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Summary. Let T be the standard Cantor—Lebesgue function that maps the Cantor space
2% onto the unit interval (0, 1). We prove within ZFC that for every X C 2*, X is meager
additive in 2* iff T'(X) is meager additive in (0, 1). As a consequence, we deduce that the
cartesian product of meager additive sets in R remains meager additive in R x R. In this
note, we also study the relationship between null additive sets in 2* and R.

1. Introduction. Assume that (2, @) denotes the Cantor space 2 with
modulo 2 coordinatewise addition, and R is the additive group of real num-
bers, both with the standard topology and measure. We will say that X C 2
is meager additive (respectively, null additive) iff for every meager (respec-
tively, null) set A, X @ A={x@a:z € X, a € A} is meager (respectively,
null) in 2¥. Analogously we define meager additive and null additive sets in R.
The following question was asked by T. Bartoszynski (personal communica-
tion): Suppose that there exists an uncountable meager (respectively, null)
additive set in (2“,). Is it true that there is an uncountable meager (re-
spectively, null) additive set in R? And how about the converse implication?

We give a complete answer (in ZFC) to the category part of this question,
and we partially answer the measure version.

To start, let us notice that 2* can be related to the interval (0, 1) through
the Cantor-Lebesgue continuous function 7" : 2 — (0, 1) given by

T() = 3 20
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It is well known that T is category and measure preserving, and one-
to-one except on the countable set of sequences that are eventually zero
(respectively, one). Thus depending on the context, a subset X of 2 is often
identified with T'(X) = {T(x) : « € X}, and Y C (0,1) is identified with
T~Y(Y). Let us also notice that instead of using meager (respectively, null)
additive sets in R, we may consider meager (respectively, null) additive sets
n ((0,1),+1), where +; denotes modulo 1 addition. Clearly, the latter sets
are meager (respectively, null) additive in ((0,1),41), where z +1y =z +y
ife+y<l,andax+1y=x+y—1if x +y > 1. Conversely, if X is a
meager (respectively, null) additive set in ({0, 1),41), then X \ {1} is meager
(respectively, null) additive in ((0,1),+1).

We use standard terminology and notation. w®! stands for the set of all
increasing functions f : w — w. For n € w and f € w*!,

[f(n), f(n+1))={kcw: f(n) <k <fln+1)},
and if s € 2/(M:f("+1) " then

[s] ={z € 2¥: 2[[f(n), f(n + 1)) = s}.
The quantifiers 3°n, V°°n denote “for infinitely many n” and “for all but
finitely many n”, respectively.
Suppose that f € w*! and x € 2. We define a meager set in 2% by

Bra ={y €27 :¥V¥n z[[f(n), f(n + 1)) # yl[f(n), f(n+1))}.

It is well known (see [BJ, Theorem 2.2.4, p. 10]) that every meager set in
2 is a subset of a set of the above form, for some f € w*! and x € 2*. For
n € w, we let

Bisn), fm1))e = {y € 27 2 2[[f(n), f(n+ 1)) # yllf(n), f(n+ 1))},

and we denote by O (respectively, 1) the constantly zero (respectively, one)
function in 2“. One can easily check that for every n € w and = € 2,

fn+1)—

(i

() 2@ Biyu) fr+1)).0 = Bl sweye = D garr 1 Byt St 0
i=0

In the identity (), which plays an important role in the second part of this

paper, +; is addition in (0, 1), the sets Bit(n),f(n+1)),e ad Blp(n),f(n+1)),0

are identified with their images under T', and the sequence of ones (1,1, ...

is excluded from the left-hand side of the equation.

2. Main theorems

THEOREM 1. For every meager additive set X in (2¢,®), T(X) is mea-
ger additive in ((0,1),+1).
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Proof. Let X be a meager additive set in 2*. By the Bartoszyniski—Judah—
Shelah characterization (see [BJ, Theorem 2.7.17, p. 95]), for every f € w*!,
there are g € w*! and y € 2 such that

Ve € X V°n 3k g(n) < f(k )<f(k:—|—1) g(n+1) and
o[f(k), f(k+1)) = yllf (k), f(k +1)).
For k € w and f € w*!, let
Gi = {[s] : s € 2V RSk

Notice that each [s] from Gi, treated as a subset of (0,1), is a union of 2/(*)

intervals of diameter 1/2/*+1) each. Define hy, = y|[f(k), f(k+1)) for k € w
and y € 2¥. Thus, clearly,

Ve w! 3g € ! Ml rew Yk [hi] € G,
so that any z € X belongs to all but finitely many sets of the form

X! = U (k).
k:g(n)<f(k)<f(k+1)<g(n+1)
CLAIM 2. Let P be a closed nowhere dense subset of (0,1). Given d > 0
and k € w, there are €,0 > 0 such that for any interval I with diam(I) > d,
and each set J that consists of k intervals of diameter at most €, we have

(J+1P)NnI' =0,
where I' is some interval included in I with diam(I") > ¢.

Proof. It suffices to prove the assertion for a fixed open interval I with
diam(I) = d > 0, since any interval of diameter no smaller than d can be
translated modulo 1 so as to cover I. For every (zq,...,zp_1) € (0, 1),
find open intervals Ag,,...,A;, , of equal diameters with middle points
Z0,...,Z—1 such that (Az, U---U A, ) +1 P is disjoint from some open
interval I(z, 2y © 1. Let {Awq 20 1) Hao,.on1)e(0,1yx De the open cover
of {0, 1)* that consists of the cartesian products of the middle thirds of the
sets Az, ..., Az, _,. Use compactness of (0, 1) to choose € and 6. m

Let P be a closed nowhere dense subset of (0,1). We construct f € w*!
and a sequence {d, }ne, of positive real numbers iteratively using Claim 2.
Set dp = 1/2, f(0) = 0, and assume that f(n), d,, have already been con-
structed. Define f(n + 1) so that for any interval I with diam(/) > d,,/2",
and any finite set J consisting of at most 2/ intervals of diameter at
most 1/27"1) each, J +, P is disjoint from a certain interval I’ C I with
dlam(I’) > dn+1.

Now let {I,}new be a fixed bijective enumeration of all rational open
intervals in (0, 1), and suppose that g € w*! and {[h]}xe. are chosen for f
as in the Bartoszytiski-Judah-Shelah characterization. Set dy = diam(Ip).
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Since d, /2" — 0, we can pick ko so large that dkO/QkO < dy. Let ng > 0
be the maximum n satisfying g(n) < f(ko). Using the properties of
the function f defined above, we choose a sequence of open intervals

{I(])c}k59(”0)Sf(k)<f(/€+l)<g(no+l) so that
([hio] +1 PYNI =0, I} C I,
([hios1] +1 P) N IR+ =@ photl C ko e,

ko+J
We let 1o = ;. p(rotj+1)<g(not1) Lo 7. Then

g hal) +1 P) 1 1§ = 0.
k:g(no)<f(k)<f(k+1)<g(no+1)
Now set d; = diam([;). As before, we choose ki with dkl/2k1 < di, and
we pick np satisfying g(n1) > g(ng + 1), and a sequence of open intervals

k1+j
{IT}e: gty <0< o4 D <gm+1)- Lot TE = (V. gy g j41)<guny 1+ Then

(( U [hk]) +1 P) NI =0.
k:g(n1)<f(k)<f(k+1)<g(ni+1)

We follow this scenario for I, I3, ... etc.
Finally, we conclude that

m < U [hk]> +1 P

JEw k:g(ny)<f(k)<f(k+1)<g(nj+1)

is meager. Thus ), Xﬂf +1 P is meager. In a similar way we show that

MNi>m xi +1 P is meager for all m > 1. This finishes the proof of Theo-
rem 1. m

COROLLARY 3. Suppose that X, Y are meager additive sets in 2¥. Then
their cartesian product is meager additive in ({0,1),+1) x ((0,1),41).

Proof. First notice that one can apply the same argument as in the proof
of Theorem 1 to show that X x {0} and {0} x Y are meager additive in
the product ({0, 1), 4+1) x ((0,1),41) with modulo 1 coordinatewise addition
(denoted by +). Then use the fact that for any meager set A in the product,
XxY+A=Xx{0}+ ({0} xY + A) is meager. n

THEOREM 4. Let X be meager additive in ((0,1),+1). Then there exists
t € (0,1) such that T=Y(X +1t) is meager additive in (2, ®).

Proof. Our goal is to show that for any meager additive set X in
((0,1),41), there exists ¢ € (0,1) such that for every meager set A in 2,
one can find a meager set B in (0, 1) satisfying

T(T X +1t) & A) C (X +11) +1 B.
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CLAIM 5. Let F be an F, meager subset of (0,1). Then there ist € (0, 1)
such that (F +1t) N Q = 0, where Q is the set of all rational numbers in
(0,1).

Proof. Let t be such that -1t € F+1 Q. =

CLAIM 6. Suppose that X is a meager additive subset of (0,1). Then
there is a o-compact set F disjoint from @ such that X +1t C F for some
te(0,1).

Proof. Since X is meager, there exists a meager F, set F such that
X C F. Apply Claim 5 to find ¢ with (F 4+1¢t) N @Q = 0, and then put
F = F +4 t. Notice that we can assume that F' is a o-compact subset of
(0,1). m

CLAIM 7. Suppose that F' is a o-compact subset of (0,1) disjoint from Q,
and h € w1, Then there is an increasing sequence {ny}rew of natural num-
bers such that

F C{x € 2% :V®k xl[h(nk), h(nk+1)) # 1}

Proof. We define a continuous function g : F' — w* as follows. For xz € F',
we let g(x)(0) = h(0), g(x)(n) = min{m : m > max{h(n),n}, m = h(k)
for some k € w, and z|[g(x)(n — 1),g(x)(m)) # 1}. As g is continuous,
its range is a o-compact subset of w®, thus there exists G € w*!, with
range(G) C range(h), such that for every z € F,

Ing Yk > ng g(x)(k) < G(k).

For k € w, let G* be the k-fold iteration of G. We define ny, to be the n such
that h(n) = G2¢(0), for k € w. =

CLAIM 8. Assume that k,n € w, n > 2 and f € w!. If X C 2% and
z[f(k+1), f(k+n)) #1 for every x € X, then

X DO Big(k),f(k+1)),0 € X +1 Blg(k), f(k+n)),0-

Proof. Fix s € 2 (k) and identify B[f(k),f(k+1)),® and B[f(k),f(k—i—n)),@ with
their images under 7. Then the distance between the left endpoint of the
interval {y € 2¥ : y[f(k) = s, ¥ € By(k),f(k+n)),0) and the left endpoint of

the interval {y € 2 : y[ f(k) = 5, y € Bly(s) s(k+1)),0} is equal to 1/2/ D) —

12741 Since z|[f(k + 1), f(k +n)) # 1, we have

x(1) 1 1
Z 9i+1 = of(k+1)  9f(k+n)’
i=f(k+1)

Thus Biy(r),f(k+1)),0 remains included in the modulo 1 (in (0, 1)) translation
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Of B[f(k),f(k+n)),@ by Z;‘)if(k-i-l) x(i)/QiH, that iS,

(i)
Bis )0 € D st T1 Bl letn)) 0
i=f(k+1)

By the identity (%) from Section 1, we obtain

f(k+1)—1
Biy(o fk+1)e = D 21 T1 Bk, rk+1)),0
=0
K7, )
< Z 9i+1 +1 Z 9i+1 1 Bif (k). (k+n)),0
i=0 i=f(k+1)

= &1 Blyh).s (k)00 ™
Now assume that X is meager additive in ({0, 1),+1), and let ¢ be such
that (X +16)NQ = 0. Set X,,, = {x € 2¥ : 2z € X +1t and Vk>m
xl[h(ng), h(ng+1)) # 1} for m € w, where {ng}rew is chosen for a given
h € w*! as in Claim 7. Obviously, X +, ¢ = Unmew Xm- Let mp € w be fixed.
Suppose that x € X,,,. Then for every m > my,

z® ﬂ Bihn),h(n+1)),0 = ﬂ (7 @ Bip(n),h(n+1)),0)

n>m n>m

ﬂ (z @ B[h("k)’h(nk+1)):@)'
k>m
k even

N

By Claim 8, for every n; > m,

T D Bih(ng),h(n41)),0 = Bla(ng) b)) € T 1 Blaing) h(ng2)),0
It follows that

T ® ﬂ Bih(n)h(nt1)),0 € ﬂ (T +1 Bla(ny) h(ngs2)),0)

n>m k>m
k even
=T+ ﬂ B[h(nk),h(nmz)),@'
k>m
k even
Consequently,
Xono ® ] B0 € Xmo +1 (] Bipine) g 2)).0-
n>m k>m

k even
AS (Vism. k even Blh(ng) h(ny, +2)),0 1s closed nowhere dense, the right hand side
above remains meager. Hence the image of X,,,®(),,>,,, B [h(n),h(n+1)),0 under
T'is meager in (0, 1). Thus Xone ® ()5, Bih(n) h(n+1),0 1S meager in (29, ®).
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Consider now any set of the form B, ., where h € w*l and z € 2¥. Then
Xmg ® [ Biuimy a1z = Xmo @ [ Bingy 1,0 © 2.
n>m n>m
This proves that T—'(X +1 t) is meager additive in 2¥. m
COROLLARY 9. Suppose that there is a meager additive set in ({0,1),41)

of cardinality k, where Xg < k < ¢. Then there exists a meager additive set
in (2¥,®) of cardinality k.

Proof. Apply Theorem 4. u

From Theorem 4 the following stronger fact follows immediately.

THEOREM 10. For every meager additive set X in ((0,1),+1), T71(X)
is meager additive in (2¥,®).

Proof. Let X be a meager additive set in ((0,1),41). Then, by Theo-
rem 4, T71(X +1 t) is meager additive in 2% for some t € (0,1).

Let f € w*!. As in the first part of this paper, let g € w*! and {[h#]}rew,

with each hy € Gi, be such that any x from X 41 ¢t belongs to almost every
set of the form
U [h].-

k:g(n)<f(k)<f(k+1)<g(n+1)

Then there are {[h}]}re, and {[h]]}kew, With ki, b} € G£ for k € w, such
that any € X belongs to almost every set of the form

U 1] U [Rg]-
k:g(n)<f(k)<f(k+1)<g(n+1)
Thus, by applying Claim 2 for subsets of 2“, we can proceed as in the proof
of Theorem 1 to show that 71 (X) is meager additive in 2*. =

REMARK 11. Notice that by Corollary 3 and Theorem 10, the carte-
sian product of meager additive sets in ((0,1),+;) is meager additive in
((0,1),4+1) x ((0,1),4+1). This can be easily extended to products of meager
additive subsets of R (see Problem 2.4 and Remark 2.5 in [TW]).

Unfortunately, we do not know if one can establish a result analogous
to Theorem 4 for null additive sets in ({0,1),+1). So the following crucial
question remains open.

QUESTION 12. Suppose that there is an uncountable null additive set
in ((0,1),41). Does this imply that its “reasonable” transformation is null
additive in 2¥ ¢

Nevertheless, the following theorem holds.
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THEOREM 13. Suppose that X is null additive in (2%, ®). Then it is null
additive in ((0,1),+1).

Proof. By Shelah’s characterization (see [BJ, Theorem 2.7.18(3), p. 95|),
for every f € w®!, there is a sequence {I, }nc., with each I,, C of (n).f(n+1))
and |I,| < n, such that

Ve e X V°n z[[f(n), f(n+1)) € I,.

Let H be anull set in (0, 1). Then, by Bartoszyriski’s theorem, H, treated as a
subset of 2¥, is contained in a union of two small sets (see [BJ, Theorem 2.5.7,
p. 63]). Recall that A C 2% is small if there are f € w*! and a sequence
{Jn}new, with J,, C olf(n):f(n+1)) "guch that

(1) AC {z €2 Fon allf(n), fln+ 1)) € Ju),
oA
? 2 o7 s < %

Thus we may assume for the purpose of this proof that there is f € w*! such
that

(7 w o
H = {Z 2@&2 cx €2 and 3% z[[f(n), f(n+ 1)) € Jn},
1€W
where each J,, C 2l/(W).f(n+1)) apq
Wl 1
2f(nt1)—f(n) = on”
By Shelah’s characterization, X, as a subset of (0, 1), satisfies

xclJ N Xn

kewn>k

Vn € w

IN

where for n € w,

Xpn = {Z ;EZ(Q cx € 2¥ and z[[f(n), f(n+ 1)) e {I},..., I} = In},

1Cw
Also,
He (U Ha,
kewn>k
where for n € w,
H, = { Qyz(j)l ty € 2% and y[[f(n), f(n+1)) € {JT',..., [}t = Jn},
€W

with r(n) = |J,|. Clearly,

X+, HC ﬂ U(Xn+1Hn).
kewn>k
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It is easy to see that each X,, +1 H,, is contained in a union of n - 2/ . | Jn]

n+1) each. Thus there is a sequence {Y), }ney of

intervals of diameter 2/27(
subsets of (0, 1) satisfying
2n - | Jn] 2n

X4 HC ko L>JkYn, #Yn) < S = g0

IN

Since 3°,c., 22 is convergent, X +1 H is null. u

Added in proof. O. Zindulka has kindly informed us that he knows how to prove
Theorems 1 and 13 by substantially different methods. His results will be published else-
where.
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