MATHEMATICAL LOGIC AND FOUNDATIONS

On Meager Additive and Null Additive Sets in the Cantor Space 2^{ω} and in \mathbb{R}

by

Tomasz WEISS

Presented by Czesław RYLL-NARDZEWSKI

Summary. Let T be the standard Cantor–Lebesgue function that maps the Cantor space 2^{ω} onto the unit interval $\langle 0, 1 \rangle$. We prove within ZFC that for every $X \subseteq 2^{\omega}$, X is meager additive in 2^{ω} iff T(X) is meager additive in $\langle 0, 1 \rangle$. As a consequence, we deduce that the cartesian product of meager additive sets in \mathbb{R} remains meager additive in $\mathbb{R} \times \mathbb{R}$. In this note, we also study the relationship between null additive sets in 2^{ω} and \mathbb{R} .

1. Introduction. Assume that $(2^{\omega}, \oplus)$ denotes the Cantor space 2^{ω} with modulo 2 coordinatewise addition, and \mathbb{R} is the additive group of real numbers, both with the standard topology and measure. We will say that $X \subseteq 2^{\omega}$ is *meager additive* (respectively, *null additive*) iff for every meager (respectively, null) set $A, X \oplus A = \{x \oplus a : x \in X, a \in A\}$ is meager (respectively, null) in 2^{ω} . Analogously we define *meager additive* and *null additive* sets in \mathbb{R} . The following question was asked by T. Bartoszyński (personal communication): Suppose that there exists an uncountable meager (respectively, null) additive set in $(2^{\omega}, \oplus)$. Is it true that there is an uncountable meager (respectively, null) additive set in \mathbb{R} ? And how about the converse implication?

We give a complete answer (in ZFC) to the category part of this question, and we partially answer the measure version.

To start, let us notice that 2^{ω} can be related to the interval (0, 1) through the Cantor-Lebesgue continuous function $T: 2^{\omega} \to (0, 1)$ given by

$$T(x) = \sum_{i \in \omega} \frac{x(i)}{2^{i+1}}.$$

²⁰¹⁰ Mathematics Subject Classification: 03E05, 03E15, 03E35.

Key words and phrases: meager additive sets, null additive sets, translations in 2^{ω} and in \mathbb{R} .

It is well known that T is category and measure preserving, and oneto-one except on the countable set of sequences that are eventually zero (respectively, one). Thus depending on the context, a subset X of 2^{ω} is often identified with $T(X) = \{T(x) : x \in X\}$, and $Y \subseteq \langle 0, 1 \rangle$ is identified with $T^{-1}(Y)$. Let us also notice that instead of using meager (respectively, null) additive sets in \mathbb{R} , we may consider meager (respectively, null) additive sets in $(\langle 0, 1 \rangle, +_1)$, where $+_1$ denotes modulo 1 addition. Clearly, the latter sets are meager (respectively, null) additive in $(\langle 0, 1 \rangle, +_1)$, where $x +_1 y = x + y$ if $x + y \leq 1$, and $x +_1 y = x + y - 1$ if x + y > 1. Conversely, if X is a meager (respectively, null) additive set in $(\langle 0, 1 \rangle, +_1)$, then $X \setminus \{1\}$ is meager (respectively, null) additive in $(\langle 0, 1 \rangle, +_1)$.

We use standard terminology and notation. $\omega^{\omega\uparrow}$ stands for the set of all increasing functions $f: \omega \to \omega$. For $n \in \omega$ and $f \in \omega^{\omega\uparrow}$,

$$[f(n), f(n+1)) = \{k \in \omega : f(n) \le k < f(n+1)\},\$$

and if $s \in 2^{[f(n), f(n+1))}$, then

$$[s] = \{x \in 2^{\omega} : x \upharpoonright [f(n), f(n+1)) = s\}.$$

The quantifiers $\exists^{\infty} n$, $\forall^{\infty} n$ denote "for infinitely many n" and "for all but finitely many n", respectively.

Suppose that $f \in \omega^{\omega \uparrow}$ and $x \in 2^{\omega}$. We define a measure set in 2^{ω} by

$$B_{f,x} = \{ y \in 2^{\omega} : \forall^{\infty} n \ x \upharpoonright [f(n), f(n+1)) \neq y \upharpoonright [f(n), f(n+1)) \}.$$

It is well known (see [BJ, Theorem 2.2.4, p. 10]) that every meager set in 2^{ω} is a subset of a set of the above form, for some $f \in \omega^{\omega^{\uparrow}}$ and $x \in 2^{\omega}$. For $n \in \omega$, we let

$$B_{[f(n),f(n+1)),x} = \{ y \in 2^{\omega} : x \upharpoonright [f(n), f(n+1)) \neq y \upharpoonright [f(n), f(n+1)) \},\$$

and we denote by \mathbb{O} (respectively, 1) the constantly zero (respectively, one) function in 2^{ω} . One can easily check that for every $n \in \omega$ and $x \in 2^{\omega}$,

(*)
$$x \oplus B_{[f(n),f(n+1)),\mathbb{O}} = B_{[f(n),f(n+1)),x} = \sum_{i=0}^{f(n+1)-1} \frac{x(i)}{2^{i+1}} + B_{[f(n),f(n+1)),\mathbb{O}}$$

In the identity (*), which plays an important role in the second part of this paper, $+_1$ is addition in (0, 1), the sets $B_{[f(n), f(n+1)), x}$ and $B_{[f(n), f(n+1)), \mathbb{O}}$ are identified with their images under T, and the sequence of ones $(1, 1, \ldots)$ is excluded from the left-hand side of the equation.

2. Main theorems

THEOREM 1. For every meager additive set X in $(2^{\omega}, \oplus)$, T(X) is meager additive in $(\langle 0, 1 \rangle, +_1)$.

Proof. Let X be a meager additive set in 2^{ω} . By the Bartoszyński–Judah– Shelah characterization (see [BJ, Theorem 2.7.17, p. 95]), for every $f \in \omega^{\omega^{\uparrow}}$, there are $g \in \omega^{\omega^{\uparrow}}$ and $y \in 2^{\omega}$ such that

$$\forall x \in X \ \forall^{\infty}n \ \exists k \ g(n) \leq f(k) < f(k+1) < g(n+1) \text{ and } \\ x \upharpoonright [f(k), f(k+1)) = y \upharpoonright [f(k), f(k+1)).$$

For $k \in \omega$ and $f \in \omega^{\omega\uparrow}$, let

$$G_k^f = \{ [s] : s \in 2^{[f(k), f(k+1))} \}.$$

Notice that each [s] from G_k^f , treated as a subset of $\langle 0, 1 \rangle$, is a union of $2^{f(k)}$ intervals of diameter $1/2^{f(k+1)}$ each. Define $h_k = y | [f(k), f(k+1))$ for $k \in \omega$ and $y \in 2^{\omega}$. Thus, clearly,

$$\forall f \in \omega^{\omega^{\uparrow}} \exists g \in \omega^{\omega^{\uparrow}} \exists \{[h_k]\}_{k \in \omega} \forall k \ [h_k] \in G_k^f,$$

so that any $x \in X$ belongs to all but finitely many sets of the form

$$X_n^f = \bigcup_{k: g(n) \leq f(k) < f(k+1) < g(n+1)} [h_k]$$

CLAIM 2. Let P be a closed nowhere dense subset of (0, 1). Given d > 0and $k \in \omega$, there are $\varepsilon, \delta > 0$ such that for any interval I with diam $(I) \ge d$, and each set J that consists of k intervals of diameter at most ε , we have

$$(J+_1 P) \cap I' = \emptyset,$$

where I' is some interval included in I with diam $(I') \ge \delta$.

Proof. It suffices to prove the assertion for a fixed open interval I with $\operatorname{diam}(I) = d > 0$, since any interval of diameter no smaller than d can be translated modulo 1 so as to cover I. For every $\langle x_0, \ldots, x_{k-1} \rangle \in \langle 0, 1 \rangle^k$, find open intervals $A_{x_0}, \ldots, A_{x_{k-1}}$ of equal diameters with middle points x_0, \ldots, x_{k-1} such that $(A_{x_0} \cup \cdots \cup A_{x_{k-1}}) + P$ is disjoint from some open interval $I_{\langle x_0, \ldots, x_{k-1} \rangle} \subseteq I$. Let $\{A_{\langle x_0, \ldots, x_{k-1} \rangle}\}_{\langle x_0, \ldots, x_{k-1} \rangle \in \langle 0, 1 \rangle^k}$ be the open cover of $\langle 0, 1 \rangle^k$ that consists of the cartesian products of the middle thirds of the sets $A_{x_0}, \ldots, A_{x_{k-1}}$. Use compactness of $\langle 0, 1 \rangle^k$ to choose ε and δ .

Let P be a closed nowhere dense subset of $\langle 0, 1 \rangle$. We construct $f \in \omega^{\omega^{\uparrow}}$ and a sequence $\{d_n\}_{n \in \omega}$ of positive real numbers iteratively using Claim 2. Set $d_0 = 1/2$, f(0) = 0, and assume that f(n), d_n have already been constructed. Define f(n+1) so that for any interval I with diam $(I) \ge d_n/2^n$, and any finite set J consisting of at most $2^{f(n)}$ intervals of diameter at most $1/2^{f(n+1)}$ each, J + P is disjoint from a certain interval $I' \subseteq I$ with diam $(I') \ge d_{n+1}$.

Now let $\{I_n\}_{n\in\omega}$ be a fixed bijective enumeration of all rational open intervals in $\langle 0, 1 \rangle$, and suppose that $g \in \omega^{\omega^{\uparrow}}$ and $\{[h_k]\}_{k\in\omega}$ are chosen for fas in the Bartoszyński–Judah–Shelah characterization. Set $\overline{d}_0 = \operatorname{diam}(I_0)$. Since $d_n/2^n \to 0$, we can pick k_0 so large that $d_{k_0}/2^{k_0} \leq \overline{d}_0$. Let $n_0 \geq 0$ be the maximum n satisfying $g(n) \leq f(k_0)$. Using the properties of the function f defined above, we choose a sequence of open intervals $\{I_0^k\}_{k:g(n_0)\leq f(k)< f(k+1)< g(n_0+1)}$ so that

$$([h_{k_0}] +_1 P) \cap I_0^{k_0} = \emptyset, \quad I_0^{k_0} \subseteq I_0,$$

$$([h_{k_0+1}] +_1 P) \cap I_0^{k_0+1} = \emptyset, \quad I_0^{k_0+1} \subseteq I_0^{k_0}, \quad \text{etc.}$$

We let $I'_0 = \bigcap_{j: f(k_0+j+1) < g(n_0+1)} I_0^{k_0+j}$. Then
$$\left(\left(\bigcup_{k: g(n_0) \le f(k) < f(k+1) < g(n_0+1)} [h_k] \right) +_1 P \right) \cap I'_0 = \emptyset.$$

Now set $\overline{d}_1 = \operatorname{diam}(I_1)$. As before, we choose k_1 with $d_{k_1}/2^{k_1} \leq \overline{d}_1$, and we pick n_1 satisfying $g(n_1) > g(n_0 + 1)$, and a sequence of open intervals $\{I_1^k\}_{k:g(n_1)\leq f(k)< f(k+1)< g(n_1+1)}$. Let $I'_1 = \bigcap_{j:f(k_1+j+1)< g(n_1+1)} I_1^{k_1+j}$. Then

$$\left(\left(\bigcup_{k:g(n_1)\leq f(k)< f(k+1)< g(n_1+1)} [h_k]\right)+1 P\right)\cap I_1'=\emptyset$$

We follow this scenario for I_2, I_3, \ldots etc.

Finally, we conclude that

$$\bigcap_{j \in \omega} \Big(\bigcup_{k \, : \, g(n_j) \leq f(k) < f(k+1) < g(n_j+1)} [h_k] \Big) +_1 P$$

is meager. Thus $\bigcap_{n\geq 0} X_n^f + P$ is meager. In a similar way we show that $\bigcap_{n\geq m} X_n^f + P$ is meager for all $m\geq 1$. This finishes the proof of Theorem 1. \bullet

COROLLARY 3. Suppose that X, Y are meager additive sets in 2^{ω} . Then their cartesian product is meager additive in $(\langle 0, 1 \rangle, +_1) \times (\langle 0, 1 \rangle, +_1)$.

Proof. First notice that one can apply the same argument as in the proof of Theorem 1 to show that $X \times \{0\}$ and $\{0\} \times Y$ are meager additive in the product $(\langle 0, 1 \rangle, +_1) \times (\langle 0, 1 \rangle, +_1)$ with modulo 1 coordinatewise addition (denoted by +). Then use the fact that for any meager set A in the product, $X \times Y + A = X \times \{0\} + (\{0\} \times Y + A)$ is meager.

THEOREM 4. Let X be meager additive in $((0,1), +_1)$. Then there exists $t \in (0,1)$ such that $T^{-1}(X+_1 t)$ is meager additive in $(2^{\omega}, \oplus)$.

Proof. Our goal is to show that for any meager additive set X in $(\langle 0, 1 \rangle, +_1)$, there exists $t \in \langle 0, 1 \rangle$ such that for every meager set A in 2^{ω} , one can find a meager set B in $\langle 0, 1 \rangle$ satisfying

$$T(T^{-1}(X+_1 t) \oplus A) \subseteq (X+_1 t) +_1 B.$$

CLAIM 5. Let F be an F_{σ} meager subset of (0, 1). Then there is $t \in (0, 1)$ such that $(F +_1 t) \cap Q = \emptyset$, where Q is the set of all rational numbers in (0, 1).

Proof. Let t be such that $-_1 t \notin F +_1 Q$.

CLAIM 6. Suppose that X is a meager additive subset of (0,1). Then there is a σ -compact set F disjoint from Q such that $X +_1 t \subseteq F$ for some $t \in (0,1)$.

Proof. Since X is meager, there exists a meager F_{σ} set \tilde{F} such that $X \subseteq \tilde{F}$. Apply Claim 5 to find t with $(\tilde{F} + t) \cap Q = \emptyset$, and then put $F = \tilde{F} + t$. Notice that we can assume that F is a σ -compact subset of (0, 1).

CLAIM 7. Suppose that F is a σ -compact subset of (0,1) disjoint from Q, and $h \in \omega^{\omega^{\uparrow}}$. Then there is an increasing sequence $\{n_k\}_{k \in \omega}$ of natural numbers such that

$$F \subseteq \{ x \in 2^{\omega} : \forall^{\infty} k \ x \upharpoonright [h(n_k), h(n_{k+1})) \neq 1 \}.$$

Proof. We define a continuous function $g: F \to \omega^{\omega}$ as follows. For $x \in F$, we let $g(x)(0) = h(0), g(x)(n) = \min\{m : m > \max\{h(n), n\}, m = h(k)\}$ for some $k \in \omega$, and $x \upharpoonright [g(x)(n-1), g(x)(m)) \neq 1\}$. As g is continuous, its range is a σ -compact subset of ω^{ω} , thus there exists $G \in \omega^{\omega\uparrow}$, with range $(G) \subset \operatorname{range}(h)$, such that for every $x \in F$,

$$\exists n_0 \ \forall k \ge n_0 \ g(x)(k) \le G(k).$$

For $k \in \omega$, let G^k be the k-fold iteration of G. We define n_k to be the n such that $h(n) = G^{2k}(0)$, for $k \in \omega$.

CLAIM 8. Assume that $k, n \in \omega, n \geq 2$ and $f \in \omega^{\omega^{\uparrow}}$. If $X \subseteq 2^{\omega}$ and $x \upharpoonright [f(k+1), f(k+n)) \neq 1$ for every $x \in X$, then

$$X \oplus B_{[f(k),f(k+1)),\mathbb{O}} \subseteq X +_1 B_{[f(k),f(k+n)),\mathbb{O}}.$$

Proof. Fix $s \in 2^{f(k)}$ and identify $B_{[f(k),f(k+1)),\mathbb{O}}$ and $B_{[f(k),f(k+n)),\mathbb{O}}$ with their images under T. Then the distance between the left endpoint of the interval $\{y \in 2^{\omega} : y \upharpoonright f(k) = s, y \in B_{[f(k),f(k+n)),\mathbb{O}}\}$ and the left endpoint of the interval $\{y \in 2^{\omega} : y \upharpoonright f(k) = s, y \in B_{[f(k),f(k+1)),\mathbb{O}}\}$ is equal to $1/2^{f(k+1)} - 1/2^{f(k+n)}$. Since $x \upharpoonright [f(k+1), f(k+n)) \neq 1$, we have

$$\sum_{i=f(k+1)}^{\infty} \frac{x(i)}{2^{i+1}} \le \frac{1}{2^{f(k+1)}} - \frac{1}{2^{f(k+n)}}.$$

Thus $B_{[f(k),f(k+1)),\mathbb{O}}$ remains included in the modulo 1 (in (0,1)) translation

of $B_{[f(k),f(k+n)),\mathbb{O}}$ by $\sum_{i=f(k+1)}^{\infty} x(i)/2^{i+1}$, that is,

$$B_{[f(k),f(k+1)),\mathbb{O}} \subseteq \sum_{i=f(k+1)}^{\infty} \frac{x(i)}{2^{i+1}} +_1 B_{[f(k),f(k+n)),\mathbb{O}}.$$

By the identity (*) from Section 1, we obtain

$$B_{[f(k),f(k+1)),x} = \sum_{i=0}^{f(k+1)-1} \frac{x(i)}{2^{i+1}} + B_{[f(k),f(k+1)),\mathbb{O}}$$
$$\subseteq \sum_{i=0}^{f(k+1)-1} \frac{x(i)}{2^{i+1}} + \sum_{i=f(k+1)}^{\infty} \frac{x(i)}{2^{i+1}} + B_{[f(k),f(k+n)),\mathbb{O}}$$
$$= x + B_{[f(k),f(k+n)),\mathbb{O}} \bullet$$

Now assume that X is meager additive in $((0, 1), +_1)$, and let t be such that $(X +_1 t) \cap Q = \emptyset$. Set $X_m = \{x \in 2^{\omega} : x \in X +_1 t \text{ and } \forall k \ge m x \upharpoonright [h(n_k), h(n_{k+1})) \neq 1\}$ for $m \in \omega$, where $\{n_k\}_{k \in \omega}$ is chosen for a given $h \in \omega^{\omega^{\uparrow}}$ as in Claim 7. Obviously, $X +_1 t = \bigcup_{m \in \omega} X_m$. Let $m_0 \in \omega$ be fixed. Suppose that $x \in X_{m_0}$. Then for every $m \ge m_0$,

$$x \oplus \bigcap_{n \ge m} B_{[h(n),h(n+1)),\mathbb{O}} = \bigcap_{n \ge m} (x \oplus B_{[h(n),h(n+1)),\mathbb{O}})$$
$$\subseteq \bigcap_{\substack{k \ge m \\ k \text{ even}}} (x \oplus B_{[h(n_k),h(n_{k+1})),\mathbb{O}}).$$

By Claim 8, for every $n_k \ge m$,

$$x \oplus B_{[h(n_k),h(n_{k+1})),\mathbb{O}} = B_{[h(n_k),h(n_{k+1})),x} \subseteq x + B_{[h(n_k),h(n_{k+2})),\mathbb{O}}.$$

It follows that

$$\begin{aligned} x \oplus \bigcap_{n \ge m} B_{[h(n),h(n+1)),\mathbb{O}} &\subseteq \bigcap_{\substack{k \ge m \\ k \text{ even}}} (x + B_{[h(n_k),h(n_{k+2})),\mathbb{O}}) \\ &= x + 1 \bigcap_{\substack{k \ge m \\ k \text{ even}}} B_{[h(n_k),h(n_{k+2})),\mathbb{O}}. \end{aligned}$$

Consequently,

$$X_{m_0} \oplus \bigcap_{n \ge m} B_{[h(n),h(n+1)),\mathbb{O}} \subseteq X_{m_0} + 1 \bigcap_{\substack{k \ge m \\ k \text{ even}}} B_{[h(n_k),h(n_{k+2})),\mathbb{O}}.$$

As $\bigcap_{k \ge m, k \text{ even}} B_{[h(n_k), h(n_{k+2})), \mathbb{O}}$ is closed nowhere dense, the right hand side above remains meager. Hence the image of $X_{m_0} \oplus \bigcap_{n \ge m} B_{[h(n), h(n+1)), \mathbb{O}}$ under T is meager in (0, 1). Thus $X_{m_0} \oplus \bigcap_{n \ge m} B_{[h(n), h(n+1)), \mathbb{O}}$ is meager in $(2^{\omega}, \oplus)$. Consider now any set of the form $B_{h,z}$, where $h \in \omega^{\omega \uparrow}$ and $z \in 2^{\omega}$. Then

$$X_{m_0} \oplus \bigcap_{n \ge m} B_{[h(n),h(n+1)),z} = X_{m_0} \oplus \bigcap_{n \ge m} B_{[h(n),h(n+1)),\mathbb{O}} \oplus z.$$

This proves that $T^{-1}(X +_1 t)$ is meager additive in 2^{ω} .

COROLLARY 9. Suppose that there is a meager additive set in $(\langle 0, 1 \rangle, +_1)$ of cardinality κ , where $\aleph_0 < \kappa \leq \mathfrak{c}$. Then there exists a meager additive set in $(2^{\omega}, \oplus)$ of cardinality κ .

Proof. Apply Theorem 4.

From Theorem 4 the following stronger fact follows immediately.

THEOREM 10. For every meager additive set X in $((0,1),+_1)$, $T^{-1}(X)$ is meager additive in $(2^{\omega},\oplus)$.

Proof. Let X be a meager additive set in $((0,1), +_1)$. Then, by Theorem 4, $T^{-1}(X +_1 t)$ is meager additive in 2^{ω} for some $t \in (0,1)$.

Let $f \in \omega^{\omega^{\uparrow}}$. As in the first part of this paper, let $g \in \omega^{\omega^{\uparrow}}$ and $\{[h_k]\}_{k \in \omega}$, with each $h_k \in G_k^f$, be such that any x from $X + t_1 t$ belongs to almost every set of the form

$$\bigcup_{\substack{k:g(n) \le f(k) < f(k+1) < g(n+1)}} [h_k]$$

Then there are $\{[h'_k]\}_{k\in\omega}$ and $\{[h''_k]\}_{k\in\omega}$, with $h'_k, h''_k \in G^f_k$ for $k \in \omega$, such that any $x \in X$ belongs to almost every set of the form

$$\bigcup_{\substack{k:g(n)\leq f(k)< f(k+1)< g(n+1)}} [h'_k]\cup [h''_k]$$

Thus, by applying Claim 2 for subsets of 2^{ω} , we can proceed as in the proof of Theorem 1 to show that $T^{-1}(X)$ is meager additive in 2^{ω} .

REMARK 11. Notice that by Corollary 3 and Theorem 10, the cartesian product of meager additive sets in $(\langle 0, 1 \rangle, +_1)$ is meager additive in $(\langle 0, 1 \rangle, +_1) \times (\langle 0, 1 \rangle, +_1)$. This can be easily extended to products of meager additive subsets of \mathbb{R} (see Problem 2.4 and Remark 2.5 in [TW]).

Unfortunately, we do not know if one can establish a result analogous to Theorem 4 for null additive sets in $(\langle 0, 1 \rangle, +_1)$. So the following crucial question remains open.

QUESTION 12. Suppose that there is an uncountable null additive set in $((0,1),+_1)$. Does this imply that its "reasonable" transformation is null additive in 2^{ω} ?

Nevertheless, the following theorem holds.

THEOREM 13. Suppose that X is null additive in $(2^{\omega}, \oplus)$. Then it is null additive in $(\langle 0, 1 \rangle, +_1)$.

Proof. By Shelah's characterization (see [BJ, Theorem 2.7.18(3), p. 95]), for every $f \in \omega^{\omega^{\uparrow}}$, there is a sequence $\{I_n\}_{n \in \omega}$, with each $I_n \subseteq 2^{\lfloor f(n), f(n+1) \rfloor}$ and $|I_n| \leq n$, such that

$$\forall x \in X \ \forall^{\infty} n \ x \upharpoonright [f(n), f(n+1)) \in I_n.$$

Let H be a null set in $\langle 0, 1 \rangle$. Then, by Bartoszyński's theorem, H, treated as a subset of 2^{ω} , is contained in a union of two small sets (see [BJ, Theorem 2.5.7, p. 63]). Recall that $A \subseteq 2^{\omega}$ is small if there are $f \in \omega^{\omega^{\uparrow}}$ and a sequence $\{J_n\}_{n \in \omega}$, with $J_n \subseteq 2^{[f(n), f(n+1))}$, such that

(1)
$$A \subseteq \{ x \in 2^{\omega} : \exists^{\infty} n \ x \upharpoonright [f(n), f(n+1)) \in J_n \},$$

(2)
$$\sum_{n \in \omega} \frac{|J_n|}{2^{f(n+1)-f(n)}} < \infty.$$

Thus we may assume for the purpose of this proof that there is $f\in\omega^{\omega\uparrow}$ such that

$$H = \left\{ \sum_{i \in \omega} \frac{x(i)}{2^{i+1}} : x \in 2^{\omega} \text{ and } \exists^{\infty} n \ x \upharpoonright [f(n), f(n+1)) \in J_n \right\},\$$

where each $J_n \subseteq 2^{[f(n), f(n+1))}$ and

$$\forall n \in \omega \ \frac{|J_n|}{2^{f(n+1)-f(n)}} \le \frac{1}{2^n}$$

By Shelah's characterization, X, as a subset of $\langle 0, 1 \rangle$, satisfies

$$X \subseteq \bigcup_{k \in \omega} \bigcap_{n \ge k} X_n$$

where for $n \in \omega$,

$$X_n = \left\{ \sum_{i \in \omega} \frac{x(i)}{2^{i+1}} : x \in 2^{\omega} \text{ and } x \upharpoonright [f(n), f(n+1)) \in \{I_1^n, \dots, I_n^n\} = I_n \right\}.$$

Also,

$$H \subseteq \bigcap_{k \in \omega} \bigcup_{n \ge k} H_n$$

where for $n \in \omega$,

$$H_n = \left\{ \sum_{i \in \omega} \frac{y(i)}{2^{i+1}} : y \in 2^{\omega} \text{ and } y \upharpoonright [f(n), f(n+1)) \in \{J_1^n, \dots, J_{r(n)}^n\} = J_n \right\},\$$

with $r(n) = |J_n|$. Clearly,

$$X +_1 H \subseteq \bigcap_{k \in \omega} \bigcup_{n \ge k} (X_n +_1 H_n).$$

It is easy to see that each $X_n +_1 H_n$ is contained in a union of $n \cdot 2^{f(n)} \cdot |J_n|$ intervals of diameter $2/2^{f(n+1)}$ each. Thus there is a sequence $\{Y_n\}_{n \in \omega}$ of subsets of $\langle 0, 1 \rangle$ satisfying

$$X +_1 H \subseteq \bigcap_{k \in \omega} \bigcup_{n \ge k} Y_n, \quad \mu(Y_n) \le \frac{2n \cdot |J_n|}{2^{f(n+1)-f(n)}} \le \frac{2n}{2^n}.$$

Since $\sum_{n \in \omega} \frac{2n}{2^n}$ is convergent, $X +_1 H$ is null.

Added in proof. O. Zindulka has kindly informed us that he knows how to prove Theorems 1 and 13 by substantially different methods. His results will be published elsewhere.

References

[BJ] T. Bartoszyński and H. Judah, Set Theory, A K Peters, Wellesley, MA, 1995.

[TW] B. Tsaban and T. Weiss, Products of special sets of real numbers, Real Anal. Exchange 30 (2004/2005), 1–17.

Tomasz Weiss Instytut Matematyki Akademia Podlaska 08-110 Siedlce, Poland E-mail: tomaszweiss@go2.pl

> Received April 9, 2009; received in final form July 9, 2009

(7707)