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Summary. Let M be a complete Riemannian manifold which is a Galois covering, that
is, M is periodic under the action of a discrete group G of isometries. Assuming that G
has polynomial volume growth, we provide a new proof of Gaussian upper bounds for
the gradient of the heat kernel of the Laplace operator on M . Our method also yields a
control on the gradient in case G does not have polynomial growth.

1. Introduction. Consider a complete, non-compact, connected Rie-
mannian manifold M . Suppose that a finitely generated discrete group G
acts properly and freely on M by isometries, such that the orbit space
M1 = M/G is a compact manifold. In other words, M is a Galois covering
manifold of the compact Riemannian manifold M1, with deck transforma-
tion group (isomorphic to) G. In this paper, we study regularity properties
of the heat kernel on M .

We will assume that G has polynomial volume growth of some order
D ≥ 1. That is, after fixing a finite set S ⊆ G of generators which is
symmetric (S = S−1), one has an estimate c−1kD ≤ dg(Sk) ≤ ckD for all
k ∈ N, where dg is the counting measure on G and Sk := {g1 · · · gk : gj ∈ S}
(for background, see [9, Chapters VI and X]). Remark that the simplest
case of our setting occurs with M = RD endowed with a Riemannian metric
which is periodic under the standard action of G = ZD by translations.

Denote by Kt(x, y), t > 0, x, y ∈ M , the heat kernel of the Laplace
operator H on M . Under our assumptions on M and G, it is well known
that one has, for some c, b > 0, the Gaussian estimate

Kt(x, y) ≤ cV (x, t1/2)−1e−bd(x,y)2/t(1)
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for all t > 0 and x, y ∈ M (see for example [7, 8]). Here, d(x, y) is the
Riemannian distance and V (x, r) := dx(B(x, r)) is the Riemannian measure
of the ball B(x, r) = {y ∈M : d(x, y) < r}.

The following theorem was proved in [4]. Adopt the convention that
∇Kt(x, y) = ∇xKt(x, y) denotes the gradient with respect to the first vari-
able of the two-variable kernel Kt(·, ·).

Theorem 1.1. There exist c, b > 0 such that

|∇Kt(x, y)| ≤ ct−1/2V (x, t1/2)−1e−bd(x,y)2/t

for all t > 0 and x, y ∈M .

In this paper, we give an alternative proof of Theorem 1.1 which is more
direct than that of [4], and does not depend on a global parabolic Harnack
inequality or Hölder regularity estimates from [8]. Instead, it depends on
(1) and its standard consequences, together with the periodicity (i.e., G-
invariance) of the Laplace operator H.

We remark that our proof could be adapted to give a new proof of gra-
dient estimates for second-order, divergence-form elliptic operators on RD
with smooth, possibly complex, periodic coefficients (see [5] and references
therein).

Moreover, our method gives a certain control over the gradient on gen-
eral covering manifolds, without any assumption of polynomial growth. See
Remark 2.4 below for a new inequality in this situation.

As an interesting application of Theorem 1.1, note that recent work [1]
allows one to deduce from Theorem 1.1 that the Riesz transform ∇H−1/2

is bounded in Lp(M) for all 1 < p < ∞. The boundedness of the Riesz
transform was obtained by different methods in [4].

2. Proof of Theorem 1.1. In general, c, c′, b and so on denote positive
constants whose value may change from line to line when convenient. One
has the standard volume estimates

c−1rn ≤ V (x, r) ≤ crn, 0 < r < 1,

c−1rD ≤ V (x, r) ≤ crD, r ≥ 1,

uniformly for all x ∈M , where n is the local Euclidean dimension of M and
D is the order of polynomial growth of G. Denote the action of G on M by
g · x = gx for g ∈ G, x ∈ M . In what follows, we fix a relatively compact,
open fundamental domain X ⊆ M : thus the sets gX := {gx : x ∈ X},
g ∈ G, are pairwise disjoint subsets of M , and M \ (

⋃
g∈G gX) is a set of

measure zero.
Using a local Harnack inequality for solutions of the heat equation (for

example, [9, Theorem V.5.1]), one may deduce from (1) the estimate of
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Theorem 1.1 for small times: for any t0 ∈ (0,∞), one has an estimate

|∇Kt(x, y)| ≤ ct−1/2t−n/2e−bd(x,y)2/t

for all t ∈ (0, t0] and x, y ∈ M (for details see [4, Theorem 2.4]). Thus, to
get Theorem 1.1 it remains to show that, for some t0 > 0, one has

|∇Kt(x, y)| ≤ ct−1/2t−D/2e−bd(x,y)2/t(2)

for all t ≥ t0 and x, y ∈M .
By general methods (see for example [3, 6]), one obtains from (1) esti-

mates of the time derivatives of Kt. Thus there is a b > 0 such that, for any
k ∈ N0 = {0, 1, 2, . . .}, there exists c > 0 with

|∂k0Kt(x, y)| ≤ ct−kV (x, t1/2)−1e−bd(x,y)2/t(3)

for all t > 0 and x, y ∈M , where ∂0 = ∂/∂t denotes the time derivative. An
integration of estimates (3) shows that there exists α > 0 such that, given
any k ∈ N0, one has an estimate of form

�

M

dy eαd(x,y)2/t|∂k0Kt(x, y)|2 ≤ ct−2kV (x, t1/2)−1 ≤ c′t−2kt−D/2(4)

for all t ≥ 1 and x ∈ M . Using (3), one may also argue (see [6] or [2]) that
there is α > 0 such that

�

M

dx eαd(x,y)2/t|∇Kt(x, y)|2 ≤ ct−1V (y, t1/2)−1

for all y ∈M and t > 0. Integrating this estimate over y ∈ X yields
�

M

dx
�

X

dy eαd(x,y)2/t|∇Kt(x, y)|2 ≤ ct−1t−D/2(5)

for all t ≥ 1. Now observe:

Lemma 2.1. Let P : M ×M → [0,∞) be a measurable function which is
G-invariant , that is, P (gx, gy) = P (x, y) for all g ∈ G and x, y ∈M . Then

�

M

dx
�

X

dy P (x, y) =
�

X

dx
�

M

dy P (x, y).

Proof. The left side equals
�

G

dg
�

X

dy
�

X

dxP (gx, y) =
�

G

dg
�

X

dy
�

X

dxP (x, g−1y)

=
�

X

dx
�

M

dy P (x, y),

as required.
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The kernel (x, y) 7→ eαd(x,y)2/t|∇Kt(x, y)|2 is G-invariant, so we may
rewrite (5) as �

X

dx
�

M

dy eαd(x,y)2/t|∇Kt(x, y)|2 ≤ ct−1t−D/2(6)

for all t ≥ 1. The following lemma is essentially a local regularity estimate
for Kt; we postpone the proof. Denote by e the identity of G.

Lemma 2.2. There exists a finite set A ⊆ G with e ∈ A such that , setting
A ·X = {gx : g ∈ A, x ∈ X} ⊆M , one has

|∇Kt(u, y)|2 ≤ c
t+1�

t−1

ds
�

A·X
dx (|∇Ks(x, y)|2 + |∂0Ks(x, y)|2)

for all t ≥ 2, u ∈ X and y ∈M .

The triangle inequality gives d(u, y)2≤ 2(d(u, x)2 + d(x, y)2)≤ 2d(x, y)2

+ 2c2
0 for all u ∈ X, x ∈ A ·X and y ∈M , where c0 = sup{d(x1, x2) : x1, x2

∈ A · X} < ∞. Therefore, by multiplying both sides of the estimate in
Lemma 2.2 by eβd(u,y)2/t, for some constants c, c′ > 1 one obtains

eβd(u,y)2/t|∇Kt(u, y)|2

≤ c
t+1�

t−1

ds
�

A·X
dx ec

′βd(x,y)2/s(|∇Ks(x, y)|2 + |∂0Ks(x, y)|2)

for all β ≥ 0, t ≥ 2, u ∈ X, and y ∈M . Let α > 0 be such that estimates (4)
and (6) hold, and set β = (c′)−1α. Integrating the last estimate over y ∈M
yields

(7)
�

M

dy eβd(u,y)2/t|∇Kt(u, y)|2

≤ c
t+1�

t−1

ds
�

X

dx
�

M

dy eαd(x,y)2/s(|∇Ks(x, y)|2 + |∂0Ks(x, y)|2) ≤ c′t−1t−D/2

for all t ≥ 2 and u ∈ X. (Here, for the first inequality we used the fact that a
G-invariant kernel P satisfies � A·X dx � M dy P (x, y)=c1 � X dx � M dy P (x, y),
where c1 is the finite cardinality of A.) Then for all u ∈ X and z ∈ M , by
writing d(u, z)2 ≤ 2d(u, y)2 + 2d(y, z)2, we deduce for some γ > 0 that

eγd(u,z)2/t|∇Kt(u, z)|
≤

�

M

dy e2γd(u,y)2/t|∇Kt/2(u, y)|e2γd(y,z)2/t|Kt/2(y, z)|

≤
( �

M

dy e4γd(u,y)2/t|∇Kt/2(u, y)|2
)1/2( �

M

dy e4γd(z,y)2/t|Kt/2(z, y)|2
)1/2

≤ ct−1/2t−D/2
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for all t ≥ 4, where the second step used the symmetry Ks(y, z) = Ks(z, y)
and the last step used (7) and (4). Since Kt is G-invariant, this establishes
(2) for all t ≥ 4 and x, y ∈M , and Theorem 1.1 follows.

It remains to prove Lemma 2.2. We need the following, rather crude
local estimate which is valid for an arbitrary Riemannian manifold M . By a
harmonic function we mean a function F which satisfies the heat equation
(∂0 +H)F = 0 in some open set V ′ ⊆ R×M .

Lemma 2.3. Let V ′ be an open subset of R ×M and K ′ be a compact
subset of V ′. Then there exists c > 0 such that

‖∂0F‖L∞(K′) + ‖∇F‖L∞(K′) ≤ c(‖∂0F‖L2(V ′) + ‖∇F‖L2(V ′))

for all functions F harmonic in V ′. (Here, the L2 norm is taken with respect
to the measure dtdx on R×M .)

Proof. Since the desired estimate is local in nature, without loss of gen-
erality we may assume that V ′ is a small ball in the Riemannian manifold
M̃ = R ×M . Choose a ball U ′ with K ′ ⊆ U ′ ⊆ U ′ ⊆ V ′. Let ∇̃ denote
the gradient for M̃ . Because the operator ∂0 +H is hypoelliptic, one has an
estimate

‖∇̃F‖L∞(K′) ≤ c‖F‖L2(U ′)(8)

for all functions F harmonic in U ′ (see for example [9, Corollary III.1.3]). Let
F be a harmonic function in V ′ and set a = (volU ′)−1 � U ′ F , the average of
F on U ′. From (8) and a local Poincaré inequality for balls of M̃ , we obtain

‖∇̃F‖L∞(K′) = ‖∇̃(F − a)‖L∞(K′) ≤ c‖F − a‖L2(U ′) ≤ c′‖∇̃F‖L2(V ′).

This proves the lemma.

To prove Lemma 2.2, choose a relatively compact, open set U ⊆ M
with X ⊆ U . There exists a finite set A ⊆ G, with e ∈ A, such that the set
U \(A·X) has measure zero. We can apply Lemma 2.3 with V ′ = (−1, 1)×U
and K ′ = [−1/2, 1/2] × X to the harmonic functions F(t,y), y ∈ M , t ≥ 2,
defined by F(t,y)(s, x) := Kt+s(x, y) for s > −t, x ∈ M . Then Lemma 2.2
follows easily. The proof of Theorem 1.1 is complete.

Remark 2.4. Let us explain some general inequalities which relate to
the above proof. Adapting notation of [6], we consider the quantities

E0(y, t) =
�

M

dxKt(x, y)2 = K2t(y, y), E2(y, t) =
�

M

dx |∂0Kt(x, y)|2,

E1(y, t) =
�

M

dx |∇Kt(x, y)|2, Ẽ1(y, t) =
�

M

dx |∇Kt(y, x)|2

for t > 0 and y ∈ M . Grigor’yan [6] shows on arbitrary manifolds that any
estimate of the form E0(y, t) ≤ 1/f(t), t > 0, leads to upper estimates of
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E1(y, ·) and E2(y, ·). In fact, one has general inequalities ([6, p. 372])

Ei(y, t) ≤ c
( t�

0

dτ (Ei−1(y, τ))−1
)−1

(9)

for i = 1, 2 and all t > 0. On the other hand, the gradient of the heat kernel
is estimated in terms of Ẽ1 and E0 by

|∇K2t(x, y)| ≤ (Ẽ1(x, t))1/2(E0(y, t))1/2

for any x, y ∈M . We claim that

sup
u∈M

Ẽ1(u, t) ≤ c
�

X

dxE1(x, t− 1)(10)

for all t ≥ 2, where X is a fundamental domain. Inequality (10) is valid
for any Galois covering manifold M , that is, no assumption of polynomial
growth is required. Thus on covering manifolds, the above remarks allow one
to estimate |∇Kt(x, y)| given knowledge of the quantity E0. For estimates
of E0 on covering manifolds, see for example [7].

The proof of (10) is a variation of the proof of Theorem 1.1. First observe
that, by G-invariance, supu∈M Ẽ1(u, t) = supu∈X Ẽ1(u, t). Then integrate
the estimate of Lemma 2.2 over y ∈ M (with a time interval of length 1
instead of 2), and apply Lemma 2.1 to obtain

sup
u∈X

Ẽ1(u, t) ≤ c
t+(1/2)�

t−(1/2)

ds
�

X

dx (E1(x, s) + E2(x, s))

for all t ≥ 2. The functions t 7→ Ei(x, t) are non-increasing: see [6]. By taking
an interval of integration [t − 1/2, t] in (9), one easily sees that E2(x, t) ≤
c′E1(x, t− 1/2) for all t > 1/2. Then (10) follows.
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