vector-valued operators rearranging martingale difference
sequences such as the Haar system.

1. Introduction. In [5, 6], T. Figiel developed martingale methods to
prove a vector-valued T (1) theorem by decomposing the singular integral
operator T into an absolutely converging series of basic building blocks Tm
and Um, m ∈ Z. Those operators are given by the linear extension of

(1.1) TmhI = hI+m|I| and UmhI = 1I+m|I| − 1I ,
where {hI} denotes the Haar system on standard dyadic intervals I, and 1A
the characteristic function of the set A. The crucial norm estimates obtained
in [5] take the form

‖Tm : LpE → LpE‖ ≤ C(log2(2 + |m|))
α,(1.2)

‖Um : LpE → LpE‖ ≤ C(log2(2 + |m|))
β,(1.3)

where 1 < p < ∞ and the constant C > 0 depends only on p, the UMD-
constant of the Banach space E and α, β < 1. Estimates (1.2) and (1.3) are
obtained by hard combinatorial arguments, analyzing structure and position
of dyadic intervals.

T. Figiel’s decomposition method was extended in [13] to spaces of ho-
mogeneous type to obtain a vector-valued T (1) theorem, requiring norm
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estimates for the building blocks Tm and Um in the setting of spaces of
homogeneous type. These estimates are proved by hard combinatorial argu-
ments similar to [5].

In [10], an alternative proof for the estimates of Tm and Um is given which
eliminates the hard combinatorics of [5] to a great extent. Adapting the
dyadic grid by means of an algebraic shift, Tm and Um are decomposed into
roughly log2(2+ |m|) martingale transform operators, thereby yielding (1.2)
and (1.3). The shift of the dyadic grid is accomplished by the one-third-trick,
which originates in the work of [4], [17], [7], and [1].

Adaptive dyadic grids also proved to be a valuable tool for estimating so
called stripe operators in [9]. Those stripe operators were used in [11] and
[9] to show weak lower semicontinuity of functionals with separately convex
integrands on scalar-valued Lp and vector-valued Lp, respectively. For the
scalar-valued L2 version of this result, cf. [14].

In this paper we extend the method from [10] to construct adapted dyadic
grids in spaces of homogeneous type, which allows us to

(i) simplify the combinatorial arguments for the estimation of the re-
arrangement operators Tm used in the proof of the T (1) theorem
in [13],

(ii) generalize the vector-valued result in [9] on stripe operators to spaces
of homogeneous type.

Related recent developments. In [8], T. P. Hytönen presented a proof
of T. Figiel’s vector-valued T (1) theorem (cf. [6]), based upon randomized
dyadic grids, originating in [15, 16]. By contrast, the method developed in
the present paper allows us to adapt a dyadic grid deterministically to a
given combinatorial situation.

2. Preliminaries. In this section we present some basic facts concerning
spaces of homogeneous type. For basic facts on UMD-spaces used within
this work, the notion of Rademacher type and cotype as well as Kahane’s
contraction principle and Bourgain’s version of Stein’s martingale inequality,
we refer to [10].

Let X be a set. A mapping d : X ×X → R+
0 with the properties that for

all x, y, z ∈ X,

(1) d(x, y) = 0⇔ x = y,
(2) d(x, y) = d(y, x),
(3) d(x, y) ≤ KX(d(x, z) + d(z, y)) for some constant KX ≥ 1 only de-

pending on X,

is called a quasimetric, and (X, d) is called a quasimetric space. Given a
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quasimetric d, we define the ball centered at x ∈ X with radius r > 0 as

B(x, r) := {y ∈ X : d(x, y) < r}.
As usual, a set A ⊂ X is called open if for all x ∈ X there exists r > 0 such
that B(x, r) ⊆ A. Furthermore, for an arbitrary set A ⊂ X and r > 0, define

B(A, r) := {y ∈ X : d(A, y) < r}.
Let (X, d) be a quasimetric space such that every ball in the quasimetric

d is open and | · | be a Borel measure. If the doubling condition holds, i.e.
there is a constant Cd > 0 such that

(2.1) 0 < |B(x, 2r)| ≤ Cd|B(x, r)| <∞, x ∈ X, r > 0,

then (X, d, | · |) is called a space of homogeneous type. Since for a given
quasimetric space (X, d), the balls in X are not necessarily open, we added
this condition to the definition. It holds if for instance one imposes a Hölder
condition on d: There exist c <∞ and 0 < β < 1 such that for all x, y, z ∈ X
we have

(2.2) |d(x, z)− d(y, z)| ≤ c · d(x, y)βmax{d(x, z), d(y, z)}1−β.
In fact, R. A. Macías and C. Segovia [12] proved that for every space of
homogeneous type there exists an equivalent quasimetric with the desired
Hölder property. Here, a quasimetric d′ is equivalent to a quasimetric d if
there exists a finite constant c such that

1

c
d(x, y) ≤ d′(x, y) ≤ cd(x, y), x, y ∈ X.

Let C be a collection of arbitrary sets. It is called nested if A ∩ B ∈
{A,B, ∅} for all A,B ∈ C . For a given nested collection C we define the
predecessor πC (C) of C with respect to C by

πC (C) :=
⋂
{D : D ) C, D ∈ C ∪ {X}}.

Dyadic cubes. In spaces of homogeneous type, one can construct a col-
lection of subsets that has similar properties to dyadic cubes in Rk
(cf. M. Christ [2] and G. David [3]).

Theorem 2.1. Let (X, d, |·|) be a space of homogeneous type. Then there
exists a system Q of open subsets of X with centers mA ∈ A for A ∈ Q and
a splitting Q =

⋃
n∈Z Qn such that the following properties are satisfied with

uniform constants q < 1, C1, C2, C3, η ∈ R+, N ∈ N:
(1) For all n ∈ Z we have X =

⋃
A∈Qn

A up to | · |-null sets.
(2) For A ∈ Qk and B ∈ Qn with k ≤ n, we have either B ⊂ A or

A ∩B = ∅.
(3) For each B ∈ Qn and every k ≤ n, there is exactly one A ∈ Qk such

that B ⊂ A.
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(4) For all n∈Z and A ∈ Qn we have B(mA, C1q
n)⊆A⊆B(mA, C2q

n).
(5) Let A ∈ Qn. The boundary layer of A having width t is given by

(2.3) ∂tA := {x ∈ A : d(x,X \A) ≤ tqn},
and satisfies the measure estimate

(2.4) |∂tA| < C3t
η|A|.

(6) For all n ∈ Z, the collection Qn is countable.
(7) For all n ∈ Z and A ∈ Qn we have N(A) := |{B ∈ Qn+1 : B ⊆ A}|
≤ N .

(8) For all n ∈ Z and A ∈ Qn there exists a subcollection S of Qn+1

with |S | ≤ N and

A =
⋃
B∈S

B up to | · |-null sets.

We define the level of a cube A ∈ Qn as levA := n, and furthermore

(2.5) r �A := B(A, rqlevA), A ∈ Q, r > 0.

In the following, (X, d, |·|) denotes a space of homogeneous type, equipped
with a quasimetric d and a measure | · |.

Lemma 2.2. Let A ∈ Q and r > 0. Then

r �A ⊂ B(mA,KX(C2 + r)qlevA).

Proof. Let z ∈ r �A = B(A, rqlevA) and estimate

d(mA, z) ≤ inf
y∈A

KX(d(mA, y) + d(y, z))

≤ KX(C2q
levA + d(A, z))

≤ KX(C2q
levA + rqlevA).

Lemma 2.3. Let A1, A2 ∈ Q and assume that

(r1 �A1) ∩ (r2 �A2) 6= ∅
for some r1, r2 > 0. Then

r2 �A2 ⊂ r �A1,

where r = 2K3
X(C2 + r2)q

levA2−levA1 +KXr1.

Proof. Let y ∈ (r1 �A1) ∩ (r2 �A2) and z ∈ (r2 �A2). Then

d(z,A1) ≤ KX(d(z, y) + d(y,A1)).

Note that d(y,A1) ≤ r1qlevA1 and observe

d(z, y) ≤ KX(d(z,mA2) + d(mA2 , y))

≤ 2K2
X(C2 + r2)q

levA2 ,
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where we have used Lemma 2.2 for the latter estimate. Combining our esti-
mates yields

d(z,A1) ≤ KX

(
2K2

X(C2 + r2)q
levA2−levA1 + r1

)
qlevA1 ,

and the assertion of the lemma follows.

3. Adaptive dyadic grids. In this section we provide a customizable
way to adapt dyadic grids, which is then applied in Section 4 to estimate the
rearrangement operators Tm.

We recall that KX , Cd are constants defined by the quasimetric and the
space X of homogeneous type, and C1, C2 are determined by the collection
of dyadic cubes (cf. Section 2). For a given collection A of dyadic cubes in
X and α > 0 we define

(3.1) A (α) :=
⋃
A∈A

{Q ∈ QlevA : Q ∩ α �A 6= ∅}.

The following result is a version of the well known one-third-trick in
spaces of homogeneous type.

Theorem 3.1. Let CR > 0 and µ ∈ N be such that

(3.2) 4K3
X(1 + C2/CR)q

µ ≤ 1.

Let A ⊂ Q be a finite collection of cubes satisfying

(1) the separation condition

(3.3) (CR �A1) ∩ (CR �A2) = ∅
for all A1 6= A2 in A with levA1 = levA2,

(2) the small successor condition

(3.4) levA ≥ µ+ lev π(A), A ∈ A (α),

where α = 2K3
X(C2 + CR) + CR/2 and π ≡ πA (α) .

Let ϕ : A →P(A ) be a map such that

levQ > levA, A ∈ A and Q ∈ ϕ(A),(3.5)

ϕ(A)∗ ⊂ CR
2KX

�A, A ∈ A .(3.6)

Then there exist a collection B of adapted cubes in X and a bijective map
σ : A → B satisfying

(3.7) A ∪ σ(ϕ(A))∗ ⊂ σ(A) ⊂ CR �A, A ∈ A ,

and the measure estimate

(3.8) |σ(A)| ≤ Cd
(
KX(C2 + CR)

C1

)log2(Cd)

· |A|, A ∈ A .
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Fig. 1

Moreover, the collection

(3.9) B = {σ(A) : A ∈ A }

is nested.

The hypotheses of Theorem 3.1 are visualized in Figure 1.

Proof. We set Ãj := A ∩Qj , j ∈ Z. Let the sequence j` be such that
Ãj` 6= ∅ and Ãk = ∅ for all j`−1 < k < j`, ` ≤ 0. Then define A` := Ãj` ,
` ≤ 0 and assume without restriction that A0 consists of the cubes in A with
maximal level. The proof proceeds by induction on levA for cubes A ∈ A ,
starting with cubes in A0.

Step 1. We begin the induction by defining

σ(A) := A for A ∈ A0 and B0 := {σ(A) : A ∈ A0}.

Observe that (3.7) holds for all A ∈ A0. Now, let k < 0 and assume that
all the cubes σ(A), A ∈ Aj , and the collections Bj := {σ(A) : A ∈ Aj} are
already defined for all j > k. In order to construct σ(A), let A ∈ Ak and
define

(3.10) σ(A) := A∪σ(ϕ(A))∗∪
⋃
{B ∈ Bj : j > k, B∩(A∪σ(ϕ(A))∗) 6= ∅}.

We collect all those cubes in

Bk := {σ(A) : A ∈ Ak}.



Adaptive Deterministic Dyadic Grids 145

Finally, the set B of all adapted cubes is defined as

B :=
⋃
j

Bj .

In the next two steps we will inductively verify the nestedness of B and the
localization property (3.7).

Step 2. Here we prove the nestedness of B. To this end, define the level
of an adapted cube B = σ(A) by levB = levA. Let B1, B2 ∈ B be such
that B1 ∩ B2 6= ∅ and assume levB1 ≤ levB2. If levB1 = levB2, then
(3.3) and (3.7) yield B1 = B2. So we may now assume that levB1 < levB2.
Choose A1 ∈ A such that σ(A1) = B1. If B2 ∩ (A1 ∪ σ(ϕ(A1))

∗) = ∅ we get
B1 ∩B2 = ∅ by definition of B1, cf. (3.10). This contradicts the assumption
B1 ∩B2 6= ∅. Thus, B2 ∩ (A1 ∪ σ(ϕ(A))∗) 6= ∅ and, by (3.10) again, we infer
B2 ⊂ B1, proving the nestedness of B.

Step 3. In this step we will verify (3.7). Assume that (3.7) is true for
all A ∈ Aj , j > k. Recall that B is nested by Step 2 of this proof. Now, let
A ∈ Ak be fixed. First, note that A ∪ σ(ϕ(A))∗ ⊂ σ(A) by the definition of
σ(A) (cf. (3.10)). Secondly, we show that σ(A) ⊂ CR �A. Let B ∈ Bj , j > k,
be such that B ∩ (A∪σ(ϕ(A))∗) 6= ∅. The condition B ∩ (A∪σ(ϕ(A))∗) 6= ∅
is covered by the cases

(1) B ∩ CR
2KX

�A 6= ∅,
(2) there exists a Q ∈ ϕ(A) such that B ∩ σ(Q) 6= ∅, and so by (3.9)

either

(a) σ(Q) ⊂ B, or
(b) B ⊂ σ(Q).

First, let us consider case (1). Due to the induction hypothesis, (3.7) is true
for σ−1(B), that is, B ⊂ CR � σ−1(B). Thus, Lemma 2.3 implies

(3.11) B ⊂ CR � σ−1(B) ⊂ r �A,

where r = 2K3
X(C2+CR) ·qlev σ

−1(B)−levA+CR/2. Observe that since r ≤ α,
we can find a cube Ã ∈ A

(α)
k such that σ−1(B) ( Ã. Hence lev σ−1(B) ≥

µ + lev Ã = µ + levA and so r ≤ 2K3
X(C2 + CR)q

µ + CR/2. Since r ≤ CR
by (3.2), the inclusion B ⊂ CR �A follows.

In case (2a), the first inclusion in (3.7) yields Q ⊂ σ(Q) ⊂ B. Since
Q ⊂ ϕ(A)∗ ⊂ CR

2KX
� A by (3.6), in particular B ∩ CR

2KX
� A 6= ∅. Hence,

case (2a) is covered by case (1). In case (2b), condition (3.6) implies that
σ(Q) ∩ CR

2KX
� A 6= ∅. Applying the proof of case (1) to σ(Q) instead of B,

we obtain σ(Q) ⊂ CR �A, and thus B ⊂ CR �A.
To summarize, in any of the cases (1), (2a) and (2b), the condition B ∩

(A∪σ(ϕ(A))∗) 6= ∅ yields B ⊂ CR�A, which proves (3.7), i.e., σ(A) ⊂ CR�A.
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Finally, the measure estimate (3.8) is an immediate consequence of the
doubling condition (2.1) and

B(mA, C1q
levA) ⊂ A ⊂ σ(A) ⊂ CR �A ⊂ B(mA,KX(C2 + CR)q

levA),

where the latter inclusion follows from Lemma 2.2.

4. Rearrangement operators. Following [13], we define and analyze
rearrangement operators on spaces of homogeneous type, thereby extending
the rearrangement operators Tm introduced in [5], which act on the standard
Haar system.

The shift relation τ . Let m ∈ R, m > 0 and τ ⊂
⋃
j∈Z Qj ×Qj have

the properties

(P1) Q ⊂ m � P for all (P,Q) ∈ τ (cf. Figure 2),
(P2) there exists a finite partition τ1, . . . , τM of τ such that τk is a bi-

jective function for all 1 ≤ k ≤M .

The relation τ generalizes the classical shift I 7→ I +m|I| on R (cf. [5]).

P

m
CR

Q

CR

P ′

m

CR

Q′

CR

Fig. 2

In order to apply Theorem 3.1 to our shift τ , we decompose τk into
suitable subcollections in the following way.

(C1) First, let us choose a constant CR > 0 and split τk into collections
Gk,1, . . . ,Gk,Mk

, for all 1 ≤ k ≤M , such that

(4.1) (CR � τ ik(A1)) ∩ (CR � τnk (A2)) = ∅
for all A1, A2 ∈ pr1(Gk,j), 1 ≤ j ≤Mk, i, n ∈ {0, 1}, where τ ik(A) is
defined to be A for i = 0 and τk(A) for i = 1. The projections onto
the first and second coordinates of a relation are denoted by pr1
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and pr2, respectively. Observe that the constants Mk, 1 ≤ k ≤ M ,
depend only on X (cf. [13]). We refer to Figure 2 for a picture of
the separation condition (4.1).

(C2) Secondly, let ` be a positive integer and define

H
(`)
k,j,i = Gk,j ∩

⋃
r∈Z

(Qi+r` ×Qi+r`)

for all 1 ≤ k ≤ M , 1 ≤ j ≤ Mk, 0 ≤ i ≤ ` − 1. The parameter `
will later be chosen to be approximately log(2 +m) with m being
the parameter from (P1).

(C3) Finally, define

ψ
(`)
k,j,i(A) = {(P,Q) ∈H

(`)
k,j,i : P ( A or Q ( A}

for all A ∈ pr1(H
(`)
k,j,i) ∪ pr2(H

(`)
k,j,i).

The collections ψ(`)
k,j,i(A) are well localized around A, which is discussed in

Lemma 4.1. Let m ∈ R, m > 0, and let ` be a positive integer. Then(
pr1(ψ

(`)
k,j,i(A)) ∪ pr2(ψ

(`)
k,j,i(A))

)∗ ⊂ (c1(1 +m)q`) �A

for all A ∈ H
(`)
k,j,i, 1 ≤ k ≤ M , 1 ≤ j ≤ Mk, 0 ≤ i ≤ `− 1. The constant c1

depends only on the space X of homogeneous type.

Proof. Let (P,Q) ∈ ψ(`)
k,j,i(A). Then, P ( A or Q ( A by definition of

ψ
(`)
k,j,i. We know from (P1) that P ∪Q ⊂ m � P , hence Lemma 2.3 yields

P ∪Q ⊂ 2K3
X(C2 +m)qlevP−levA �A.

Noting that levP ≥ `+ levA by (C2) concludes the proof.

The shift operator T . In order to define analogues of Tm on spaces of
homogeneous type, we need a substitute {hQ} for the standard Haar system.
We require the system of functions {hQ}Q∈Q to satisfy the conditions

(H1) supphQ ⊂ Q, for all Q ∈ Q,
(H2) ‖hQ‖∞ ≤ Ch 1

|P |+|Q|
	
|hP | for all (P,Q) ∈ τ ,

(H3) for every k, each of the collections {hP : P ∈ pr1(τk)} and {hQ :
Q ∈ pr2(τk)} is a martingale difference sequence.

The constant Ch > 0 is independent of (P,Q). The collections H
(`)
k,j,i, defined

in (C2), naturally induce the subspaces H(`)
k,j,i of L

p
E(X) given by

H
(`)
k,j,i =

{
f ∈ LpE(X) : f =

∑
P∈pr1(H

(`)
k,j,i)

〈f, hP 〉hP
}
.
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We now define the shift operator Tk induced by τk, 1 ≤ k ≤M , as the linear
extension of the map

(4.2) hP 7→
{
hQ if (P,Q) ∈ τk,
0 otherwise.

If the collections ψ(`)
k,j,i are sufficiently localized, then the operators Tk are

bounded on the subspace H(`)
k,j,i. The details are given in the theorem below.

Theorem 4.2. Let X be a space of homogeneous type, E a UMD-space
and 1 < p <∞. Let m ∈ R, m > 0. Then there exists a constant β > 0 such
that for all integers ` satisfying

(4.3) (1 +m)q` ≤ β,
we have

(4.4) ‖Tkf‖LpE(X) ≤ C‖f‖LpE(X), f ∈ H(`)
k,j,i,

for all 1 ≤ k ≤M , 1 ≤ j ≤Mk, 0 ≤ i ≤ `− 1. The constant C depends only
on p, X and E, and the constant β only on X.

Proof. Let ` satisfying (4.3) be fixed throughout the proof. Conditions
on the constant β will be imposed within the proof.

Our goal is to apply Theorem 3.1 to each of the collections H
(`)
k,j,i. With

k, j, i fixed, define

C = C (1) ∪ C (2) = pr1(H
(`)
k,j,i) ∪ pr2(H

(`)
k,j,i)

and let A ⊂ C be a finite set. The function ϕ : A →P(A ) is given by

ϕ(A) := pr1(ψ
(`)
k,j,i(A)) ∪ pr2(ψ

(`)
k,j,i(A)), A ∈ A ,

where ψ(`)
k,j,i is defined in (C3). We shall now verify that A and ϕ satisfy the

hypotheses of Theorem 3.1.
First, observe that the separation condition (3.3) is satisfied due to (C1).

Secondly, let µ = `; then (3.2) holds for sufficiently small β, where the
constraint for β depends only on X. Additionally, observe that (C2) im-
plies (3.4). From Lemma 4.1 and (4.3) it follows that ϕ(A)∗ ⊂ CR

2KX
�A if β

is sufficiently small. Having verified all the hypotheses of Theorem 3.1, we
obtain a nested collection of sets B and a bijective map σ : A → B such
that

A ∪ σ(ϕ(A))∗ ⊂ σ(A) ⊂ CR �A and |σ(A)| ≤ c2(1 + CR)
log2(Cd) · |A|

for all A ∈ A . The constant c2 depends only on X.
Let us now define by induction a nested collection of sets supporting the

shifts τ , beginning with the smallest cubes. Set nmax = max{lev(A) : A∈A }
and define

θ(P ) := θ(Q) := σ(P ) ∪ σ(Q)
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for all (P,Q) ∈H
(`)
k,j,i such that lev(P ) = nmax. With n < nmax fixed, assume

that θ(A) is already defined for all cubes A satisfying lev(A) > n. We specify
θ(P ) = θ(Q) to be

σ(P ) ∪ σ(Q) ∪ {θ(R) : levR > levP, θ(R) ∩ (σ(P ) ∪ σ(Q)) 6= ∅}∗,

for all (P,Q) ∈H
(`)
k,j,i with lev(P ) = n. As an immediate consequence of the

principle of construction, the collection {θ(A) : A ∈ A } is nested and

P ∪Q ⊂ θ(P ) = θ(Q), (P,Q) ∈H
(`)
k,j,i, P ∈ A .

Furthermore, a straightforward calculation using Lemma 2.3 and (4.3) shows
that there exists a constant c3 depending only on X such that

θ(P ) ⊂ (c3 � P ) ∪ (c3 �Q), (P,Q) ∈H
(`)
k,j,i, P ∈ A ,

if β is sufficiently small. From the latter inclusion we obtain

(4.5) θ(P ) ≤ c4(|P |+ |Q|), (P,Q) ∈H
(`)
k,j,i, P ∈ A ,

where c4 depends only on X. Let us define the filtration {Fn} by

Fn = σ-algebra({θ(A) : A ∈ A , levA ≤ n}), n ∈ Z.

Observe that θ(A) is an atom in FlevA for all A ∈ A , since {θ(A) : A ∈ A }
is a nested collection. Thus, (H2) and (4.5) imply

(4.6) |hτk(A)| ≤ c5 E(|hA| | Fn), A ∈ En,

where En = Qn ∩A ∩ C (1) and c5 depends only on X and Ch.

We will now estimate Tf for all f ∈ H
(`)
k,j,i. Note that (H3) and the

UMD-property of E allow us to assume that f is of the form

f =
∑
n

∑
A∈En

〈f, hA〉hA.

Moreover, T |
H

(`)
k,j,i

= Tk|H(`)
k,j,i

is a function due to (P2). By employing (H3)

again, we introduce Rademacher means in ‖Tkf‖ and obtain

‖Tkf‖ =
∥∥∥∑

n

∑
A∈En

〈f, hA〉hτk(A)
∥∥∥

≈
1�

0

∥∥∥∑
n

rn(t)
∑
A∈En

〈f, hA〉hτk(A)
∥∥∥ dt.
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Furthermore, estimate (4.6) yields

‖Tkf‖ ≈
1�

0

∥∥∥∑
n

rn(t)
∑
A∈En

〈f, hA〉|hτk(A)|
∥∥∥ dt

.
1�

0

∥∥∥∑
n

rn(t)E
(∑
A∈En

〈f, hA〉|hA|
∣∣∣ Fn)∥∥∥ dt,

by means of Kahane’s contraction principle. Applying Bourgain’s version of
Stein’s martingale inequality gives us

‖Tkf‖ .
1�

0

∥∥∥∑
n

rn(t)
∑
A∈En

〈f, hA〉|hA|
∥∥∥ dt.

Using Kahane’s contraction principle and the UMD-property (cf. (H3)) con-
cludes the proof.

Combining the estimates of Theorem 4.2 on the subspaces H(`)
k,j,i, we

obtain estimates for Tk on span{hP : P ∈ Q} in the subsequent theorem
(cf. [5]).

Theorem 4.3. Let X be a space of homogeneous type, E a UMD-space,
1 < p <∞ and m ∈ R, m > 0. Then for all 1 ≤ k ≤ M the linear operator
Tk satisfies

(4.7) ‖Tkf‖LpE(X) ≤ C log(2 +m)α‖f‖LpE(X), f ∈ span{hP : P ∈ Q}.

If LpE(X) has type T and cotype C, then α < 1 is given by 1/T − 1/C. The
constant C depends only on p, X, E and α.

Proof. Within this proof we shall abbreviate ‖ · ‖LpE(X) by ‖ · ‖. Let
m > 0 and choose ` as the minimal integer satisfying (4.3), i.e., there exists
a constant c1 only depending on X with

(4.8) ` ≥ c1 log(2 +m).

Assume that f is a finite sum of the form

f =

Mk∑
j=1

`−1∑
i=0

∑
P∈H

(`)
k,j,i

fPhP .

Then, by definition of Tk and the UMD-property of LpE(X) applied to (H3),
we obtain

‖Tkf‖ .
1�

0

∥∥∥∑
j,i

rj,i(t)Tkdj,i

∥∥∥ dt,
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where dj,i =
∑

P∈H
(`)
k,j,i

fPhP . The type inequality yields

‖Tkf‖ .
(∑
j,i

‖Tkdj,i‖T
)1/T

,

where LpE(X) is of type T . Theorem 4.2 implies ‖Tkdj,i‖ . ‖dj,i‖, hence

‖Tkf‖ . (Mk`)
1/T −1/C

(∑
j,i

‖dj,i‖C
)1/C

,

where LpE(X) is of cotype C. The cotype inequality and the UMD-property
show

‖Tkf‖ . (Mk`)
1/T −1/C‖f‖.

Since Mk depends only on X, using (4.8) gives (4.7) for finite sums f in
span{hP : P ∈ Q}, thus concluding the proof by unique extension.

5. Stripe operator. In this section we define stripe operators on spaces
of homogeneous type and provide vector-valued Lp estimates. Our notion of
stripe operators generalizes those on Rk analyzed in [9], which will now be
briefly reviewed.

For a positive integer λ, the stripes S
(m)
λ of the dyadic cube [0, 1]n are

given by

(5.1) S
(m)
λ ([0, 1]k) =

{
Q :

Q is a dyadic cube with |Q| = 2−λk,

Q ⊂ [(m− 1)/2λ,m/2λ]× [0, 1]k−1

}
,

where 1 ≤ m ≤ 2λ. For an arbitrary dyadic cube A, the stripes S
(m)
λ (A) are

obtained by scaling and translating S
(m)
λ ([0, 1]k) to the position of A in the

dyadic grid. The stripe operators S(m)
λ are defined by

(5.2) S
(m)
λ hA := g

(m)
A,λ :=

∑
R∈S

(m)
λ (A)

hR,

where hA and hR denote canonical Haar functions supported on the dyadic
cubes A and R. Estimates for S(m)

λ on Lp were used in [11] as well as in [9]
to show weak lower semicontinuity for functionals with separately convex
integrands on scalar and vector-valued Lp, respectively.

We will now extend the operators S(m)
λ and their vector-valued estimates

to spaces of homogeneous type.

The stripes S
(m)
λ . Let λ and M be positive integers and define the

stripes S
(m)
λ (A), A ∈ Q, 1 ≤ m ≤ M as arbitrary subsets of {B ⊂ A :

levB = levA+ λ} satisfying the conditions
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(S1) A =
⋃M
m=1 S

(m)
λ (A)∗ is a disjoint union,

(S2) there exists an absolute constant K1 such that

|S (m)
λ (A)∗| ≤ K1|S (n)

λ (A)∗|, 1 ≤ m,n ≤M,

(S3) {S (m)
λ (A)∗ : A ∈ Q} is nested, with 1 ≤ m ≤M being fixed,

(S4) there exist constants ε > 0 and K2 depending only on X such that
for all 1 ≤ m ≤M we have

|E (m)
j (A)∗| ≤ K2q

jε|A|, 0 ≤ j ≤ λ− 1,

where

E
(m)
j (A) := {B ∈ QlevA+j : B ∩S

(m)
λ (A)∗ 6= ∅}.

The classical stripe (5.1) defined in Rk equipped with the Euclidean metric
satisfies conditions (S1) to (S4) with parameters M = 2λ, K1 = 1, K2 = 1,
q = 1/2 and ε = 1.

The stripe operators S(m)
λ . Let the collection {hA : A ∈ Q} of func-

tions satisfy

(M1) supphA ⊂ A, for all A ∈ Q,
(M2) {hA : A ∈ Q} is a martingale difference sequence.

Moreover, let {g(m)
A,λ : A ∈ Q}, 1 ≤ m ≤ M , be collections of functions that

satisfy

(G1) supp g
(m)
A,λ ⊂ S

(m)
λ (A) for all A ∈ Q and 1 ≤ m ≤M ,

(G2) {g(m)
A,λ : 1 ≤ m ≤M, A ∈ Q} is a martingale difference sequence,

(G3) ‖g(m)
A,λ‖∞ ≤ Cg

1

|S (n)
λ (A)∗|

	
|g(n)A,λ| for all A ∈ Q, 1 ≤ m,n ≤ M ,

m 6= n and some constant Cg ≥ 1.

We define the stripe operator S(m)
λ , 1 ≤ m ≤M , as the linear extension of

(5.3) S
(m)
λ hA := g

(m)
A,λ , A ∈ Q.

Note that the classical stripe operator (5.2) satisfies all of the above condi-
tions.

Lemma 5.1. Let g(m)
A,λ and g

(n)
A,λ be stripe functions satisfying (G1) and

(G3). Then ∣∣∣∣{|g(n)A,λ| ≥
‖g(m)
A,λ‖∞
2Cg

}∣∣∣∣ ≥ 1

2C2
g

|S (n)
λ (A)∗|.
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Proof. We shall abbreviate g(m) = g
(m)
A,λ , g

(n) = g
(m)
A,λ and S = S

(n)
λ (A).

Assume the contrary, that is,

(5.4)
∣∣∣∣{|g(n)| ≥ ‖g(m)‖∞

2Cg

}∣∣∣∣ < 1

2C2
g

|S ∗|.

Then (G3) implies

|S ∗|
Cg
‖g(m)‖∞ ≤

�

S ∗
|g(n)| ≤

∣∣∣∣{|g(n)| < ‖g(m)‖∞
2Cg

}∣∣∣∣‖g(m)‖∞
2Cg

+

∣∣∣∣{|g(n)| ≥ ‖g(m)‖∞
2Cg

}∣∣∣∣ ‖g(n)‖∞.
Observe that (G3) and (G1) give us ‖g(n)‖∞ ≤ Cg‖g(m)‖, thus inserting (G1)
and (5.4) in the latter display yields a contradiction, proving the lemma.

The subsequent results, i.e., the combinatorial Lemma 5.2 and the esti-
mates on stripe operators in Theorems 5.3 and 5.4, are proved in much the
same way as their Euclidean counterparts in [9].

Lemma 5.2. Let λ and k be positive integers. Then there exists a constant
K3 depending only on X such that∣∣∣S (m)

λ (A)∗ ∩
⋃

B∈E (m)(A)

(S
(m)
λ (B)∗ ∪S

(n)
λ (B)∗)

∣∣∣ ≤ K3q
kε|S (m)

λ (A)∗|

for all 1 ≤ m,n ≤M and A ∈ Q, where

E (m)(A) :=
⋃
{E (m)

dk (A) : d ∈ N, 1 ≤ dk ≤ λ− 1}.

Proof. First, observe that∣∣∣S (m)
λ (A)∗ ∩

⋃
B∈E (m)(A)

(S
(m)
λ (B)∗ ∪S

(n)
λ (B)∗)

∣∣∣
≤

∑
B∈E (m)(A)

(|S (m)
λ (B)∗|+ |S (n)

λ (B)∗|).

Now we use (S2) to dominate this expression by

(5.5) (1 +K1)
∑

B∈E (m)(A)

|S (m)
λ (B)∗|.

Note that (S1) and (S2) also give us

|S (m)
λ (B)∗| ≤ K1

M
|B|.
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The latter inequality implies that (5.5) is bounded from above by

(5.6)
(1 +K1)K1

M

( ∑
d: 1≤dk<λ

∑
B∈E

(m)
dk (A)

|B|
)
.

Employing (S4) we estimate (5.6) by
(1 +K1)K1K2

M

( ∑
d: 1≤dk<λ

qdkε|A|
)
.

Finally, applying (S2) concludes the proof of the lemma.

Theorem 5.3. Let X be a space of homogeneous type, E a UMD-space
and 1 < p < ∞. Let λ be a positive integer. Then there exists a constant C
such that

‖S(m)
λ f‖LpE(X) ≤ C‖S

(n)
λ f‖LpE(X), f ∈ span{hQ : Q ∈ Q},

for all 1 ≤ m,n ≤M . The constant C depends only on p, X and E.

Proof. Let λ ≥ 1 and m 6= n be fixed throughout the proof. Define k as
the smallest positive integer such that K3q

kε ≤ 1/(4C2
g ), where K3, ε and

Cg are the constants appearing in Lemma 5.2, (S4) and (G3), respectively.
Moreover, define the collections

C
(δ)
j,ν :=

⋃
0≤i≤λ−1
i mod k=ν

Q(2j+δ)λ+i, j ∈ Z, δ ∈ {0, 1}, 0 ≤ ν ≤ k − 1,

C (δ)
ν :=

⋃
j∈Z

C
(δ)
j,ν , δ ∈ {0, 1}, 0 ≤ ν ≤ k − 1.

With ν and δ fixed, set

A(Q) := (S
(m)
λ (Q)∗ ∪S

(n)
λ (Q)∗) \

⋃
P∈C

(δ)
j,ν

levP>levQ

A(P ), Q ∈ C
(δ)
j,ν ,

for each j ∈ Z. This definition is understood to be by induction on levQ,
starting with the maximal level in C

(δ)
j,ν . Note that the above union is empty

if levQ is maximal in C
(δ)
j,ν . Now, Lemma 5.2 and our choice of k imply

(5.7) |A(Q) ∩S
(n)
λ (Q)∗| ≥

(
1− 1

4C2
g

)
|S (n)

λ (Q)∗|.

We collect all the sets A(Q) in A , to be more precise

A := {A(Q) : Q ∈ C (δ)
ν }.

The inductive construction of A(Q) is performed in such a way that A is
nested. Indeed, if P,Q ∈ C

(δ)
j,ν , then A(P )∩A(Q) = ∅. Moreover, if Q ∈ C

(δ)
j,ν ,
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then A(Q) consists of cubes in QlevQ+2λ−1. Thus, if P ∈ C
(δ)
i,ν and Q ∈ C

(δ)
j,ν

with i < j, then A(Q) ⊂ Q ⊂ A(P ) provided A(P )∩A(Q) 6= ∅. Hence, A is
a nested collection.

Let us define

Aj := {A(Q) ∈ A : Q ∈ Qj}, j ∈ Z,

and the filtrations {Fj} and {Gj} by

Fj := σ-algebra
(⋃
i≤j

Ai

)
,

Gj := σ-algebra({S (m)
λ (Q)∗ : Q ∈ Qi, i ≤ j}),

for all j ∈ Z. Note that some of the sets Aj are empty; if Aj = ∅, we delete
the σ-algebras Fj and Gj from their respective filtrations.

Let f ∈ LpE(X) have the representation f =
∑

Q∈C
(δ)
ν
fQhQ. Due to (G2),

the UMD-property and Kahane’s contraction principle yield

(5.8) ‖S(m)
λ f‖ =

∥∥∥ ∑
Q∈C

(δ)
ν

fQg
(m)
Q,λ

∥∥∥ .
1�

0

∥∥∥ ∑
Q∈C

(δ)
ν

rQ(t)fQ|g(m)
Q,λ |

∥∥∥ dt.
First, observe that

1
S

(m)
λ (Q)∗

≤
|S (m)

λ (Q)∗|
|A(Q)|

E(1A(Q) | GlevQ), Q ∈ C (δ)
ν .

Secondly, due to our choice of k, we deduce from Lemma 5.2 that

|S (m)
λ (Q)∗| ≤ 4

3
|A(Q)|, Q ∈ C (δ)

ν .

The latter two inequalities imply that for all Q ∈ C
(δ)
ν

|g(m)
Q,λ | ≤ ‖g

(m)
Q,λ‖∞1S

(m)
λ (Q)∗

(5.9)

≤ 4

3
‖g(m)
Q,λ‖∞ E(1A(Q) | GlevQ).

Combining (5.8) and (5.9), and applying Kahane’s contraction principle,
yields

‖S(m)
λ f‖ .

1�

0

∥∥∥ ∑
Q∈C

(δ)
ν

rQ(t)fQ‖g(m)
Q,λ‖∞ E(1A(Q) | GlevQ)

∥∥∥ dt.
Applying Bourgain’s version of Stein’s martingale gives

(5.10) ‖S(m)
λ f‖ .

1�

0

∥∥∥ ∑
Q∈C

(δ)
ν

rQ(t)fQ‖g(m)
Q,λ‖∞1A(Q)

∥∥∥ dt.
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By (G1), the support of g(n)Q,λ is a subset of S
(n)
λ (Q)∗. If we define

V :=

{
|g(n)Q,λ| ≥

‖g(m)
Q,λ‖∞
2Cg

}
∩A(Q) ∩S

(n)
λ (Q)∗,

then (5.7) and Lemma 5.1 imply

(5.11) |V | ≥ 1

4C2
g

|S (n)
λ (Q)∗| ≥ 1

4C2
g (1 +K1)

|A(Q)|.

As a consequence of the definition of V and (5.11),

‖g(m)
Q,λ‖∞1A(Q) ≤

(
2Cg
|V |

�

V

|g(n)Q,λ|
)
1A(Q)

≤
(
8C3

g (1 +K1)

|A(Q)|

�

A(Q)

|g(n)Q,λ|
)
1A(Q)

≤ 8C3
g (1 +K1)E(|g(n)Q,λ| | FlevQ)

for all Q ∈ C(δ)
ν . Plugging the latter estimate into (5.10) and using Kahane’s

contraction principle yields

‖S(m)
λ f‖ .

1�

0

∥∥∥ ∑
Q∈C

(δ)
ν

rQ(t)fQ E(|g(n)Q,λ| | FlevQ)
∥∥∥ dt.

Subsequently, applying Stein’s martingale inequality, Kahane’s contraction
principle to pass from |g(n)Q,λ| to g

(n)
Q,λ and finally using the UMD-property to

dispose of the Rademacher functions, concludes the proof.

Applying the estimate in Theorem 5.3, i.e., the uniform equivalence of
stripe operators, we obtain upper and lower estimates for S(m)

λ via the cotype
and type inequalities, respectively.

Theorem 5.4. Let X be a space of homogeneous type, E a UMD-space
and 1 < p <∞. Moreover, let λ be a positive integer and 1 ≤ m ≤M . If we
assume

(5.12)
∥∥∥ M∑
n=1

S
(n)
λ hQ

∥∥∥
∞
≤ CS

1

|Q|

�
|hQ|, Q ∈ Q,

then

(5.13) ‖S(m)
λ f‖LpE(X) ≤ CCSM−1/C‖f‖LpE(X), f ∈ span{hP : P ∈ Q},

where LpE(X) has cotype C and the constant C depends only on p, X and E.
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On the other hand, if we assume

(5.14) ‖hQ‖∞ ≤ CS
M∑
n=1

1

|Q|

�
|S(n)
λ hQ|, Q ∈ Q,

then

(5.15) ‖S(m)
λ f‖LpE(X) ≥ CC−1S M−1/T ‖f‖LpE(X), f ∈ span{hP : P ∈ Q},

where LpE(X) has type T and the constant C depends only on p, X and E.

Proof. First, we prove inequality (5.13) under the hypothesis (5.12). Let
f =

∑
Q fQhQ be a finite sum and m be an integer in the range 1 ≤ m ≤M .

By (M2), {hQ} is a martingale difference sequence, thus

‖f‖ &
1�

0

∥∥∥∑
Q

rQ(t)fQ|hQ|
∥∥∥ dt

as a consequence of the UMD-property of E and Kahane’s contraction prin-
ciple. Define the filtration {Fj} by

Fj = σ-algebra
(⋃
i≤j

Qi

)
.

Then Bourgain’s version of Stein’s martingale inequality yields

(5.16) ‖f‖ &
1�

0

∥∥∥∑
Q

rQ(t)fQ E(|hQ| | FlevQ)
∥∥∥ dt.

Observe that Q is an atom in the σ-algebra FlevQ for all Q ∈ Q, and thus

E(|hQ| | FlevQ) =

(
1

|Q|

�
|hQ|

)
1Q ≥ C−1S

∥∥∥ M∑
n=1

S
(n)
λ hQ

∥∥∥
∞
1Q,

where we used (M1) and (5.12). Plugging the latter inequality into (5.16)
and using Kahane’s contraction principle implies

‖f‖ & C−1S

1�

0

∥∥∥∑
Q

rQ(t)fQ

M∑
n=1

S
(n)
λ hQ

∥∥∥ dt.
Condition (G2) and the UMD-property of LpE(X) yield

(5.17) ‖f‖ & C−1S

∥∥∥∑
j∈Z

M∑
n=1

S
(n)
λ

( ∑
Q∈Qj

fQhQ

)∥∥∥.
Now let

dj,n := S
(n)
λ

( ∑
Q∈Qj

fQhQ

)
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and observe that (dj,n) is a martingale difference sequence with respect to
the lexicographic ordering on the index pairs (j, n). Thus, (5.17) implies

‖f‖ & C−1S

1�

0

∥∥∥ M∑
n=1

rn(t)
∑
j∈Z

dj,n

∥∥∥ dt.
Since LpE(X) has cotype C, we employ the cotype inequality to obtain

‖f‖ & C−1S

( M∑
n=1

‖
∑
j∈Z

dj,n‖C
)1/C

= C−1S

( M∑
n=1

‖S(n)
λ f‖C

)1/C
.

By Theorem 5.3, ‖S(n)
λ f‖ & ‖S(m)

λ f‖ for all 1 ≤ n ≤M , and therefore

‖f‖ & C−1S M1/C‖S(m)
λ f‖,

proving (5.13).
A similar argument replacing the cotype inequality by the type inequality

proves (5.15) under the condition (5.14).
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