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Summary. Let (hk)k≥0 be the Haar system on [0, 1]. We show that for any vectors ak
from a separable Hilbert space H and any εk ∈ [−1, 1], k = 0, 1, 2, . . . , we have the sharp
inequality ∥∥∥ n∑

k=0

εkakhk

∥∥∥
W ([0,1])

≤ 2
∥∥∥ n∑
k=0

akhk

∥∥∥
L∞([0,1])

, n = 0, 1, 2, . . . ,

where W ([0, 1]) is the weak-L∞ space introduced by Bennett, DeVore and Sharpley. The
above estimate is generalized to the sharp weak-type bound

‖Y ‖W (Ω) ≤ 2‖X‖L∞(Ω),

where X and Y stand for H-valued martingales such that Y is differentially subordinate
to X. An application to harmonic functions on Euclidean domains is presented.

1. Introduction. Our motivation comes from a certain basic question
about the Haar system (hk)k≥0, an important basis for Lp([0, 1]), 1 ≤ p <∞.
As shown by Marcinkiewicz [8] (see also Paley [10]), this basis is uncondi-
tional if 1 < p < ∞. That is, there exists a universal constant cp ∈ (0,∞)
such that

(1.1) c−1p

∥∥∥ n∑
k=0

akhk

∥∥∥
p
≤
∥∥∥ n∑
k=0

εkakhk

∥∥∥
p
≤ cp

∥∥∥ n∑
k=0

akhk

∥∥∥
p

for any n and any ak ∈ R, εk ∈ {−1, 1}, k = 0, 1, . . . , n. This result was
extended by Burkholder [3] to the martingale setting. Let (Ω,F ,P) be a
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nonatomic probability space, filtered by (Fk)k≥0, a nondecreasing family of
sub-σ-fields of F . Let f = (fk)k≥0 be a real-valued martingale with the
difference sequence (dfk)k≥0 given by df0 = f0 and dfk = fk−fk−1 for k ≥ 1.
Let g be a transform of f by a real predictable sequence v = (vk)k≥0 bounded
in absolute value by 1: that is, dgk = vkdfk for all k ≥ 0 and by predictability
we mean that each term vk is measurable with respect to F(k−1)∨0. Then
(cf. [3]) for 1 < p <∞ there is an absolute constant c′p for which

(1.2) ‖g‖p ≤ c′p‖f‖p.
Here we have used the notation ‖f‖p = supn ‖fn‖p. Let cp(1.1), c′p(1.2) de-
note the optimal constants in (1.1) and (1.2), respectively. The Haar system
is a martingale difference sequence with respect to its natural filtration (on
the probability space being the interval (0, 1] with its Borel subsets and
Lebesgue measure), and hence so is (akhk)k≥0 for given fixed real numbers
a0, a1, a2, . . . . Therefore, cp(1.1) ≤ c′p(1.2) for all 1 < p < ∞. It follows
from the results of Burkholder [4] and Maurey [9] that in fact the constants
coincide: cp(1.1) = c′p(1.2) for all 1 < p < ∞. A celebrated theorem of
Burkholder [5] asserts that cp(1.1)= max{p − 1, (p − 1)−1} for 1 < p < ∞.
Furthermore, the constant does not change if we allow the martingales and
the coefficients ak to take values in a separable Hilbert space H. For p = 1
the inequalities (1.1) and (1.2) do not hold with any finite constant, but we
have an appropriate weak-type bound. Here is the result of Burkholder [5],
valid for a wider range of exponents: if 1 ≤ p ≤ 2, then for any f and g as
above we have

(1.3) ‖g‖p,∞ ≤
(

2

Γ (p+ 1)

)1/p

‖f‖p

and the bound is sharp. Here ‖g‖p,∞ = supλ>0 λ(P(supn |gn| ≥ λ))1/p de-
notes the weak pth norm of g. For p > 2, Suh [11] showed that

(1.4) ‖g‖p,∞ ≤
(
pp−1

2

)1/p

‖f‖p

and that the constant (pp−1/2)1/p is the best possible. Both (1.3) and (1.4)
remain sharp in the special case of the estimates for the Haar system with
real coefficients.

In fact, all these bounds are valid under less restrictive assumption of
differential subordination, and can further be extended to the continuous-
time setting. Suppose that (Ω,F ,P) is complete, and equip it with a right-
continuous filtration (Ft)t≥0 such that F0 contains all the events of prob-
ability 0. Let X, Y be two adapted cadlag martingales taking values in H
which, as we may and do assume from now on, is equal to `2. Following
Wang [12], we say that Y is differentially subordinate to X, if the process
([X,X]t − [Y, Y ]t)t≥0 is nondecreasing and nonnegative as a function of t.



Weak-Type Inequality 189

Here [X,Y ] =
∑∞

j=0[X
j , Y j ], where Xj , Y j stand for the jth coordinates of

X and Y , respectively, and [Xj , Y j ] is the quadratic covariance process of
Xj and Y j (see e.g. Dellacherie and Meyer [7]). If we treat the discrete-time
martingales f = (fk)

∞
k=0 and g = (gk)

∞
k=0 as continuous-time processes (via

Xt = fbtc and Yt = gbtc for t ≥ 0), then the above condition reads

|dgk| ≤ |dfk| for k ≥ 0,

which is the original definition of differential subordination due to Burk-
holder [5]. Of course, this condition is satisfied by the martingale transforms
studied above. Thus the following theorem (see [11] and [12]) generalizes the
previous bounds (1.2)–(1.4). We use the notation ‖X‖p = supt ‖Xt‖p and
‖X‖p,∞ = supλ>0 λ(P(supt |Xt| ≥ λ))1/p, analogous to that of the discrete-
time setting.

Theorem 1.1. If Y is differentially subordinate to X, then

‖Y ‖p ≤ max{p− 1, (p− 1)−1}‖X‖p, 1 ≤ p <∞,(1.5)

‖Y ‖p,∞ ≤
(

2

Γ (p+ 1)

)1/p

‖X‖p, 1 ≤ p ≤ 2,

‖Y ‖p,∞ ≤
(
pp−1

2

)1/p

‖X‖p, 2 ≤ p <∞,
(1.6)

and the inequalities are sharp.

The purpose of this paper is to study an estimate which can be regarded a
version of the weak-type inequality for p =∞. We need some more notation.
For a given random variable ξ defined on a nonatomic probability space (real-
or vector-valued), we define ξ∗, the decreasing rearrangement of ξ, by

ξ∗(t) = inf{λ ≥ 0 : P(|ξ| > λ) ≤ t}.
Then ξ∗∗ : (0, 1]→ [0,∞), the maximal function of ξ∗, is given by

ξ∗∗(t) =
1

t

t�

0

ξ∗(s) ds, t ∈ (0, 1].

One easily verifies that ξ∗∗ can alternatively be defined by

ξ∗∗(t) =
1

t
sup
{ �
E

|ξ| dP : E ∈ F , P(E) = t
}
.

We are ready to introduce the weak-L∞ space. Following Bennett, DeVore
and Sharpley [1], we let

‖ξ‖W (Ω) = sup
t∈(0,1]

(ξ∗∗(t)− ξ∗(t))

and define W (Ω) = {ξ : ‖ξ‖W (Ω) < ∞}. Let us describe the motivation
behind the definition of this class. Note that for each 1 ≤ p < ∞, the
usual weak space Lp,∞ properly contains Lp, but for p =∞, the two spaces
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coincide. Thus, there is no Marcinkiewicz interpolation theorem between
L1 and L∞ for operators which are unbounded on L∞. The space W was
invented to fill this gap. It contains L∞, can be understood as an appropriate
limit of Lp,∞ as p → ∞, and has an appropriate interpolation property: if
an operator T is bounded from L1 to L1,∞ and from L∞ to W , then it can
be extended to a bounded operator on all Lp spaces, 1 < p <∞. See [1] for
details. There are also some deep connections betweenW and BMO: consult
[1] or the monograph [2] by Bennett and Sharpley for an explanation and
much more on the subject.

There is a natural question about weak-L∞ estimates (in the sense of
the above space W ) for differentially subordinated martingales and the
Haar system. The answer is contained in the theorem below. In analogy
to the previous notation, the weak-L∞ norm of a martingale X is given by
‖X‖W (Ω) = supt≥0 ‖Xt‖W (Ω).

Theorem 1.2. Let X and Y be H-valued martingales such that Y is
differentially subordinate to X. Then

(1.7) ‖Y ‖W (Ω) ≤ 2‖X‖∞
and the constant 2 is the best possible.

The constant 2 is already the best possible in the corresponding bound
for the Haar system. As we will see, there are nonzero real constants a0, a1,
a2 and signs ε0, ε1, ε2 such that

‖ε0a0h0 + ε1a1h1 + ε2a2h2‖W ([0,1]) = 2‖a0h0 + a1h1 + a2h2‖L∞([0,1]).

The paper is organized as follows. The next section contains the proof of
Theorem 1.2. We will transform the inequality (1.7) into a more convenient
form, to study which we will exploit Burkholder’s technique: the inequality
will be extracted from the existence of certain special functions, with appro-
priate majorization and concavity. Section 3 is devoted to applications: we
obtain a related weak-type bound for harmonic functions given on Euclidean
domains.

2. Proof of Theorem 1.2. Let B denote the closed unit ball of H, and
consider the sets

D1 = {(x, y) ∈ B ×H : |x|+ |y| ≤ λ+ 1},
D2 = {(x, y) ∈ B ×H : |x|+ |y| > λ+ 1}.

The key object in the proof of (1.7) is the family (uλ)λ≥0 of functions on
B ×H, given by

uλ(x, y) =

{
0 if (x, y) ∈ D1,
1

2
(|y| − 1− λ)2 − 1

2
|x|2 if (x, y) ∈ D2.
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In the lemmas below, we study some crucial properties of these functions.

Lemma 2.1. For any x ∈ B and y ∈ H we have the estimates

uλ(x, y) ≥ (|y| − λ− 2)1{|y|>λ},(2.1)

uλ(x, y) ≤ 1

2
(|y| − 1− λ)2 − 1

2
|x|2.(2.2)

Proof. We start with (2.1). If |y| ≤ λ, then |x|+ |y| ≤ λ+ 1, and hence
both sides of (2.1) are equal. Next, if |y| > λ and |x|+ |y| ≤ λ+ 1, then

(|y| − λ− 2)1{|y|>λ} = |y| − λ− 2 ≤ −1 < 0 = uλ(x, y).

Finally, if |x|+ |y| > λ+ 1, then |y| > λ, and hence

uλ(x, y)− (|y| − λ− 2)1{|y|>λ} =
1

2
(y − 2− λ)2 +

1

2
(1− |x|2) ≥ 0.

This proves (2.1).
The inequality (2.2) is trivial when |x|+|y| > λ+1, and for the remaining

(x, y), it is equivalent to |x|+ |y| ≤ λ+ 1.

Lemma 2.2. Suppose that x, y, h, k ∈ H satisfy the conditions |k| ≤ |h|,
(x, y) ∈ D1 and (x+ h, y + k) ∈ D2. Then

(2.3) uλ(x+ h, y + k) ≤ 0.

Proof. The inequality is equivalent to∣∣|y + k| − 1− λ
∣∣ ≤ |x+ h|,

and hence we will be done if we show the two bounds

−|y + k|+ 1 + λ ≤ |x+ h|, |y + k| − 1− λ ≤ |x+ h|.
The first estimate follows from the inclusion (x + h, y + k) ∈ D2. To deal
with the second bound, use the triangle inequality and the assumptions
(x, y) ∈ D1 and |k| ≤ |h| to obtain

|y + k| − 1− λ ≤ |y|+ |k| − 1− λ ≤ −|x|+ |k| ≤ −|x|+ |h| ≤ |x+ h|,
as desired.

Recall that for any semimartingale X there exists a unique continuous
local martingale part Xc of X satisfying

[X,X]t = [Xc, Xc]t +
∑

0≤s≤t
|∆Xs|2

for all t ≥ 0. Here ∆Xs = Xs − Xs− is the jump of X at s, and we use
the convention X0− = 0. Furthermore, [Xc, Xc] = [X,X]c, the pathwise
continuous part of [X,X]. We will need the following simple auxiliary fact,
which follows from [12, Lemma 1].

Lemma 2.3. If the process Y is differentially subordinate to X, then for
all t ≥ 0 we have |∆Yt| ≤ |∆Xt|.
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Let us also make a small comment here. Let X be a martingale satisfying
‖X‖∞ ≤ 1, and suppose that Y is differentially subordinate to X. Then X
is bounded in L2 and hence so is Y , for instance by Burkholder’s L2 bound.
This implies, by classical martingale convergence theorems, that Y converges
in L2; the corresponding limit will be denoted by Y∞.

Equipped with the above statements, we are ready to show the following
intermediate result.

Theorem 2.4. Suppose that X and Y are H-valued martingales such
that ‖X‖∞ ≤ 1 and Y is differentially subordinate to X. Then for any
λ ≥ 0 and t ∈ [0,∞] we have

(2.4) E(|Yt| − λ)+ ≤ 2P(|Yt| > λ).

Proof. Introduce the stopping time τ = inf{s : |Xs|+ |Ys| > λ}, with the
usual convention inf ∅ = +∞. By (2.2), we may write

Euλ(Xt, Yt)1{τ≤t} ≤
1

2
E
[
(|Yt| − 1− λ)2 − |Xt|2

]
1{τ≤t}.

Now, the processes (|Xs|2 − [X,X]s)s≥0 and (|Ys|2 − [Y, Y ]s)s≥0 are martin-
gales, so

E(|Xt|2 − [X,X]t)1{τ≤t} = E(|Xτ |2 − [X,X]τ )1{τ≤t},

and similarly for Y . Consequently, the differential subordination of Y to X
yields

E(|Yt|2 − |Xt|2)1{τ≤t} = E(|Yτ |2 − |Xτ |2)1{τ≤t} +

t�

τ+

d([Y, Y ]s − [X,X]s)

≤ E(|Yτ |2 − |Xτ |2)1{τ≤t}.

Furthermore, the process (|Ys|)s≥0 is a submartingale, so E|Yt|1{τ≤t} ≥
E|Yτ |1{τ≤t}. Combining the above two estimates with the preceding inequal-
ity, we obtain

Euλ(Xt, Yt)1{τ≤t} ≤ Euλ(Xτ , Yτ )1{τ≤t}.

However, by Lemma 2.2, we have uλ(Xτ , Yτ ) ≤ 0 almost surely. Indeed, if τ
is finite, it suffices to take x = Xτ−, y = Yτ−, h = ∆Xτ and k = ∆Yτ (and
use Lemma 2.3); if τ = ∞, then |X∞|+ |Y∞| ≤ λ + 1, so uλ(X∞, Y∞) = 0.
Consequently, we have obtained the bound Euλ(Xt, Yt)1{τ≤t} ≤ 0, and it
remains to combine it with the trivial equality Euλ(Xt, Yt)1{τ>t} = 0 to get

Euλ(Xt, Yt) ≤ 0.

By (2.1), this implies E(|Yt| − λ − 2)1{|Yt|>λ} ≤ 0, which is precisely the
claim.
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We turn our attention to Theorem 1.2.

Proof of (1.7). With no loss of generality, we may and do assume that
‖X‖∞ ≤ 1. Pick arbitrary s ∈ [0,∞] and t ∈ (0, 1], and recall the alternative
definition of Y ∗∗s :

Y ∗∗s (t) = sup

{
1

P(E)
E|Ys|1E : E ∈ F , P(E) = t

}
.

It follows that

Y ∗∗s (t)− Y ∗s (t) = sup

{
1

P(E)
E(|Ys| − Y ∗s (t))1E : P(E) = t

}
.

However, by the definition of Y ∗s (t), we have P(|Ys| > Y ∗s (t)) ≤ t. Hence, the
above formula implies

Y ∗∗s (t)− Y ∗s (t) ≤ 1

P(|Ys| > Y ∗s (t))
E(|Ys| − Y ∗s (t))+ ≤ 2,

where the latter bound follows from (2.4). This gives the desired bound.

Sharpness for the Haar system. We will give an appropriate example.
Consider the real-valued function f = 1

2h0 −
1
2h1 − h2 = −1[0,1/4) + 1[1/4,1);

clearly, ‖f‖∞ = 1. Furthermore, its transform g = 1
2h0+ 1

2h1+h2 = 2·1[0,1/4)
satisfies g∗ = 2 · 1[0,1/4) and g∗∗(t) = 2 · 1(0,1/4](t)− (2t)−11(1/4,1](t). Conse-
quently,

lim
t↓1/4

(g∗∗(t)− g∗(t)) = 2,

which shows that the constant 2 is indeed the best possible.

3. Inequalities for harmonic functions. In this section we will es-
tablish weak-L∞ inequalities for harmonic functions on Euclidean domains.
Let n be a positive integer, and let D be an open connected subset of Rn.
Fix a point ξ in D. For two real-valued harmonic functions u, v on D, we
say that v is differentially subordinate to u if

(3.1) |v(ξ)| ≤ |u(ξ)|

and

(3.2) |∇v(x)| ≤ |∇u(x)| for any x ∈ D.

This concept was introduced by Burkholder; see [6] for more information and
references. Let D0 be a bounded domain satisfying ξ ∈ D0 ⊂ D0∪∂D0 ⊂ D.
Let µξD0

denote the harmonic measure on ∂D0, corresponding to ξ. Then the
weak-L∞ norm of u is given by

‖u‖W (D) = sup
D0

sup
t∈(0,1]

(u∗∗D0
(t)− u∗D0

(t)),
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where uD0 is the restriction of u to D0, and u∗D0
and u∗∗D0

are the decreasing
rearrangement and the associated maximal function of uD0 with respect to
the measure µξD0

.
The harmonic analogue of Theorem 1.2 is the following.

Theorem 3.1. Suppose v is differentially subordinate to u. Then

(3.3) ‖v‖W (D) ≤ 2‖u‖L∞(D),

and the constant 2 is the best possible.

Proof. The proof of (3.3) is standard. Fix a domain D0 ⊂ D as above.
Let B = (Bt)t≥0 be a Brownian motion in Rn starting from ξ, and introduce
the stopping time τ = τD0 = inf{t : Bt ∈ ∂D0}. Let X and Y be martingales
defined by

(3.4) Xt = u(Bτ∧t) and Yt = v(Bτ∧t), t ≥ 0.

The property (3.1) gives |Y0| ≤ |X0|, and (3.2) implies that Y is differentially
subordinate to X. This follows at once from the identities

[X,X]t = |X0|2 +

τ∧t�

0

|∇u(Bs)|2 ds,

[Y, Y ]t = |Y0|2 +

τ∧t�

0

|∇v(Bs)|2 ds.

Consequently, by (1.7), we have the estimate ‖Y ‖W (Ω) ≤ 2‖X‖∞. However,
‖X‖∞ ≤ ‖u‖L∞(D) and, for each s, we have P(|Y∞| ≥ s) = µξD0

({x ∈ ∂D0 :
|v(x)| ≥ s}). The latter identity implies that the nonincreasing rearrange-
ments of Y∞ and vD0 coincide, and hence

sup
t∈(0,1]

(v∗∗D0
(t)− v∗D0

(t)) ≤ ‖Y ‖W (Ω).

This proves (3.3), since D0 was arbitrary.
It remains to show that the constant 2 cannot be improved; we will

provide an appropriate example in dimension 1. Let D = (−1, 3), ξ = 0 and
let u, v : D → R be given by

u(x) = −x+ 1, v(x) = x+ 1.

We have u(0) = v(0) = 1 and |∇u(x)| = |∇v(x)| for all x ∈ D, so v is
differentially subordinate to u. Furthermore, note that ‖u‖∞ = 2; to handle
the weak norm of v, pick a subdomain D0 = (−a, 3a), where a ∈ (0, 1) is a
fixed parameter. It is clear that the harmonic measure µξD0

on {−a, 3a} is
given by µξD0

({−a}) = 3/4 and µξD0
({3a}) = 1/4. Now, v(−a) = −a+ 1 and
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v(3a) = 3a+ 1, which implies that

v∗D0
(t) =

{
3a+ 1 if t ∈ (0, 1/4],

−a+ 1 if t ∈ (1/4, 1]

and

v∗∗D0
(t) =


3a+ 1 if t ∈ (0, 1/4],

1

t

(
3a+ 1

4
+ (1− a)

(
t− 1

4

))
if t ∈ (1/4, 1].

Therefore, we see that

lim
t↓1/4

(v∗∗D0
(t)− v∗D0

(t)) = 3a+ 1− (−a+ 1) = 4a,

and hence ‖v‖W (D)/‖u‖L∞(D) ≥ 2a. Since a ∈ (0, 1) was arbitrary, the
constant 2 in (3.3) is indeed the best possible.
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