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Summary. We show that every tame Fréchet space admits a continuous norm and that
every tame Ko6the sequence space is quasi-normable.

1. Introduction. First we recall definitions and basic properties of the
above mentioned classes of spaces. Let X be a Fréchet space with the topol-
ogy defined by an increasing sequence (|| - ||n)nen of seminorms. We call
X tame if the following condition holds: there is an increasing function
S : N — N such that for every continuous linear operator T : X — X
there is a natural kg such that for every k > kg there is a constant C}, such
that

|Tx|x < Cillzllsw) for every z € X.

This class of spaces was defined by D. Vogt and E. Dubinsky in [3]. They
proved that in a tame infinite type power series space every complemented
subspace has a basis. For other papers related to the notion of tameness see
[7]-[9]. It is known that every finite type power series space is tame (see
[10, Lemma 5.1]). The aim of this paper is to analyze which Kéthe sequence
spaces are tame.

We call X quasi-normable if for every 0-neighbourhood U there exists
another 0-neighbourhood V such that for every ¢ > 0 we can find a bounded
set B in X such that

V ceU+ B.

The class of quasi-normable spaces was introduced by A. Grothendieck in [4].

See also [2], [6]. By L(X) we denote the linear space of all continuous linear
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operators acting on X. For any operator A € L(X) we define

oa(k) =inf{n € N: sup [Az|i < oo}.
lllln<1

Let I be an arbitrary index set and A = (a"),en a sequence of nonnegative
functions defined on I with the property that a}' < a?“ forallmn e N,7 € I.
Let us recall that for 1 < p < 0o a Kéthe sequence space is defined as follows:

(I, A) = {x = (x1,29,...) : [|z||g := (Z(af]%])p) v < oo Vk e N}
iel

and

Aoo(I,A) = {x = (x1,22,...) : |z|s = supaf|z;| < oo Vk € N}
el

(see [5, 27]). For other notions from functional analysis used in this paper
see [5].

2. Preliminary results
LEMMA 1. The space w of all sequences is not tame.
Proof. Recall that

w=A{z = (z1,22,...) : ||z]|s = max|z;| < oco}.
i<k

Let S : N — N be an arbitrary increasing function and let 4 : w — w be an
operator defined as
A((z)jen) = (xS(j-l-l))jeN-
Let
™ =(0,...,0,n,0,...).
!

place S(k+1)

Then [|Az™|; = n and Hx(”)HS(k) = 0. Therefore there is no constant
C such that ||Az[|y < C||z|sx) for all z € w, which proves that w is not
tame. =

LEMMA 2. Tameness is inherited by complemented subspaces.

Proof. Let P : E — X be a projection. If A is a continuous linear
operator on X then the operator Ao P : E — X is an element of L(E).
Thus

[Az[lp = [|A o Prlr < Crllzllo,p k)

and o4(k) < oap(k). If oap(k) < S(k) then o4(k) < S(k) and thus if E is
tame then X is tame as well. m
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Let ¢ : N — N be an arbitrary increasing function and define spaces of
linear continuous operators

Ly(X)={Ae€ L(X):Vk e N3IC, Vz € X ||Az|) < Cillzllpu )}
L¢’n(X) = {A € L(X) Vk>ndC, Ve e X HAka < Ckaqu(k)}

If we put
[Allgy = sup || Az,
Izl pesy <1

then L4(X) and Ly ,(X) are Fréchet spaces with the sequences of seminorms
defined as [|-|lm = maxi<i<m [|*l4i); @and [|-[lm = maxn<i<m || [[4().i» respec-
tively. Only completeness needs a comment. If (A,), is a Cauchy sequence
in Ly(X) then for every € X the sequence (A,x), is a Cauchy sequence in
the complete space X. This means that for the operator Az = lim, .o, Apx
we have

This implies that [|Az|l, < (CF + )|zl = Drllzllse) for all k, which
shows that A € L4(X). The proof in the case of Ly ,,(X) is the same.

LEMMA 3. In every tame Fréchet space X the following condition holds:
there exists b : N — N such that for any ¢ : N — N there exists k € N such
that for all m > k there are n € N and a constant Cy, > 0 such that

(1) VameXhyeX: max [27lfylyll < Cm max [l2[5) [yl

where ||z* ||}, = supjjy, <1 17" (z)[-

Proof. If the space X is tame with the function ¢ then every con-
tinuous linear operator is an element of a certain L, j so we may write
L(X) = Upen Ly,k(X). If we now endow the space L(X) with the topology
of pointwise convergence then for every increasing function ¢ : N — N we
obtain the following diagram where the arrows represent continuous linear
mappings:

Ui Loy —— L

T
Ly
The continuity of the horizontal arrow comes from the following argument:
for every 0-neighbourhood U(0, z1,...,2n,k,e) = {A € L(X): V1 <i<n
|Az;||x < €} in L we define a O-neighbourhood V = {4 € Ly : ||Allx <
e/M} in Ly, where M = maxi<i<y ||2i||x. As is easily seen, id(V) C U. The
continuity of the vertical arrow is proved similarly. Using Grothendieck’s
Factorization Theorem [5, 24.33] we find a natural number k such that L
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embeds continuouosly in Ly ;. In other words in the tame Fréchet space the
following holds:

(2) F S ooVo oo Ik Vm >k In,Cp VT € Ly(X) :

T < T .
Joax [Ty < Cm max [Tlloe).p
In particular, for one-dimensional operators 7', Tx = z*(x)y, 2* € X,y € X,
we get (1). m

LEMMA 4. Let \,(I,A) be an arbitrary Kothe sequence space. If it is
not quasi-normable then, without loss of generality, we may assume that A

satisfies the following conditions: al1 = 1 for all i, and for every natural

number m there exists an index subset J, = {i(m,j) : j € N} such that
m+1

) =Cm <00 and lima = 00.

(3) sgpa maji ) =

mo
i(m,J

Proof. From [2, Th. 17] it follows that if \,(I, A) is not quasi-normable
then

n n
InVm>n3JCI: inf 2= > 0 and infa—2:O for some k(m) > m.
i€ agt i€J ay

Firstly, we may assume that n = 1 and a} = 1 for all i (by dividing by a}).
Secondly, every set .J,, is infinite so we may write J,, = {i(m,j) : j € N}
Finally, omitting rows of the matrix A suitably, numbers k(m) can be chosen
as k(m)=m+1formeN. u

2. Main results
PROPOSITION 5. Ewvery tame Fréchet space has a continuous norm.

Proof. If the space does not admit a continuous norm then from [1, Lem-
mas 1 and 2] it contains w as a complemented subspace; but then from our
assumption and Lemma 2, w is tame, which contradicts Lemma 1. =

THEOREM 6. Tame Kothe sequence spaces are quasi-normable.

Proof. By Proposition 5 we may assume that a¥ > 0 for alli € I, k € N.
Suppose that \,(I, A) is a tame Kothe space which is not quasi-normable.
Using Lemma 3 we may write

* || % k|| %
= H¢(k)||y”k < Cy fgﬁ?ﬂ“x H¢(p)Hy||p-

Without losing of generality we may assume that n > k. For all j,v € N
define
Tyl = Ti(g(k-1)0)  A0d Yj = €i(ho1,5),

where z; denotes the ith coordinate of the vector z, e; is the ith vector of
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the standard basis, and i(k, j) denotes the index of number j from the index

set Ji. Since ||y, = af(k_w) and ||z} = (ai.((b(k_l)yv))_l, we obtain for all

7,v € N the inequality

a’?(k 1) al.’(k 1)

1(k—1,7 UWR—1,7

) k) = Ok e
1(¢(k—1)7v) Z(d’(k_l)ﬂ})

The function ¢ has been arbitrary so far but from now on we choose ¢(k —1)
= 9 (k). Without loss of generality we may assume that v is strictly increasing,
which, combined with Lemma 4, gives us

(k) oh-1)

Qi p(k—1)0) — Yi(p(k—1)0) = Co(k—1)
for all v and

(5) Tie-1,9) FERNE

Equivalently we may write

k
1 k Yi(k=1,4)
(6) U1 S Ty
P (k1))
The estimates of the right hand side of (4) will be divided into two cases. If
p <k —1 then

#(p)

k—1 1
Clho1) < Gigpory) S -1 A g gy ) > Gty = 1

for all j,v. If p > k then also ¢(p) > ¢(k) > ¢(k — 1) + 1, which leads to

é(p) d(k—1)+1
Ui(oh—1)) = Li(oh—1)0) yooe O
and
a? L >ak N ——— 00.
Z(k_lz.]) - Z(k:_lmj) ]—)OO

This implies that for every natural number j there is an index v; € N depend-
. é(p) p
ing on k£ but not on p such that Wil (k—1)0;) > Ti(k—1,5)
from {z}}72, the subsequence (7 );cy then we obtain the inequality

. If we now extract

(7) max M < max{cg_1,1} =d
1<p<n ,0(P) = =1y 25 = Ok
i(p(k=1),v5)

Combining the inequalities (4), (6) and (7) we finally get

a?(k—Lj) < Cregr—1)dr < oo for all j;

but, by (5), lim; a’f(k—l,j) = 00, a contradiction. This completes the proof. m
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