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Summary. Using an inequality related to the mean curvature, we give a sufficient con-
dition for an isotropic immersion of a complex space form into a real space form to be
parallel.

1. Introduction. Parallel submanifolds of real space forms are ones
of the most interesting objects in differential geometry (cf. [F-1, T]). Here,
we have in mind the following fact: “all parallel immersions of Riemannian
symmetric spaces of rank one into a real space form are isotropic but there
exist many isotropic immersions of these spaces into a real space form, which
are not parallel.” For example, the fourth standard minimal immersion f :
S3(1/8) → S24(1) is isotropic, but not parallel. So, sufficient conditions
for these isotropic immersions to be parallel are worth considering. In this
paper, we are interested in parallel immersions of a complex space form into
a real space form.

We have proved the following theorem in the previous paper [B]:

Theorem A. Let f be a λ-isotropic immersion of an n(≥ 2)-dimension-
al compact oriented real space form Mn(c;R) of constant sectional curvature

c into an m-dimensional real space form M̃m(c̃;R) of constant sectional
curvature c̃. Suppose that the mean curvature vector field h and the mean
curvature H = ‖h‖ satisfy the following two inequalities:

(i) H2 ≤ 2(n+1)
n c− c̃,

(ii) 0 ≤ (1− n)∆H2 + n〈h,∆h〉,
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where ∆ denotes the Laplacian on Mn(c;R). Then f is a parallel immersion.
Moreover f is locally equivalent to one of the following :

(I) f is a totally umbilic immersion of Sn(c) into M̃m(c̃;R), where c ≥ c̃
and H2 ≡ c− c̃.

(II) f = f2 ◦ f1 : Sn(c)
f1−→ Sn+n(n+1)/2−1(2(n+ 1)c/n)

f2−→ M̃m(c̃;R),
where f1 is the second standard minimal immersion, f2 is a totally
umbilic immersion, 2(n+ 1)c/n ≥ c̃ and H2 ≡ 2(n+ 1)c/n− c̃.

Remark 1. We remark that Theorem A is no longer true if we omit
condition (ii).

In this paper, we consider the case where the submanifold is a complex
space form, and get the following theorem:

Theorem 1. Let f be a λ-isotropic immersion of a complex n(≥ 2)-
dimensional complex space form Mn(4c;C) of constant holomorphic sec-

tional curvature 4c into an m-dimensional real space form M̃m(c̃;R) of con-
stant sectional curvature c̃. Suppose that the mean curvature H satisfies

H2 ≤ 2(n+ 1)

n
c− c̃.

Then f is a parallel immersion. Moreover f is locally equivalent to one of
the following :

(I) f is a totally geodesic immersion of Cn (= R2n) into Rm, where
H ≡ 0.

(II) f is a totally umbilic immersion of Cn into RHm(c̃), where H2 ≡
−c̃.

(III) f = f2 ◦ f1 : CPn(4c)
f1−→ Sn

2+2n−1(2(n + 1)c/n)
f2−→ M̃m(c̃;R),

where f1 is the first standard minimal immersion, f2 is a totally
umbilic immersion, 2(n+ 1)c/n ≥ c̃ and H2 ≡ 2(n+ 1)c/n− c̃.

The main purpose of this paper is to prove Theorem 1.

Remark 2. It is interesting to compare Theorem A with Theorem 1:
the submanifold in Theorem 1 need not be compact, and Theorem 1 does
not require condition (ii) of Theorem A.

The author is grateful to Professor Sadahiro Maeda for his valuable sug-
gestions, and thanks the referee for his good advice.

2. Preliminaries. Let f : M → M̃ be an isometric immersion of a Rie-

mannian manifold M into a Riemannian manifold M̃ with metric 〈 , 〉, and
σ the second fundamental form. We recall the notion of isotropic immersion
(cf. [O]): the immersion f is said to be isotropic if ‖σ(X,X)‖/‖X‖2 is con-
stant for all x ∈M and all tangent vectors X (6= 0) to M at x. If we define



Isotropic Immersions of Space Forms 433

the function λ on M by x(∈ M) 7→ ‖σ(X,X)‖/‖X‖2, then the immersion
f is also said to be λ-isotropic. Note that totally umbilic immersions are
isotropic, but not vice versa.

An n-dimensional real space form Mn(c;R) is a Riemannian manifold
of constant sectional curvature c, which is locally congruent to a standard
sphere Sn(c), a Euclidean space Rn or a real hyperbolic space RHn(c), ac-
cording as c is positive, zero or negative. An n-dimensional complex space
form Mn(c;C) is a Kähler manifold of constant holomorphic sectional cur-
vature c, which is locally congruent to a complex projective space CP n(c),
a complex Euclidean space Cn (= R2n) or a complex hyperbolic space
CHn(c), according as c is positive, zero or negative. An n-dimensional
quaternionic space form Mn(c;Q) is a quaternionic Kähler manifold of con-
stant quaternionic sectional curvature c, which is locally congruent to a
quaternionic projective space QP n(c), a quaternionic Euclidean space Qn
(= R4n) or a quaternionic hyperbolic space QHn(c), according as c is posi-
tive, zero or negative.

3. Proof of Theorem 1. Let J be the complex structure on Mn(4c;C).
Then the curvature tensor R of Mn(4c;C) is given by

R(X,Y )Z = c{〈Y,Z〉X − 〈X,Z〉Y + 〈JY,Z〉JX(3.1)

− 〈JX,Z〉JY + 2〈X,JY 〉JZ}
for all X,Y,Z ∈ X(Mn(4c;C)), where we denote by X(Mn(4c;C)) the set of
all vector fields on Mn(4c;C).

Since f is λ-isotropic, we have 〈σ(X,X), σ(X,X)〉 = λ2〈X,X〉〈X,X〉 for
all X ∈ X(Mn(4c;C)), which is equivalent to

(3.2) 〈σ(X,Y ), σ(Z,W )〉+ 〈σ(X,Z), σ(W,Y )〉+ 〈σ(X,W ), σ(Y,Z)〉
= λ2{〈X,Y 〉〈Z,W 〉+ 〈X,Z〉〈W,Y 〉+ 〈X,W 〉〈Y,Z〉}

for all X,Y,Z,W ∈ X(Mn(4c;C)).
The Gauss equation is written as follows:

(3.3) 〈σ(X,Y ), σ(Z,W )〉 − 〈σ(Z, Y ), σ(X,W )〉
= 〈R(Z,X)Y,W 〉 − c̃{〈X,Y 〉〈Z,W 〉 − 〈Z, Y 〉〈X,W 〉}

for all X,Y,Z,W ∈ X(Mn(4c;C)).
It follows from (3.1)–(3.3) that

〈σ(X,Y ), σ(Z,W )〉 =
λ2 + 2(c− c̃)

3
〈X,Y 〉〈Z,W 〉(3.4)

+
λ2 − (c− c̃)

3
{〈X,W 〉〈Y,Z〉+ 〈X,Z〉〈Y,W 〉}

+ c{〈JX,W 〉〈JY,Z〉+ 〈JX,Z〉〈JY,W 〉}
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for all X,Y,Z,W ∈ X(Mn(4c;C)). This yields

H2 =
(n+ 1)λ2 + 2(n+ 1)c− (2n− 1)c̃

3n
,(3.5)

‖σ(X,JX)‖2 =
λ2 − 4c+ c̃

3
,(3.6)

where X ∈ X(Mn(4c;C)) with ‖X‖ = 1. It follows from (3.5) and (3.6) that

H2 − 2(n+ 1)

n
c+ c̃ =

n+ 1

n
‖σ(X,JX)‖2 ≥ 0,

where X ∈ X(Mn(4c;C)) with ‖X‖ = 1.
Therefore, H2 ≡ 2(n+ 1)c/n− c̃ by assumption, so that

(3.7) σ(X,JX) = 0

for all X ∈ X(Mn(4c;C)). From (3.7), we get

σ(X,Y ) = σ(JX, JY )

for all X,Y ∈ X(Mn(4c;C)). Consequently, the immersion f is parallel (cf.
[F-2]). The classification theorem for parallel submanifolds of a real space
form completes the proof (cf. [F-1, T]).

4. Quaternionic case. In this section, we consider the case where the
submanifold is a quaternionic space form, and get the following theorem:

Theorem 2. Let f be a λ-isotropic immersion of a quaternionic n(≥ 2)-
dimensional quaternionic space form Mn(4c;Q) of constant quaternionic

sectional curvature 4c into an m-dimensional real space form M̃m(c̃;R) of
constant sectional curvature c̃. Suppose that the mean curvature H satisfies

H2 ≤ 2(n+ 1)

n
c− c̃.

Then f is a parallel immersion. Moreover f is locally equivalent to one of
the following :

(I) f is a totally geodesic immersion of Qn (= R4n) into Rm, where
H ≡ 0.

(II) f is a totally umbilic immersion of Qn into RHm(c̃), where H2 ≡
−c̃.

(III) f = f2 ◦ f1 : QPn(4c)
f1−→ S2n2+3n−1(2(n+ 1)c/n)

f2−→ M̃m(c̃;R),
where f1 is the first standard minimal immersion, f2 is a totally
umbilic immersion, 2(n+ 1)c/n ≥ c̃ and H2 ≡ 2(n+ 1)c/n− c̃.
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Proof. Let {I, J,K} be the canonical local basis on Mn(4c;Q). Then the
curvature tensor R of Mn(4c;Q) is given by

R(X,Y )Z = c{〈Y,Z〉X − 〈X,Z〉Y + 〈IY, Z〉IX − 〈IX,Z〉IY(4.1)

+ 〈JY,Z〉JX − 〈JX,Z〉JY + 〈KY,Z〉KX
− 〈KX,Z〉KY + 2〈X, IY 〉IZ
+ 2〈X,JY 〉JZ + 2〈X,KY 〉KZ}

for all X,Y,Z ∈ X(Mn(4c;Q)). It follows from (3.2), (3.3) and (4.1) that

〈σ(X,Y ), σ(Z,W )〉 =
λ2 + 2(c− c̃)

3
〈X,Y 〉〈Z,W 〉(4.2)

+
λ2 − (c− c̃)

3
{〈X,W 〉〈Y,Z〉

+ 〈X,Z〉〈Y,W 〉}+ c{〈IX,W 〉〈IY, Z〉
+ 〈IX,Z〉〈IY,W 〉+ 〈JX,W 〉〈JY,Z〉
+ 〈JX,Z〉〈JY,W 〉+ 〈KX,W 〉〈KY,Z〉
+ 〈KX,Z〉〈KY,W 〉}

for all X,Y,Z,W ∈ X(Mn(4c;Q)). Equation (4.2) yields

H2 =
(2n+ 1)λ2 + 4(n+ 2)c− (4n− 1)c̃

6n
,(4.3)

‖σ(X, IX)‖2 = ‖σ(X,JX)‖2 = ‖σ(X,KX)‖2 =
λ2 − 4c+ c̃

3
,(4.4)

where X ∈ X(Mn(4c;Q)) with ‖X‖ = 1. It follows from (4.3) and (4.4) that

H2 − 2(n+ 1)

n
c+ c̃ =

2n+ 1

2n
‖σ(X, IX)‖2 =

2n+ 1

2n
‖σ(X,JX)‖2

=
2n+ 1

2n
‖σ(X,KX)‖2 ≥ 0,

where X ∈ X(Mn(4c;Q)) with ‖X‖ = 1.
Therefore, H2 ≡ 2(n+ 1)c/n− c̃ by assumption, so that

(4.5) σ(X, IX) = σ(X,JX) = σ(X,KX) = 0

for all X ∈ X(Mn(4c;Q)). From (4.5), we get

σ(X,Y ) = σ(IX, IY ) = σ(JX, JY ) = σ(KX,KY )

for all X,Y ∈ X(Mn(4c;Q)). Consequently, f is parallel (cf. [M]). The clas-
sification theorem for parallel submanifolds of a real space form completes
the proof (cf. [F-1, T]).
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