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Summary. Let D be an open convex set in Rd and let F be a Lipschitz operator defined
on the space of adapted càdlàg processes. We show that for any adapted process H and
any semimartingale Z there exists a unique strong solution of the following stochastic
differential equation (SDE) with reflection on the boundary of D:

Xt = Ht +
t�

0

〈F (X)s−, dZs〉+Kt, t ∈ R+.

Our proofs are based on new a priori estimates for solutions of the deterministic Skorokhod
problem.

1. Introduction. In the present paper we consider the following SDE
with reflection on the boundary ∂D of an open convex set D ⊂ Rd:

Xt = Ht +
t�

0

〈F (X)s−, dZs〉+Kt, t ∈ R+.(1.1)

Here Z = (Zt) is an (Ft) adapted semimartingale with Z0 = 0, H = (Ht)
is an (Ft) adapted process with H0 ∈ D = D ∪ ∂D and F is a Lipschitz
operator on the space of adapted càdlàg processes (for a precise definition
see Section 3).

The problem of existence and uniqueness of solutions of (1.1) was dis-
cussed for the first time by Skorokhod [7] in the case where d = 1, D =
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(0,∞), H = X0 ∈ [0,∞) and Z is a standard Wiener process W . Next, many
attempts have been made to generalize Skorokhod’s results to a larger class
of domains or a larger class of driving processes Z. In particular, existence
and uniquness of solutions of (1.1) with Z = W for an arbitrary convex
set D was proved by Tanaka [11]. SDEs driven by general semimartingales
were considered in detail by Słomiński [8, 9]. Let us stress, however, that in
the above mentioned papers [8, 9, 11] it is assumed that H = X0 and that
F (X)s− = f(Xs−), where f is a Lipschitz continuous function.

In the present paper we show existence and uniqueness of solutions of
the SDE (1.1) for an arbitrary (Ft) adapted process H = (Ht) with H0 ∈ D
and an arbitrary Lipschitz operator F , and thus we generalize the results of
[8, 9, 11] considerably. The proof of our main result is based on new a priori
estimates for the solution of the deterministic Skorokhod problem

xt = yt + kt, t ∈ R+,(1.2)

associated with a y ∈ D(R+,Rd) such that y0 ∈ D. These estimates say that
for any T ∈ R+ and any a ∈ D, supt≤T |xt − a| and |k|T are bounded by
constants depending only on y0, supt≤T |yt−a| and the modulus of continuity
ω′y. As a consequence, we prove existence and uniqueness of solutions of the
Skorokhod problem (1.2) in an arbitrary open convex set D. In this way
we solve Tanaka’s problem (see [11, Remark 2.3]) concerning existence of a
solution of the Skorokhod problem associated with y ∈ D(R+,Rd) (in the
case where y is continuous, Tanaka’s problem was solved earlier by Cépa [2]).

Notation. D(R+,Rd) is the space of all mappings y : R+ → Rd which
are right-continuous and admit left-hand limits. Every process appearing
in what follows is assumed to have its trajectories in the space D(R+,Rd)
endowed with the Skorokhod topology J1. If X = (X1, . . . , Xd) is a semi-
martingale then [X]t =

∑d
i=1[Xi]t, where [X i] stands for the quadratic

variation process of X i, i = 1, . . . , d. Similarly, 〈X〉t =
∑d

i=1〈Xi〉t, where
〈Xi〉t stands for the predictable compensator of [X i], i = 1, . . . , d. If
K = (K1, . . . ,Kd) is a process with locally finite variation, then |K|t =∑d

i=1 |Ki|t, where |Ki|t is the total variation of K i on [0, t]. For x ∈
D(R+,Rd), δ > 0, T ∈ R+ we denote by ω′x(δ, T ) the modulus of conti-
nuity of x on [0, T ], i.e.

ω′x(δ, T ) = inf{max
i≤r

ωx([ti−1, ti)) ; 0 = t0 < · · · < tr = T, inf
i<r

(ti − ti−1) ≥ δ},

where ωx(I) = sups,t∈I |xs − xt|.

2. The Skorokhod problem. Let D be an open convex domain in Rd
and let Nx denote the set of inward normal unit vectors at x ∈ ∂D.

The following remark can be found in Menaldi [4] and Storm [10].
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Remark 2.1. (i) n ∈ Nx if and only if 〈y − x,n〉 ≥ 0 for every y ∈ D,
where 〈·, ·〉 denotes the usual inner product in Rd.

(ii) If dist(x,D) > 0, then there exists a unique Π(x) ∈ ∂D such that
|Π(x)− x| = dist(x,D). Moreover, (Π(x)− x)/|Π(x)− x| ∈ NΠ(x).

(iii) For every a ∈ D and n ∈ Nx,

〈x− a,n〉 ≤ −dist(a, ∂D).

Let y ∈ D(R+,Rd) with y0 ∈ D. We say that a pair (x, k) is a solution
of the Skorokhod problem associated with y if

(2.1) xt = yt + kt, t ∈ R+,
(2.2) xt ∈ D, t ∈ R+,
(2.3) k is a function with locally bounded variation, k0 = 0, and

kt =
t�

0

ns d|k|s, |k|t =
t�

0

1{xs∈∂D} d|k|s, t ∈ R+,

where ns ∈ Nxs if xs ∈ ∂D.

The following estimates on the solution of the Skorokhod problem will
prove extremely useful in the proofs of our main results.

Theorem 2.2. Let (x, k) be a solution of the Skorokhod problem asso-
ciated with y, and let y0 ∈ D. Then for any T > 0, η > 0 and a ∈ D such
that

ω′y(η, T ) <
dist(a, ∂D)

2
(2.4)

we have

(i) sup
t≤T
|xt − a| ≤ 6([T/η] + 1) sup

t≤T
|yt − a|,

(ii) |k|T ≤
71([T/η] + 1)3

dist(a, ∂D)
sup
t≤T
|yt−a|2

([T/η] denotes the largest integer less than or equal to T/η).

Proof. (i) We proceed along the lines of the proof of Theorem 3.2 in [2].
Let 0 ≤ t ≤ T . It is easily seen that

|xt − a|2 = |yt − a|2 + 〈kt, kt〉+ 2
t�

0

〈yt − a, dku〉

= |yt − a|2 + 2
t�

0

〈ku, dku〉 −
∑

u≤t
|∆ku|2 + 2

t�

0

〈yt − a, dku〉

= |yt − a|2 + 2
t�

0

〈xu − a, dku〉+ 2
t�

0

〈yt − yu, dku〉 −
∑

u≤t
|∆ku|2.
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Therefore, for any 0 ≤ s ≤ t ≤ T ,

|xt − a|2 − |xs − a|2 = |yt − a|2 − |ys − a|2 + 2
t�

s

〈xu − a, dku〉

− 2
t�

s

〈yu − ys, dku〉+ 2〈kt, yt − ys〉 −
∑

s<u≤t
|∆ku|2.

By Remark 2.1(iii), 2 � ts 〈xu − a, dku〉 ≤ −2 dist(a, ∂D)|k|ts, where |k|ts =
|k|t − |k|s. Hence

|xt−a|2 − |xs−a|2 ≤ |yt − a|2 − |ys − a|2 − 2 dist(a, ∂D)|k|ts

− 2
t�

s

〈yu − ys, dku〉 − 2〈yt − a, yt − ys〉

− 2〈a− xt, yt − ys〉 −
∑

s<u≤t
|∆ku|2

≤ 5 sup
t≤T
|yt − a|2 + 4 sup

t≤T
|yt − a| · sup

t≤T
|xt − a|

− 2 dist(a, ∂D)|k|ts−2
t�

s

〈yu − ys, dku〉−
∑

s<u≤t
|∆ku|2.

On the other hand, since y ∈ D(R+,Rd) it follows that there exist η > 0
and a subdivision (sk) of [0, T ] such that 0 = s0 < s1 < · · · < sr = T ,
η ≤ sk − sk−1 , k = 1, . . . , r − 1, where r = [T/η] + 1, and

ωy([sk−1, sk)) <
dist(a, ∂D)

2
.(2.5)

Using (2.5) we obtain

−
sk�

sk−1

〈yu − ysk−1 , dku〉 ≤
∣∣∣

�

(sk−1,sk)

〈yu − ysk−1 , dku〉
∣∣∣− 〈∆ysk ,∆ksk〉

≤ dist(a, ∂D)
2

|k|sksk−1
− 〈∆ysk ,∆ksk〉.

Therefore

2
(
−

sk�

sk−1

〈yu − ysk−1 , dku〉 − dist(a, ∂D)|k|sksk−1

)

≤ 2(
dist(a, ∂D)

2
|k|sksk−1

− dist(a, ∂D)|k|sksk−1
− 〈∆ysk ,∆ksk〉)

= −dist(a, ∂D)|k|sksk−1
− 2〈∆ysk ,∆ksk〉,
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and, as a consequence,

(2.6) |xsk − a|2 − |xsk−1 − a|2

≤ 5 sup
t≤T
|yt − a|2 + 4 sup

t≤T
|yt − a| · sup

t≤T
|xt − a|

− dist(a, ∂D)|k|sksk−1
− 2〈∆ysk ,∆ksk〉 −

∑

sk−1<u≤sk
|∆ku|2

≤ 5 sup
t≤T
|yt−a|2 + 4 sup

t≤T
|yt−a| · sup

t≤T
|xt−a|−dist(a, ∂D)|k|sksk−1

+ |∆ysk |2

≤ 9 sup
t≤T
|yt − a|2 + 4 sup

t≤T
|yt − a| · sup

t≤T
|xt − a| − dist(a, ∂D)|k|sksk−1

.

From (2.6) it follows immediately that

|xsk − a|2 − |xsk−1 − a|2 ≤ 9 sup
t≤T
|yt − a|2 + 4 sup

t≤T
|yt − a| · sup

t≤T
|xt − a|.

For given t ∈ [0, T ] set k0 = max{k ; sk ≤ t}. Then

|xt−a|2 =
k0∑

k=1

(|xsk−a|2−|xsk−1−a|2) + |xt−a|2−|xsk0
−a|2 + |x0−a|2

≤ r(9 sup
t≤T
|yt − a|2 + 4 sup

t≤T
|yt − a| · sup

t≤T
|xt − a|) + sup

t≤T
|yt − a|2,

which implies that

sup
t≤T
|xt − a|2 ≤ 18r2 sup

t≤T
|yt − a|2 + sup

t≤T
|xt − a|2/2.

Hence

sup
t≤T
|xt − a|2 ≤ 36r2 sup

t≤T
|yt − a|2,(2.7)

and the proof of (i) is complete.
(ii) Using (2.6) and (2.7) gives

dist(a, ∂D)|k|sksk−1
≤ 9 sup

t≤T
|yt − a|2 + 4 sup

t≤T
|yt − a| · sup

t≤T
|xt − a|

+ |xsk−1 − a|2 − |xsk − a|2

≤ 17 sup
t≤T
|yt − a|2 +

3
2

sup
t≤T
|xt − a|2 ≤ 71r2 sup

t≤T
|yt − a|2

for k = 1, . . . , r. Since |k|T ≤
∑r

k=1 |k|sksk−1
, this proves (ii).

Corollary 2.3. If {yn} is relatively compact in D(R+,Rd) then

(i) supn supt≤T |xnt | <∞ and supn |kn|T <∞ for every T > 0,
(ii) {(xn, kn)} is relatively compact in D(R+,R2d).
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Proof. (i) Clearly, supn |xn0 | = supn |yn0 | < ∞. Since {yn} is relatively
compact, for any a ∈ D, T > 0 there exists η > 0 such that supn ω

′
yn(η, T )

< dist(a, ∂D)/2. Moreover, relative compactness of {yn} implies that
supn supt≤T |ynt | <∞. Therefore (i) follows from Theorem 2.2.

(ii) Since {yn} is relatively compact, for any T > 0 and ε > 0 there
exist δ > 0 and 0 = s0 < s1 < · · · < sr = T such that δ ≤ sk − sk−1 and
ωyn([sk−1, sk)) ≤ ε for k = 1, . . . , r − 1. By [11, Lemma 2.2], for n ∈ N and
t, s ∈ R+ we have

|xnt − xns |2 ≤ |ynt − yns |2 +
t�

s

〈ynt − ynu , dknu〉.

Therefore

sup
sk−1≤t<sk

|xnt −xnsk−1
|2 ≤ ω2

yn([sk−1, sk))+ωyn([sk−1, sk))|kn|T ≤ ε(ε+|kn|T ),

and hence, maxk≤r ωxn([sk−1, sk)) ≤ (ε(ε+ |kn|T ))1/2. As a consequence,

lim
δ↓0

sup
n
ω′(xn,yn)(δ, T ) = 0,

which together with (i) shows that {(xn, yn)} is relatively compact in
D(R+,R2d). Since kn = xn − yn, (ii) follows.

Corollary 2.4. Let (x, k) be a solution of the Skorokhod problem asso-
ciated with y such that y0 ∈ D, and let a ∈ D. Set τ = inf{t > 0 ; |yt−y0| ≥
dist(a, ∂D)/2}. Then

sup
t<τ
|xt − a| ≤ 6 sup

t<τ
|yt − a|, |k|τ− ≤

71
dist(a, ∂D)

sup
t<τ
|yt − a|2.

Proof. It suffices to put r = 1, s0 = 0, s1 = τ in the proof of Theo-
rem 2.2.

Theorem 2.5. Assume {yn} ⊂ D(R+,Rd), yn0 ∈ D and let (xn, kn)
denote the solution of the Skorokhod problem associated with yn, n ∈ N. If
yn → y in D(R+,Rd) and y0 ∈ D then there exists a unique solution (x, k)
of the Skorokhod problem associated with y and

(xn, kn)→ (x, k) in D(R+,R2d).

Proof. By Corollary 2.3(ii), the sequence {(xn, yn, kn)} is relatively com-
pact in D(R+,R3d). Therefore, there exists a subsequence (n′) ⊂ (n) and a
pair (x′, k′) such that

(xn
′
, yn

′
, kn

′
)→ (x′, y, k′) in D(R+,R3d).(2.8)

By [11, Lemma 2.2] the solution of the Skorokhod problem associated with y
is unique. Therefore, the proof is completed by showing that (x′, k′) is a
solution of the Skorokhod problem. Obviously x′ = y + k′. Moreover, by
Corollary 2.3(i), supn |kn|T < ∞, T ∈ R+, which implies that |k′|T <∞,
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T ∈ R+. To check (2.3), we first note that it is equivalent to the following
two conditions: for any bounded continuous f : D → Rd such that f(x) = 0
for x ∈ ∂D we have

t�

0

〈f(xs), dks〉 = 0, t ∈ R+,(2.9)

and for any continuous x̂ : R+ → D the function

t 7→
t�

0

〈x̂s − xs, dks〉, t ∈ R+, is non-decreasing(2.10)

(see e.g. [1]).
By (2.8) and [3, Proposition 2.9],

t�

0

〈f(xn
′
s ), dkn

′
s 〉 →

t�

0

〈f(x′s), dk
′
s〉 in D(R+,R).(2.11)

On the other hand, since (xn
′
, kn

′
) is a solution of the Skorokhod problem,

for each n′ we have � t0 〈f(xn
′
s ), dkn

′
s 〉 = 0. Therefore (2.11) gives (2.9). Fur-

thermore, by (2.8), (x̂, xn
′
, kn

′
) → (x̂, x′, k′) in D(R+,R3d). Hence, using

once again [3, Proposition 2.9], we obtain
t�

0

〈x̂s − xn
′
s , dk

n′
s 〉 →

t�

0

〈x̂s − x′s, dk′s〉 in D(R+,R),

which implies (2.10), because the functions t 7→ � t0 〈x̂s − xn
′
s , dk

n′
s 〉 are non-

decreasing.

Theorem 2.6. For every y ∈ D(R+,Rd) such that y0 ∈ D there exists
a unique solution of the Skorokhod problem associated with y.

Proof. Let {yn} be the sequence of discretizations of y defined by ynt =
yk/n, t ∈ [k/n, (k+ 1)/n), n ∈ N. We check at once that for every n ∈ N the
pair (xn, kn) defined by

{
xn0 = y0,

xn(k+1)/n = Π(xnk/n + y(k+1)/n − yk/n)

and xnt = xnk/n, knt = xnt − ynt , t ∈ [k/n, (k + 1)/n), n ∈ N, solves the

Skorokhod problem for yn. Since yn → y in D(R+,Rd), the result follows
from Theorem 2.5.

3. SDEs in convex domains. Let (Ω,F , (Ft), P ) be a filtered proba-
bility space and let Y be an (Ft) adapted process with Y0 ∈ D.
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We say that a pair (X,K) of (Ft) adapted processes solves the Skorokhod
problem associated with Y if for almost every ω ∈ Ω the pair (X(ω),K(ω))
is a solution of the Skorokhod problem associated with Y (ω).

From Theorem 2.6 it follows that for any process Y with Y0 ∈ D there
exists a unique solution of the Skorokhod problem associated with Y . The
following remark is due to Słomiński (see [8, Corollary 1]).

Remark 3.1. Let Y , Ŷ be (Ft) adapted processes of the form Y =
H +M + V , Ŷ = H + M̂ + V̂ , where M, M̂ are local martingales, V, V̂ are
processes with locally bounded variation and M0 = M̂0 = V0 = V̂0 = 0. If
(X,K), (X̂, K̂) are solutions of the Skorokhod problem associated with Y, Ŷ ,
respectively, then for every p ∈ N there exists Cp such that

E sup
t<τ
|Xt − X̂t|2p ≤ CpE([M − M̂ ]pτ− + |V − V̂ |2pτ− + 〈M − M̂〉pτ−)

for every (Ft) stopping time τ .

Let us denote by Fd the class of d-dimensional (Ft) adapted processes
and by Md the class of (Ft) adapted processes with values in the set Rd⊗Rd
of d-dimensional matrices.

We say that an operator F : Fd →Md is Lipschitz if

(i) for every X,Y ∈ Fd and every stopping time τ , if Xτ− = Y τ− then
F (X)τ− = F (Y )τ−,

(ii) there exists a one-dimensional, (Ft) adapted, non-decreasing process
L = (Lt) such that P (supt Lt <∞) = 1 and, for every X,Y ∈ Fd,

‖F (X)t − F (Y )t‖ ≤ Lt sup
s≤t
|Xs − Ys|, t ∈ R+.

Clearly, if f : Rd → Rd ⊗ Rd is Lipschitz, that is, there exists L > 0 such
that ‖f(x)−f(y)‖ ≤ L|x−y| for x, y ∈ Rd, then the operator F (X) defined
by F (X)t = f(Xt) for X ∈ Fd is Lipschitz.

Let F : Fd → Md. We say that a pair (X,K) of (Ft) adapted processes
is a strong solution of the SDE (1.1) if (1.1) is satisfied and (X,K) is a solu-
tion of the Skorokhod problem associated with Yt = Ht + � t0 〈F (X)s−, dZs〉,
t ∈ R+.

We can now formulate our main result.

Theorem 3.2. Let H be an (Ft) adapted process such that H0 ∈ D,
and let Z be an (Ft) adapted semimartingale with Z0 = 0. Then for any
Lipschitz operator F : Fd → Md there exists a unique strong solution of the
SDE (1.1).

Proof. By using the arguments from the proof of [6, Chapter V, Theo-
rem 7], we may and do assume that F (0)t = 0 and Lt < L for some constant
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L > 0. Since Z is a semimartingale, it admits a unique decomposition

Zt = Jt +Mt +Bt, t ∈ R+,

where Jt =
∑

s≤t∆ZuI{|∆Zs| > 1]}, M is a local square-integrable martin-
gale, |∆M | ≤ 2, and B is a predictable process with locally bounded vari-
ation, |∆B| ≤ 1. Let C1 be a constant from Remark 3.1. For given a′ ∈ D
set a2 = (12C1L

2)−1 and τ ′ = inf{t > 0 ; |Ht −H0| ≥ dist(a′, ∂D)/2}.
We first prove existence and uniqueness of a solution of (1.1) on the in-

terval [0, τ [, where τ = inf{t > 0 ; max([M ]t, 〈M〉t, |B|2t , |J |2t ) > a2} ∧ τ ′ ∧ 1.
To this end we set τk = inf{t > 0 ; sups≤t |Hs| > k} ∧ τ for k ∈ N.
For fixed k ∈ N we denote by S2 the class of (Ft) adapted processes
Y = (Yt) on [0, 1] such that Y0 ∈ D, Y = Y τk− and E supt≤1 |Yt|2 < ∞.
Then S2 is a Banach space with the norm ‖Y ‖S2 = (E supt≤1 |Yt|2)1/2.
Define the mapping Φ on S2 by letting Φ(Y ) be the first component X
of the solution (X,K) of the Skorokhod problem associated with H τk− +

� ·0 F (Y )s− dZτk−s . We will show that Φ is a contraction mapping on S2. To
see this, we first observe that Φ(Y ≡ 0) = Hτk− + Kτk−, since F (0) ≡ 0.
Hence

E sup
t≤1
|Φ(0)t|2 ≤ 2E sup

t≤1
|Hτk−

t |2 + 2E sup
t≤1
|Kτk−

t |2 ≤ 2k2 + 2E sup
t≤1
|Kτk−

t |2.

Therefore, by Corollary 2.4, Φ(Y ) ∈ S2. Furthermore, by Remark 3.1, for
any Y, Ŷ ∈ S2 we have

E sup
t≤1
|Φ(Y )t − Φ(Ŷ )t|2

≤ C1

(
E

τk−�

0

‖F (Y )s− − F (Ŷ )s−‖2 d([M ]s + 〈M〉s)

+ E
(
|B + J |τk− ·

τk−�

0

‖F (Y )s− − F (Ŷ )s−‖2 d|B + J |s
))

≤ C1(E sup
t≤1
‖F (Y )t− − F (Ŷ )t−‖2([M ]τk− + 〈M〉τk−)

+ E sup
t≤1
‖F (Y )t− − F (Ŷ )t−‖2|B + J |2τk−)

≤ 6C1a
2E sup

t≤1
‖F (Y )t− − F (Ŷ )t−‖2

≤ 6C1a
2L2E sup

t≤1
|Yt − Ŷt|2 =

1
2
E sup

t≤1
|Yt − Ŷt|2.

From the above we see that Φ : S2 → S2 is a contraction. Hence, by the
Banach contraction principle, it has a fixed point Xk, which is a unique
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solution of (1.1) on [0, τk[. Since P (τk = τ) ↑ 1, putting X = Xk on [0, τk[
we obtain a unique solution on [0, τ [. Moreover, putting

Xτ = Π(Xτ− +∆Hτ + 〈F (X)τ−,∆Zτ 〉)
we obtain a solution on [0, τ ], because F (Xτ−)τ− = F (X)τ− by the defini-
tion of F .

Now, we define a sequence of stopping times

τ0 = τ, τk+1 = τk + inf{t > 0 ; max([M ]t, |B|2t , |J |2t ) > a2} ∧ (τ ′k ∧ 1),

where M · = Mτk+· − Mτk , B· = Bτk+· − Bτk , J · = Jτk+· − Jτk , H · =
Hτk+· − Hτk , τ ′k = inf{t > 0, |H t| ≥ dist(a′, ∂D)/2}. By what has been
proved there exists a unique solution of (1.1) on [0, τ 0]. By the same method
as above, having a unique solution on [0, τ k], we can construct a solution of
(1.1) on [0, τ k+1]. Since τk ↑ ∞, the theorem follows.

Corollary 3.3. If f : Rd → Rd ⊗ Rd is Lipschitz then for every (Ft)
adapted process H with H0 ∈ D and every (Ft) adapted semimartingale Z
with Z0 = 0 there exists a unique strong solution of the SDE

Xt = Ht +
t�

0

〈f(Xs−), dZs〉+Kt, t ∈ R+.
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[2] E. Cépa, Problème de Skorohod multivoque, Ann. Probab. 26 (1998), 500–532.
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