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Summary. Let T be the standard Cantor–Lebesgue function that maps the Cantor space
2ω onto the unit interval 〈0, 1〉. We prove within ZFC that for every X ⊆ 2ω, X is meager
additive in 2ω iff T (X) is meager additive in 〈0, 1〉. As a consequence, we deduce that the
cartesian product of meager additive sets in R remains meager additive in R× R. In this
note, we also study the relationship between null additive sets in 2ω and R.

1. Introduction. Assume that (2ω,⊕) denotes the Cantor space 2ω with
modulo 2 coordinatewise addition, and R is the additive group of real num-
bers, both with the standard topology and measure. We will say that X ⊆ 2ω

is meager additive (respectively, null additive) iff for every meager (respec-
tively, null) set A, X ⊕A = {x⊕ a : x ∈ X, a ∈ A} is meager (respectively,
null) in 2ω. Analogously we definemeager additive and null additive sets in R.
The following question was asked by T. Bartoszyński (personal communica-
tion): Suppose that there exists an uncountable meager (respectively, null)
additive set in (2ω,⊕). Is it true that there is an uncountable meager (re-
spectively, null) additive set in R? And how about the converse implication?

We give a complete answer (in ZFC) to the category part of this question,
and we partially answer the measure version.

To start, let us notice that 2ω can be related to the interval 〈0, 1〉 through
the Cantor–Lebesgue continuous function T : 2ω → 〈0, 1〉 given by

T (x) =
∑
i∈ω

x(i)
2i+1

.
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It is well known that T is category and measure preserving, and one-
to-one except on the countable set of sequences that are eventually zero
(respectively, one). Thus depending on the context, a subset X of 2ω is often
identified with T (X) = {T (x) : x ∈ X}, and Y ⊆ 〈0, 1〉 is identified with
T−1(Y ). Let us also notice that instead of using meager (respectively, null)
additive sets in R, we may consider meager (respectively, null) additive sets
in (〈0, 1),+1), where +1 denotes modulo 1 addition. Clearly, the latter sets
are meager (respectively, null) additive in (〈0, 1〉,+1), where x+1 y = x+ y
if x + y ≤ 1, and x +1 y = x + y − 1 if x + y > 1. Conversely, if X is a
meager (respectively, null) additive set in (〈0, 1〉,+1), then X \{1} is meager
(respectively, null) additive in (〈0, 1),+1).

We use standard terminology and notation. ωω↑ stands for the set of all
increasing functions f : ω → ω. For n ∈ ω and f ∈ ωω↑,

[f(n), f(n+ 1)) = {k ∈ ω : f(n) ≤ k < f(n+ 1)},

and if s ∈ 2[f(n),f(n+1)), then

[s] = {x ∈ 2ω : x�[f(n), f(n+ 1)) = s}.

The quantifiers ∃∞n, ∀∞n denote “for infinitely many n” and “for all but
finitely many n”, respectively.

Suppose that f ∈ ωω↑ and x ∈ 2ω. We define a meager set in 2ω by

Bf,x = {y ∈ 2ω : ∀∞n x�[f(n), f(n+ 1)) 6= y�[f(n), f(n+ 1))}.

It is well known (see [BJ, Theorem 2.2.4, p. 10]) that every meager set in
2ω is a subset of a set of the above form, for some f ∈ ωω↑ and x ∈ 2ω. For
n ∈ ω, we let

B[f(n),f(n+1)),x = {y ∈ 2ω : x�[f(n), f(n+ 1)) 6= y�[f(n), f(n+ 1))},

and we denote by O (respectively, 1) the constantly zero (respectively, one)
function in 2ω. One can easily check that for every n ∈ ω and x ∈ 2ω,

(∗) x⊕B[f(n),f(n+1)),O = B[f(n),f(n+1)),x =
f(n+1)−1∑

i=0

x(i)
2i+1

+1 B[f(n),f(n+1)),O.

In the identity (∗), which plays an important role in the second part of this
paper, +1 is addition in 〈0, 1), the sets B[f(n),f(n+1)),x and B[f(n),f(n+1)),O
are identified with their images under T , and the sequence of ones (1, 1, . . .)
is excluded from the left-hand side of the equation.

2. Main theorems

Theorem 1. For every meager additive set X in (2ω,⊕), T (X) is mea-
ger additive in (〈0, 1〉,+1).
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Proof. LetX be a meager additive set in 2ω. By the Bartoszyński–Judah–
Shelah characterization (see [BJ, Theorem 2.7.17, p. 95]), for every f ∈ ωω↑,
there are g ∈ ωω↑ and y ∈ 2ω such that

∀x ∈ X ∀∞n ∃k g(n) ≤ f(k) < f(k + 1) < g(n+ 1) and
x�[f(k), f(k + 1)) = y�[f(k), f(k + 1)).

For k ∈ ω and f ∈ ωω↑, let
Gfk = {[s] : s ∈ 2[f(k),f(k+1))}.

Notice that each [s] from Gfk , treated as a subset of 〈0, 1〉, is a union of 2f(k)

intervals of diameter 1/2f(k+1) each. Define hk = y�[f(k), f(k+1)) for k ∈ ω
and y ∈ 2ω. Thus, clearly,

∀f ∈ ωω↑ ∃g ∈ ωω↑ ∃{[hk]}k∈ω ∀k [hk] ∈ Gfk ,
so that any x ∈ X belongs to all but finitely many sets of the form

Xf
n =

⋃
k : g(n)≤f(k)<f(k+1)<g(n+1)

[hk].

Claim 2. Let P be a closed nowhere dense subset of 〈0, 1〉. Given d > 0
and k ∈ ω, there are ε, δ > 0 such that for any interval I with diam(I) ≥ d,
and each set J that consists of k intervals of diameter at most ε, we have

(J +1 P ) ∩ I ′ = ∅,
where I ′ is some interval included in I with diam(I ′) ≥ δ.

Proof. It suffices to prove the assertion for a fixed open interval I with
diam(I) = d > 0, since any interval of diameter no smaller than d can be
translated modulo 1 so as to cover I. For every 〈x0, . . . , xk−1〉 ∈ 〈0, 1〉k,
find open intervals Ax0 , . . . , Axk−1

of equal diameters with middle points
x0, . . . , xk−1 such that (Ax0 ∪ · · · ∪ Axk−1

) +1 P is disjoint from some open
interval I〈x0,...,xk−1〉 ⊆ I. Let {A〈x0,...,xk−1〉}〈x0,...,xk−1〉∈〈0,1〉k be the open cover
of 〈0, 1〉k that consists of the cartesian products of the middle thirds of the
sets Ax0 , . . . , Axk−1

. Use compactness of 〈0, 1〉k to choose ε and δ.

Let P be a closed nowhere dense subset of 〈0, 1〉. We construct f ∈ ωω↑
and a sequence {dn}n∈ω of positive real numbers iteratively using Claim 2.
Set d0 = 1/2, f(0) = 0, and assume that f(n), dn have already been con-
structed. Define f(n + 1) so that for any interval I with diam(I) ≥ dn/2n,
and any finite set J consisting of at most 2f(n) intervals of diameter at
most 1/2f(n+1) each, J +1 P is disjoint from a certain interval I ′ ⊆ I with
diam(I ′) ≥ dn+1.

Now let {In}n∈ω be a fixed bijective enumeration of all rational open
intervals in 〈0, 1〉, and suppose that g ∈ ωω↑ and {[hk]}k∈ω are chosen for f
as in the Bartoszyński–Judah–Shelah characterization. Set d0 = diam(I0).
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Since dn/2n → 0, we can pick k0 so large that dk0/2
k0 ≤ d0. Let n0 ≥ 0

be the maximum n satisfying g(n) ≤ f(k0). Using the properties of
the function f defined above, we choose a sequence of open intervals
{Ik0 }k : g(n0)≤f(k)<f(k+1)<g(n0+1) so that

([hk0 ] +1 P ) ∩ Ik00 = ∅, Ik00 ⊆ I0,
([hk0+1] +1 P ) ∩ Ik0+1

0 = ∅, Ik0+1
0 ⊆ Ik00 , etc.

We let I ′0 =
⋂
j : f(k0+j+1)<g(n0+1) I

k0+j
0 . Then(( ⋃

k : g(n0)≤f(k)<f(k+1)<g(n0+1)

[hk]
)

+1 P
)
∩ I ′0 = ∅.

Now set d1 = diam(I1). As before, we choose k1 with dk1/2
k1 ≤ d1, and

we pick n1 satisfying g(n1) > g(n0 + 1), and a sequence of open intervals
{Ik1 }k : g(n1)≤f(k)<f(k+1)<g(n1+1). Let I ′1 =

⋂
j : f(k1+j+1)<g(n1+1) I

k1+j
1 . Then(( ⋃

k : g(n1)≤f(k)<f(k+1)<g(n1+1)

[hk]
)

+1 P
)
∩ I ′1 = ∅.

We follow this scenario for I2, I3, . . . etc.
Finally, we conclude that⋂

j∈ω

( ⋃
k : g(nj)≤f(k)<f(k+1)<g(nj+1)

[hk]
)

+1 P

is meager. Thus
⋂
n≥0X

f
n +1 P is meager. In a similar way we show that⋂

n≥mX
f
n +1 P is meager for all m ≥ 1. This finishes the proof of Theo-

rem 1.

Corollary 3. Suppose that X,Y are meager additive sets in 2ω. Then
their cartesian product is meager additive in (〈0, 1〉,+1)× (〈0, 1〉,+1).

Proof. First notice that one can apply the same argument as in the proof
of Theorem 1 to show that X × {0} and {0} × Y are meager additive in
the product (〈0, 1〉,+1)× (〈0, 1〉,+1) with modulo 1 coordinatewise addition
(denoted by +). Then use the fact that for any meager set A in the product,
X × Y +A = X × {0}+ ({0} × Y +A) is meager.

Theorem 4. Let X be meager additive in (〈0, 1),+1). Then there exists
t ∈ 〈0, 1) such that T−1(X +1 t) is meager additive in (2ω,⊕).

Proof. Our goal is to show that for any meager additive set X in
(〈0, 1),+1), there exists t ∈ 〈0, 1) such that for every meager set A in 2ω,
one can find a meager set B in 〈0, 1) satisfying

T (T−1(X +1 t)⊕A) ⊆ (X +1 t) +1 B.
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Claim 5. Let F be an Fσ meager subset of 〈0, 1). Then there is t ∈ 〈0, 1)
such that (F +1 t) ∩ Q = ∅, where Q is the set of all rational numbers in
〈0, 1).

Proof. Let t be such that −1 t 6∈ F +1 Q.

Claim 6. Suppose that X is a meager additive subset of 〈0, 1). Then
there is a σ-compact set F disjoint from Q such that X +1 t ⊆ F for some
t ∈ 〈0, 1).

Proof. Since X is meager, there exists a meager Fσ set F̃ such that
X ⊆ F̃ . Apply Claim 5 to find t with (F̃ +1 t) ∩ Q = ∅, and then put
F = F̃ +1 t. Notice that we can assume that F is a σ-compact subset of
〈0, 1).

Claim 7. Suppose that F is a σ-compact subset of 〈0, 1) disjoint from Q,
and h ∈ ωω↑. Then there is an increasing sequence {nk}k∈ω of natural num-
bers such that

F ⊆ {x ∈ 2ω : ∀∞k x�[h(nk), h(nk+1)) 6= 1}.

Proof. We define a continuous function g : F → ωω as follows. For x ∈ F ,
we let g(x)(0) = h(0), g(x)(n) = min{m : m > max{h(n), n}, m = h(k)
for some k ∈ ω, and x�[g(x)(n − 1), g(x)(m)) 6= 1}. As g is continuous,
its range is a σ-compact subset of ωω, thus there exists G ∈ ωω↑, with
range(G) ⊂ range(h), such that for every x ∈ F ,

∃n0 ∀k ≥ n0 g(x)(k) ≤ G(k).

For k ∈ ω, let Gk be the k-fold iteration of G. We define nk to be the n such
that h(n) = G2k(0), for k ∈ ω.

Claim 8. Assume that k, n ∈ ω, n ≥ 2 and f ∈ ωω↑. If X ⊆ 2ω and
x�[f(k + 1), f(k + n)) 6= 1 for every x ∈ X, then

X ⊕B[f(k),f(k+1)),O ⊆ X +1 B[f(k),f(k+n)),O.

Proof. Fix s ∈ 2f(k) and identify B[f(k),f(k+1)),O and B[f(k),f(k+n)),O with
their images under T . Then the distance between the left endpoint of the
interval {y ∈ 2ω : y�f(k) = s, y ∈ B[f(k),f(k+n)),O} and the left endpoint of
the interval {y ∈ 2ω : y�f(k) = s, y ∈ B[f(k),f(k+1)),O} is equal to 1/2f(k+1)−
1/2f(k+n). Since x�[f(k + 1), f(k + n)) 6= 1, we have

∞∑
i=f(k+1)

x(i)
2i+1

≤ 1
2f(k+1)

− 1
2f(k+n)

.

Thus B[f(k),f(k+1)),O remains included in the modulo 1 (in 〈0, 1)) translation
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of B[f(k),f(k+n)),O by
∑∞

i=f(k+1) x(i)/2
i+1, that is,

B[f(k),f(k+1)),O ⊆
∞∑

i=f(k+1)

x(i)
2i+1

+1 B[f(k),f(k+n)),O.

By the identity (∗) from Section 1, we obtain

B[f(k),f(k+1)),x =
f(k+1)−1∑

i=0

x(i)
2i+1

+1 B[f(k),f(k+1)),O

⊆
f(k+1)−1∑

i=0

x(i)
2i+1

+1

∞∑
i=f(k+1)

x(i)
2i+1

+1 B[f(k),f(k+n)),O

= x+1 B[f(k),f(k+n)),O.

Now assume that X is meager additive in (〈0, 1),+1), and let t be such
that (X +1 t) ∩ Q = ∅. Set Xm = {x ∈ 2ω : x ∈ X +1 t and ∀k ≥ m
x�[h(nk), h(nk+1)) 6= 1} for m ∈ ω, where {nk}k∈ω is chosen for a given
h ∈ ωω↑ as in Claim 7. Obviously, X +1 t =

⋃
m∈ωXm. Let m0 ∈ ω be fixed.

Suppose that x ∈ Xm0 . Then for every m ≥ m0,

x⊕
⋂
n≥m

B[h(n),h(n+1)),O =
⋂
n≥m

(x⊕B[h(n),h(n+1)),O)

⊆
⋂
k≥m
k even

(x⊕B[h(nk),h(nk+1)),O).

By Claim 8, for every nk ≥ m,

x⊕B[h(nk),h(nk+1)),O = B[h(nk),h(nk+1)),x ⊆ x+1 B[h(nk),h(nk+2)),O.

It follows that

x⊕
⋂
n≥m

B[h(n),h(n+1)),O ⊆
⋂
k≥m
k even

(x+1 B[h(nk),h(nk+2)),O)

= x+1

⋂
k≥m
k even

B[h(nk),h(nk+2)),O.

Consequently,

Xm0 ⊕
⋂
n≥m

B[h(n),h(n+1)),O ⊆ Xm0 +1

⋂
k≥m
k even

B[h(nk),h(nk+2)),O.

As
⋂
k≥m, k evenB[h(nk),h(nk+2)),O is closed nowhere dense, the right hand side

above remains meager. Hence the image ofXm0⊕
⋂
n≥mB[h(n),h(n+1)),O under

T is meager in 〈0, 1). Thus Xm0⊕
⋂
n≥mB[h(n),h(n+1)),O is meager in (2ω,⊕).
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Consider now any set of the form Bh,z, where h ∈ ωω↑ and z ∈ 2ω. Then

Xm0 ⊕
⋂
n≥m

B[h(n),h(n+1)),z = Xm0 ⊕
⋂
n≥m

B[h(n),h(n+1)),O ⊕ z.

This proves that T−1(X +1 t) is meager additive in 2ω.

Corollary 9. Suppose that there is a meager additive set in (〈0, 1〉,+1)
of cardinality κ, where ℵ0 < κ ≤ c. Then there exists a meager additive set
in (2ω,⊕) of cardinality κ.

Proof. Apply Theorem 4.

From Theorem 4 the following stronger fact follows immediately.

Theorem 10. For every meager additive set X in (〈0, 1),+1), T−1(X)
is meager additive in (2ω,⊕).

Proof. Let X be a meager additive set in (〈0, 1),+1). Then, by Theo-
rem 4, T−1(X +1 t) is meager additive in 2ω for some t ∈ 〈0, 1).

Let f ∈ ωω↑. As in the first part of this paper, let g ∈ ωω↑ and {[hk]}k∈ω,
with each hk ∈ Gfk , be such that any x from X +1 t belongs to almost every
set of the form ⋃

k : g(n)≤f(k)<f(k+1)<g(n+1)

[hk].

Then there are {[h′k]}k∈ω and {[h′′k]}k∈ω, with h′k, h′′k ∈ G
f
k for k ∈ ω, such

that any x ∈ X belongs to almost every set of the form⋃
k : g(n)≤f(k)<f(k+1)<g(n+1)

[h′k] ∪ [h′′k].

Thus, by applying Claim 2 for subsets of 2ω, we can proceed as in the proof
of Theorem 1 to show that T−1(X) is meager additive in 2ω.

Remark 11. Notice that by Corollary 3 and Theorem 10, the carte-
sian product of meager additive sets in (〈0, 1〉,+1) is meager additive in
(〈0, 1〉,+1)× (〈0, 1〉,+1). This can be easily extended to products of meager
additive subsets of R (see Problem 2.4 and Remark 2.5 in [TW]).

Unfortunately, we do not know if one can establish a result analogous
to Theorem 4 for null additive sets in (〈0, 1),+1). So the following crucial
question remains open.

Question 12. Suppose that there is an uncountable null additive set
in (〈0, 1),+1). Does this imply that its “reasonable” transformation is null
additive in 2ω?

Nevertheless, the following theorem holds.



98 T. Weiss

Theorem 13. Suppose that X is null additive in (2ω,⊕). Then it is null
additive in (〈0, 1〉,+1).

Proof. By Shelah’s characterization (see [BJ, Theorem 2.7.18(3), p. 95]),
for every f ∈ ωω↑, there is a sequence {In}n∈ω, with each In ⊆ 2[f(n),f(n+1))

and |In| ≤ n, such that

∀x ∈ X ∀∞n x�[f(n), f(n+ 1)) ∈ In.
LetH be a null set in 〈0, 1〉. Then, by Bartoszyński’s theorem,H, treated as a
subset of 2ω, is contained in a union of two small sets (see [BJ, Theorem 2.5.7,
p. 63]). Recall that A ⊆ 2ω is small if there are f ∈ ωω↑ and a sequence
{Jn}n∈ω, with Jn ⊆ 2[f(n),f(n+1)), such that

(1) A ⊆ {x ∈ 2ω : ∃∞n x�[f(n), f(n+ 1)) ∈ Jn},

(2)
∑
n∈ω

|Jn|
2f(n+1)−f(n)

<∞.

Thus we may assume for the purpose of this proof that there is f ∈ ωω↑ such
that

H =
{∑
i∈ω

x(i)
2i+1

: x ∈ 2ω and ∃∞n x�[f(n), f(n+ 1)) ∈ Jn
}
,

where each Jn ⊆ 2[f(n),f(n+1)) and

∀n ∈ ω |Jn|
2f(n+1)−f(n)

≤ 1
2n
.

By Shelah’s characterization, X, as a subset of 〈0, 1〉, satisfies

X ⊆
⋃
k∈ω

⋂
n≥k

Xn,

where for n ∈ ω,

Xn =
{∑
i∈ω

x(i)
2i+1

: x ∈ 2ω and x�[f(n), f(n+ 1)) ∈ {In1 , . . . , Inn} = In

}
.

Also,
H ⊆

⋂
k∈ω

⋃
n≥k

Hn,

where for n ∈ ω,

Hn =
{∑
i∈ω

y(i)
2i+1

: y ∈ 2ω and y�[f(n), f(n+ 1)) ∈ {Jn1 , . . . , Jnr(n)} = Jn

}
,

with r(n) = |Jn|. Clearly,

X +1 H ⊆
⋂
k∈ω

⋃
n≥k

(Xn +1 Hn).
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It is easy to see that each Xn +1 Hn is contained in a union of n · 2f(n) · |Jn|
intervals of diameter 2/2f(n+1) each. Thus there is a sequence {Yn}n∈ω of
subsets of 〈0, 1〉 satisfying

X +1 H ⊆
⋂
k∈ω

⋃
n≥k

Yn, µ(Yn) ≤
2n · |Jn|

2f(n+1)−f(n)
≤ 2n

2n
.

Since
∑

n∈ω
2n
2n is convergent, X +1 H is null.

Added in proof. O. Zindulka has kindly informed us that he knows how to prove
Theorems 1 and 13 by substantially different methods. His results will be published else-
where.
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