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Summary. Let A be a complex, commutative Banach algebra and let M 4 be the structure
space of A. Assume that there exists a continuous homomorphism h : L'(G) — A with
dense range, where L'(G) is a group algebra of the locally compact abelian group G. The
main results of this note can be summarized as follows:

(a) If every weakly almost periodic functional on A with compact spectra is almost
periodic, then the space M 4 is scattered (i.e., M4 has no nonempty perfect subset).

(b) Weakly almost periodic functionals on A with compact scattered spectra are almost
periodic.

() If My is scattered, then the algebra A is Arens regular if and only if A* = span Ma.

1. Introduction. Throughout the paper A will denote a complex, com-
mutative Banach algebra. We shall denote by M 4 the structure space of A.
As is well known, M4 is a locally compact, Hausdorff space and the Gelfand
transform I" : @ — a identifies A with a subalgebra of Cy(M_4), the Banach
algebra of all complex-valued continuous functions on M, which vanish
at infinity. For ¢ € A* and a € A, the functional ¢ - @ on A is defined by
(p-a,b) = (p,ab), b € A. This operation turns A* into a Banach A-module.
Let O.(¢) denote the weak*-closure of the set {¢ - a : a € A}. Recall that the
w*-spectrum of a functional ¢ € A*, written o, (), is defined by O, (¢)NM 4.
We can readily see that o,(¢) = hull(,), where I, = {a € A:¢-a =0} is
a closed ideal in A.

Let G be a locally compact abelian group and L!(G) be the group alge-
bra of G. The well known Loomis theorem [9] states that if the w*-spectrum
of ¢ € L>®(G) is compact and scattered, then ¢ is an almost periodic func-
tion, namely ¢ € spano.(y). Recall that a closed subset S of a topological
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Hausdorff space is said to be scattered if S does not contain a nonempty
perfect subset.
For 1 < p < o0, let Ay(G) denote the space of functions on G which can

be represented as -
f= g Up * V),
n=1

where the u,’s are in LP(G), the v,’s are in LY(G) (1/p+1/q =1), v/ (g9) =
vn(—g), and

00
> lunllpllonlly < oo
n=1

The norm of f is the infimum of the above sums over all such representations
of f. The space A,(G) is a commutative Banach algebra [4], often called the
Herz algebra. We recall that L*(G) is isometrically isomorphic to A»(G) via
the Fourier transform F. Here G is the dual group of GG. A generalization
of the Loomis theorem to Herz algebras has been proved by Lust-Piquard
in [10].

As functions which are continuous on G with compact support are dense
in LP(G), A2(G) is dense in A,(G). It follows that F : L'G) — A, (G)
is a continuous homomorphism with dense range. This suggests the ques-
tion: Assume that there exists a continuous homomorphism h : L'(G) — A
with dense range. Is there a generalization of the Loomis theorem to the
algebra A7 In this paper we give a partial answer to this question.

We first note that the class of Banach algebras A satisfying the above
conditions is fairly large. In general, these algebras arise in the following way:
Let g — T, be a bounded continuous representation of G on a Banach space
X. For f € LYG), define Ty = §, f(9)Ty dg. We see that T} is a bounded
linear operator on X. Let L7(G) denote the closure of {1 : f € L'(G)} with
respect to the operator-norm topology. Then the algebras L (G) satisfy the
conditions imposed on A.

If there exists a continuous homomorphism & : L'(G) — A with dense
range, the spectrum of h, written sp(h), is defined as the hull of the ideal
ker(h). The standard technique of Banach algebras shows that A* homeo-
morphically identifieds M4 with sp(h). Moreover, the Gelfand transform of

h(f) isjust F(x) (x € sp(h)), where [ is the Fourier transform of f € L*(G).
If ¢ € A*, for notational simplicity we will write h*¢ for ¢". We shall also
need the following notations: X is a Banach space, X* is its dual, X** is
its second dual, and X; is the closed unit ball in X. We shall regard X
as naturally embedded into X**. For ¢ € X* and = € X, by (p,z), and
also by ¢(z), we denote the natural duality between X* and X. We will
denote by w and w* the weak topology in X and the weak™* topology in X*,
respectively. By E and E we will denote the weak closure and the norm



Functionals with Scattered Spectra 397

closure, respectively, of a set E C X. E* will denote the weak* closure of a
set £ C X*.

2. Preliminaries. Let A be a complex, commutative Banach algebra.
The functional ¢ € A* is said to be (weakly) almost periodic on A if the
set {¢-a:a € A} is relatively (weakly) compact. This is equivalent to
saying that the linear operator T, : A — A* defined by T (a) = ¢ - a
is (weakly) compact. For example, if A = L!(G) then this reduces to the
classical notion of (weak) almost periodicity for ¢ € L>(G). We will denote
by ap(A) (resp. wap(A)) the set of all almost periodic (resp. weakly almost
periodic) functionals on A. Both ap(A) and wap(A) are norm-closed A-
submodules of A*. As is known [2], ap(L}(G)) = AP(G) and wap(L!(G)) =
WAP(G), where AP(G) and WAP(G) are the spaces of almost periodic and
weakly almost periodic functions on G respectively.

We can endow A** with a product (making A** a Banach algebra) which
is a natural extension of the original product in A (cf. [1]). This product
is defined as follows: If ¢ € A* and F, H € A™, then we set (F o H, ) =
(F, H-p), where H - is the functional on A defined by (H-¢,a) = (H, ¢-a),
a € A. The algebra A is said to be Arens reqular if A** is commutative. This
is equivalent to the condition that wap(A4) = A* (see [1]).

Let p be an arbitrary bounded regular Borel measure on M 4. Then pu
can be considered as an element of A* with respect to the duality

(,a) = | a(¢)du(¢), aecA
Ma

It is easy to see that o,.(u) and supp p in the usual terms are the same.

LEMMA 2.1. If p is a bounded regular Borel measure on My, then u €
wap(A).

Proof. We follow basically the proof by Dunkl-Ramirez [2], given there
for the Fourier algebra. It is enough to show that if 1 is a positive measure on
My with compact support, then the operator T, is weakly compact. Define
the map S : L2(My,dp) — A* by Sf = f(¢)du(¢) (¢ € Ma). We see that
S is a weakly compact operator and T}, = SoI'. It follows that the operator
T, is also weakly compact. =

The following lemma was proved in [8, Lemma 6.1] for Arens regular
Banach algebras.

LEMMA 2.2. If A has a bounded approzimate identity, then every ¢ €
wap(A) (resp. ¢ € ap(A)) can be represented as ¢ = 1 - a for some ¢ €
wap(A) (resp. ¥ € ap(A)) and a € A.
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Proof. Let ¢ € wap(A). Note that wap(A) is a Banach A-module. It
follows from the Cohen-Hewitt Factorization Theorem [5, 32.22] that the
set {¢-a: 1 € wap(A), a € A} is a norm-closed linear subspace of A*. Let
(e;)icr be a bounded approximate identity for A. Then ¢ - e; — ¢ in the
w*-topology. On the other hand, since the set {¢-e;:i € I} is relatively
weakly compact, ¢ - e; — ¢ weakly. Hence we have

pe{-a:pecwap(A),ac A} ={¢-a:1y e wap(A), a € A}.

For ap(A) a similar argument works. =

A Banach G-module X is a Banach space X which is a G-module such
that:

(i) e-x =z for all x € X, where e is the identity of G.
(ii) |lg - z|| < C||z|| for some constant C' > 0, for all z € X and g € G.
(iii) For all x € X, the map ¢g — ¢ - = is continuous from G into X.

In this case, we can define for each ¢ € X*, g € G, the element g - p € X*
by (g-¢,x) = (p,g-x), x € X. A Banach G-module X is said to be almost
periodic if the set {g-x : g € G} is relatively compact for every z € X. It
follows from the Peter—Weyl theory [11, Chap. 4, Sect. 3] that, if X is an
almost periodic Banach G-module, then X is generated by the eigenvectors
of G, i.e., by those = € X that satisfy g -« = x(g)z for some x € G and for
all g € G.

LEMMA 2.3. If there exists a continuous homomorphism h : L1(G) — A
with dense range, then A is a Banach G-module and furthermore (g-p,a) =
(p-a)V(g) for every p € A*, a€ A and g € G.

Proof. Let g € G and f € LY(G). Define g- h(f) = h(f,), where f,(s) =
f(s—g). Let (fi)ier be an approximate identity in L!(G) bounded by one.
Since A((fi)g)h(f) — g - h(f), we have [lg-h(f)|| < [|B][[[~(f)[|. Thus since
h(L'(@G)) is dense in A the module operation can be extended to all A, after
which the algebra A becomes a Banach G-module. Now let ¢ € A* and
a € A be given. It is easy to verify that SG flg)(g-v)dg=¢-h(f). Using
this we have

V F(9)g- @ a)dg = (p-h(f),a) = ((¢-a)”, f).

G
Since this is true for all f € LY(G), we obtain

(g-¢,a) = (¢-a)’(g). =

Let A be an arbitrary commutative Banach algebra. If ¢ € M4 then
¢ -a=a(¢)p, and consequently, ¢ € ap(A). Hence, span My C ap(A).

LEMMA 2.4. If there exists a continuous homomorphism h : L1(G) — A
with dense range, then ap(A) = Span M 4.
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Proof. Let ¢ € ap(A). By Lemma 2.2, ¢ is of the form ¢ = ¢ - a for
some 1 € ap(A) and a € A. Since the set {g-a: g € G} is bounded, from
the identity g-¢ = ¥-(g-a) we deduce that the set {g - ¢ : g € G} is relatively
compact. On the other hand, since the map g — g - ¢ is w*-continuous, it
follows that g — ¢ - ¢ is norm-continuous. Thus ap(A) is an almost periodic
Banach G-module. Hence, ap(A) is generated by the eigenvectors of G. Let
us now find the eigenvectors of G. Assume that g -1 = X(g)¥ for some
x € G, ¢ € A*\{0} and for all g € G. Then for any f € L(G), we can write

v-h(f) = | f(9)(g-¥)dg = Fx)v.
G
It follows that x € sp(h). Since h(L'(G)) is dense in A, we have 1-a = ¢(a)y
for some ¢ € M4 and all a € A. Thus since ker ¢ C ker ¢, we obtain 1 = c¢
for some ¢ # 0. The proof is complete. n

3. The results. The first main result of this note is the following the-
orem.

THEOREM 3.1. Assume that there exists a continuous homomorphism
h: LY(G) — A with dense range. If ¢ € spano.(y) for every ¢ € wap(A)
with compact spectra, then M is scattered.

Proof. 1t suffices to show that every compact subset of M 4 is scattered.
Let p be an arbitrary bounded regular Borel measure on My. Then p can
be considered as a measure on G with supp p C sp(h). First we claim that
1 (g) = i(—g), where i is the Fourier—Stieltjes transform of p. To see this,
let f € L'(G). Then we can write

(0" £) = b)) = § T dnlx S(xf dg) dpu(x)

el G

P
= § (1x(9) dux)) 1(9) S Ag)f
G a
Since this is true for all f € LY(G), we obtain 1" (g) = ji(—g).

Now let K be an arbitrary compact subset of M4 and p be an arbi-
trary continuous regular Borel measure supported on K. To prove that K
is scattered, in view of [7, p. 52, Theorem 10] it is enough to show that yu is
identically zero. By Lemma 2.1, u € wap(A). Hence, by the assumption we
have p € span K. It follows that p"(g) can be approximated in the || - ||oo
norm by linear combinations of the characters in K. Consequently, fi(—g) is

an almost periodic function on G. Let @ be the invariant mean on AP(G).
Since (@, x(g)) =1 if x =1 and (P, x(g)) = 0 if x = 0, we have

(@, X(9)i(—9)) =p{x}=0.
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This shows that all Fourier-Bohr coefficients of the function fi(—g) are zero.
By the uniqueness theorem we obtain ji(—g) =0, and so = 0. This proves
the theorem. m

The next theorem is the second main result of this note.

THEOREM 3.2. Assume that there exists a continuous homomorphism
h : LYG) — A with dense range. If the w*-spectrum of ¢ € wap(A) is
compact and scattered, then ¢ € Spano.(p).

Before giving the proof of this theorem, we need the following facts. For
X € G, Cy[f] denotes the Fourier-Bohr coefficient of a function f € AP(G).
As is known, Cy[f] = |, f(0) do, where X' is the Bohr compactification of G
and f(o) the Bohr extension of f. The Bohr spectrum op(f) of f € AP(G)
is defined as the set of all xy € G such that Cy[f] # 0. We also note that if
f € AP(G) and k € L'(G), then f xk € AP(G) and C\[f x k] = %(X)Cx[f].
It is well known that if f € AP(G), then op(f) C o.(f) and moreover
ou(f)" = 0u(f).

We also need the following lemma.

LEMMA 3.3. If there exists a continuous homomorphism h : L1(G) — A
with dense range, then o.(¢") C ox(p) for every ¢ € A*.

Proof. Let ¢ € A*. Suppose that there is xo € 0.(¢") but xo & o«(¢p).
Then there exists a k € L'(G) such that E(Xg) #0and k = 0 on some
neighborhood of o,(¢). Let m : A — A/, be the canonical map and h =
7o h. Then sp(h) = o.(p). It follows that k belongs to the smallest ideal in
LY(G) whose hull is sp(h). Hence h(k) = 0, so that h(k) € I,,. Consequently,

¢ - h(k) = 0. It follows from the relation ¢V x k = h*(¢ - h(k)) (which can
readily be verified) that k € Iv. Since xo € o4(¢"), we obtain k(xo) = 0.
This is a contradiction. =

Proof of Theorem 8.2. Assume that the w*-spectrum of ¢ € wap(A) is
compact and scattered. By Lemma 3.3, 0.(¢") is also compact and scat-
tered. The Loomis theorem implies that ¢V € AP(G). Since (¢ - h(f))Y
= ¢V * f, we have ¢V * f € AP(Q) for all f € L}(G). Also since h(L'(G))
is dense in A, this clearly implies that (¢ -a)¥ € AP(G) for all a € A.

Now let F' € A*™ be such that F'(x) = 0 for all x € 0.(¢). To prove the
theorem, it suffices to show that F'(¢) = 0. Let X' be the Bohr compactifi-
cation of G, and f(o) (o € X) the Bohr extension of a function f € AP(G).
For any given o € Y, define o - p € A* as follows: Since G is dense in X,
there exists a net (gx)aea in G such that gy — o in X. Taking into account
Lemma 2.3, we can write

lim{gy - p,a) = lim(p - a)(g2) = (¢-@)(0), a€A.
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Since the set {gy - p}aeca is bounded, we can define o - ¢ € A* by

(3.1) oo =w" liing)\ Q.
Note that
(3.2) (0-p,a)=(p-a)'(0), acA

By Lemma 2.2, ¢ can be represented as ¢ = 1) - a for some 1) € wap(A)
and a € A. Since the set {g-a : g € G} is bounded, from the identity g-p =
¥+ (g-a) we deduce that the set {g - ¢ : g € G} is relatively weakly compact.
Using (3.1) we get

o-p= w—liing,\ - (.
Hence, the set {o - p : 0 € X'} is relatively weakly compact (since X' is com-
pact, this set is relatively norm-compact). Using relation (3.2) in the same
way, we can see that the map o — - is weakly continuous on X'. Therefore,
the function g — (F, g-¢) is in AP(G). We claim that (F, g-¢) = (F-¢)"(g).
To see this, let f € L1(G). Since the map g — g - ¢ is weakly continuous,
we have

[(F.g-0)f(9)dg = (F. (g @) f(9)dg) = (F.o- h(f))
G

G
Since this is true for all f € L!(G), our claim follows. We also note that
(3-3) (Fio- @)= (F-¢)¥(0), o€l
v

Let us now find the Fourier-Bohr coefficients of the function (F - ¢)".
For this purpose consider the following vector-valued integral:

ox = | X(0)(0 - ¢) do.

Then we have

<§0X7a> =

e -a) ] =a(x)Cyle"], ac€A
It follows that ¢, = xCy[¢"]. Further, since the mapping o — o-¢ is weakly
continuous, in view of (3.3) we obtain

Cl(F - 9)] = | X(0)(F - ¢)V(0) do = | X(0)(F,0 - ¢) do
X X

= (F,py) = F(X)CX[SOV]-

Since 0.(¢") C o4(p) and F(x) = 0 for all x € o.(p), it follows that all
Fourier—Bohr coefficients of the function (F-¢)V are zero. By the uniqueness
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theorem, (F - )Y = 0. In particular, we have F(p) = (F - ¢)¥(e) = 0. This
proves the theorem. m

Let us record a consequence of this theorem.

COROLLARY 3.4. Assume that there exists a continuous homomorphism
h: LY (G) — A with dense range and M, is scattered. Then the algebra A
is Arens regular if and only if A* = Span M 4.

Proof. 1t is clear that if A* = span M4, then A is Arens regular. Now
assume that A is Arens regular. Then wap(A) = A* by Theorem 1 of [1].
Let ¢ € A*. By Lemma 6.1 of [8] (see also Lemma 2.2 of this note), ¢ is
of the form ¢ = v - a for some » € A* and a € A. It suffices to show
that v - h(f) € span My for every f € LY(G). Let (fi)ics be a bounded
approximate identity for L'(G) such that supp ﬁ (i € I) is compact. Then
(h(fi))ier is a bounded approximate identity for A. Since o, (v) is scattered,
from the relation

0.( - h()h(£)) € 0. () N supp f N supp f;
(which can be readily verified), we deduce that o, (v - h(f)h(f;)) is compact
and scattered. By Theorem 3.2, we have 1 - h(f)h(f;) € Span M4. Since
Y- h(f)h(fi) = ¢ - h(f) in norm, we obtain v - h(f) € span M 4. The proof
is complete. m
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