SEVERAL COMPLEX VARIABLES AND ANALYTIC SPACES

Almost Properness of Extremal Mappings

by

Armen EDIGARIAN and Przemysław KLIŚ

Presented by Józef SICIAK

Summary. We give a simple proof of almost properness of any extremal mapping in the sense of Lempert function or in the sense of Kobayashi–Royden pseudometric.

Let $D \subset \mathbb{C}^n$ be a domain. For any $z, w \in D$ (resp. $z \in D, X \in \mathbb{C}^n$) we denote by $\sigma_1(z, w)$ (resp. $\sigma_2(z, X)$) the set of all points $r \in [0, 1)$ (resp. $r \geq 0$) such that we can find a holomorphic mapping from the unit disc \mathbb{D} to D with f(0) = z and f(r) = w (resp. rf'(0) = X). We put

(1) $\widetilde{k}_D(z,w) = \inf_{r \in \sigma_1(z,w)} r \text{ and } \kappa_D(z,X) = \inf_{r \in \sigma_2(z,X)} r.$

We call \widetilde{k}_D the Lempert function and κ_D the Kobayashi-Royden pseudometric (see e.g. [3]). A holomorphic mapping $f : \mathbb{D} \to D$ is a \widetilde{k}_D -extremal (resp. κ_D -extremal) for $z, w \in D, z \neq w$ (resp. $z \in D, X \in \mathbb{C}^n \setminus \{0\}$) if f(0) = zand $f(\widetilde{k}_D(z, w)) = w$ (resp. f(0) = z and $\kappa_D(z, X)f'(0) = X$).

The Lempert function and the Kobayashi–Royden pseudometric play an essential role in complex analysis, especially in problems related to boundary properties of biholomorphic (more generally, proper holomorphic) mappings (see e.g. [2]). In many cases, the primary problem is to show that appropriate bounded extremal functions $f: \mathbb{D} \to D$ are almost proper, i.e., $f^*(\zeta) \subset \partial D$ for a.a. $\zeta \in \mathbb{T}$, where \mathbb{T} denotes the unit circle and f^* denotes the non-tangential boundary value of f (see e.g. [6]). This problem was studied for example in [4], [5], [1], [3]. The main idea of the paper is to give a truly elementary proof of a result from [5] in a more general setting.

2000 Mathematics Subject Classification: Primary 32F45.

Key words and phrases: Kobayashi–Royden metric, Lempert function, extremal mapping, almost proper mapping.

THEOREM 1. Let $D \in \mathbb{C}^n$ be a weakly Runge domain (see below) and let $f : \mathbb{D} \to D$ be a holomorphic mapping such that for some $\gamma > 0$ we have

(2)
$$\operatorname{dist}(f(\lambda), \partial D) \ge \gamma(1 - |\lambda|), \quad \lambda \in \mathbb{D}.$$

Assume that f is \tilde{k}_D - or κ_D -extremal. Then for any $\alpha > 0$ and any $\beta < 1$ the set

(3)
$$\{\lambda \in \mathbb{T} : \operatorname{dist}(f(t\lambda), \partial D) \ge \alpha (1-t)^{\beta}, t \in (0,1)\}$$

has Lebesgue measure zero in \mathbb{T} . In particular, $f^*(\zeta) \in \partial D$ for a.a. $\zeta \in \mathbb{T}$.

We say that $D \Subset \mathbb{C}^n$ is a *weakly Runge domain* if there exists a domain $G \supset \overline{D}$ such that for any bounded holomorphic mapping $f : \mathbb{D} \to G$ with $f^*(\mathbb{T}) \Subset D$ we have $f(\mathbb{D}) \Subset D$.

Proof of Theorem 1. For $\alpha > 0$ and $\beta < 1$ we put

$$Q(\alpha,\beta) = \{\lambda \in \mathbb{T} : \operatorname{dist}(f(t\lambda),\partial D) \ge \alpha(1-t)^{\beta}, t \in (0,1)\}.$$

Note that for any $\beta_1 < \beta_2$ we have $Q(\alpha, \beta_1) \subset Q(\alpha, \beta_2)$.

So, without loss of generality we may assume that for some $\alpha > 0$ and $\beta \in (0, 1)$ the set $Q(\alpha, \beta)$ has positive measure. In the following we denote the set $Q(\alpha, \beta)$ by P. We may assume that $0 < (2\pi)^{-1} \int_P d\theta < 1$ (otherwise we take as P any smaller subset of $Q(\alpha, \beta)$ of positive measure). We put

$$\varphi(z) = \frac{1}{2\pi} \int_{P} \frac{e^{i\theta} + z}{e^{i\theta} - z} \, d\theta.$$

Note that $0 < \Re \varphi(\lambda) < 1$ for any $\lambda \in \mathbb{D}$. Without loss of generality, we may assume that f is \tilde{k}_D -extremal for points $f(0), f(\sigma)$ (resp. κ_D -extremal for f(0), f'(0)). For a fixed $t \in (0, 1)$ consider a mapping

$$g_t(\lambda) = f(t\lambda) + e^{\gamma_t(\varphi(\lambda) - \varphi(\sigma))} \frac{\lambda}{\sigma} \left(f(\sigma) - f(t\sigma) \right)$$

(resp. $g_t(\lambda) = f(t\lambda) + e^{\gamma_t(\varphi(\lambda) - \varphi(0))}\lambda(1 - t)f'(0))$, where $\gamma_t \in \mathbb{R}$ will be chosen later. Note that $g_t(0) = f(0)$ and $g_t(\sigma) = f(\sigma)$ (resp. $g_t(0) = f(0)$ and $g'_t(0) = f'(0)$). Our aim is to show that for all $t \in (0, 1)$ sufficiently close to 1 we can choose γ_t in such a way that $g_t(\mathbb{D}) \in D$, which contradicts the extremality of f. To get this we only have to show that $g^*_t(\mathbb{T}) \in D$. We will prove this for \tilde{k}_D -extremal mappings (for κ_D -extremals one can use similar arguments).

It is sufficient to show that for any t close to 1 we have

$$\left\| e^{\gamma_t(\varphi^*(\lambda) - \varphi(\sigma))} \frac{\lambda}{\sigma} \left(f(\sigma) - f(t\sigma) \right) \right\| \le \frac{\alpha}{2} \left(1 - t \right)^{\beta} \quad \text{for } \lambda \in P$$

and

$$\left\| e^{\gamma_t(\varphi^*(\lambda) - \varphi(\sigma))} \frac{\lambda}{\sigma} \left(f(\sigma) - f(t\sigma) \right) \right\| \le \frac{\gamma}{2} \left(1 - t \right) \quad \text{for } \lambda \in \mathbb{T} \setminus P.$$

Since $||f(\sigma) - f(t\sigma)|| \le \rho |\sigma|(1-t)$, it suffices to have

$$e^{\gamma_t (1-\Re\varphi(\sigma))} \rho \le \frac{\alpha}{2} (1-t)^{\beta-1}$$

1

and

(4)
$$e^{-\gamma_t \Re \varphi(\sigma)} \rho \le \frac{\gamma}{2}$$

Take γ_t such that

$$e^{\gamma_t (1-\Re\varphi(\sigma))}\rho = \frac{\alpha}{2} (1-t)^{\beta-1}.$$

Then for t sufficiently close to 1 we also have inequality (4). Moreover,

$$||g_t - f(t \cdot)||_{\mathbb{D}} \to 0 \quad \text{as } t \to 1.$$

Since D is a weakly Runge domain, $g_t(\mathbb{D}) \in D$ for t close enough to 1.

To end the proof suppose that there exists a set $P \subset \mathbb{T}$ of positive measure such that for all $\zeta \in P$ we have

$$\operatorname{dist}(f^*(\zeta), \partial D) > \epsilon > 0.$$

Put

$$P_n = \{\lambda \in \mathbb{T} : \operatorname{dist}(f(t\lambda), \partial D) > \epsilon \text{ for any } t \in (1 - 1/n, 1)\}, \quad n \in \mathbb{N}.$$

Note that $P \subset \bigcup_{n \in \mathbb{N}} P_n$. Hence, for some n_0 the set P_{n_0} is of positive measure.

REMARK 2. (i) Note that any Runge domain is weakly Runge.

(ii) Take any domain $G \subset \mathbb{C}^n$ and let u be a plurisubharmonic function in G. Assume that $D = \{z \in G : u(z) < 0\} \Subset G$. Then D is weakly Runge.

Let us show that (2) holds for any analytic disc in a large class of domains.

DEFINITION 3 (see [5]). A domain $D \subset \mathbb{C}^n$ is called ρ -pseudoconvex if there is a $\rho \in \text{PSH} \cap \mathcal{C}(\overline{D})$ such that $\rho|_{\partial D} = 0$, $\rho < 0$ on D and $\text{dist}(z, \partial D) \geq |\rho(z)|$.

PROPOSITION 4. Let $D \subset \mathbb{C}^n$ be a ρ -pseudoconvex domain and let $f : \mathbb{D} \to D$ be an analytic disc. Then (2) is satisfied.

Proof. Let ρ be a plurisubharmonic function given by the definition of the ρ -psedoconvex domain. Consider the subharmonic function $v = \rho \circ f$. Note that for some C > 0 we have $|\rho(f(\zeta))| \ge C(1 - |\zeta|)$ (see e.g. [5]), and therefore dist $(f(\zeta), \partial D) \ge C(1 - |\zeta|)$.

Note that if D_1, D_2 are bounded domains and D is any connected component of $D_1 \cap D_2$, and if $f : \mathbb{D} \to D$ is such that $\operatorname{dist}(f(\lambda), \partial D_j) \geq \gamma_j(1 - |\lambda|)$ for j = 1, 2 and $\lambda \in \mathbb{D}$ then $\operatorname{dist}(f(\lambda), \partial D) \geq \min\{\gamma_1, \gamma_2\}(1 - |\lambda|)$. The class of ρ -pseudoconvex domains contains in particular the strongly pseudoconvex domains and the analytic polyhedra, i.e., bounded connected components of sets $\{z \in \mathbb{C}^n : |f_j(z)| < 1, j = 1, ..., m\}$, where $f_j, j = 1, ..., m$, are holomorphic functions in \mathbb{C}^n .

REMARK 5. In the proof of Theorem 2 in [5], E. Poletsky used the fact that if $D \in \mathbb{C}^n$ is a ρ -pseudoconvex domain and if $f : \mathbb{D} \to \mathbb{C}^n$ is a bounded holomorphic mapping such that $f^*(\zeta) \in D$ for a.a. $\zeta \in \mathbb{T}$, then $f(\mathbb{D}) \subset D$. Note that this is not true for annuli on the complex plane (which are ρ -pseudoconvex and weakly Runge). That is why in Theorem 1 we assume more, namely a Runge type property.

REMARK 6. W. Zwonek [7] constructed a pseudoconvex Reinhardt domain D and an extremal mapping $f : \mathbb{D} \to D$ for which (2) is not satisfied. Consider the domain $D = \{(z, w) \in \mathbb{D}^2 : |w| < e^{|z|/(|z|-1)}\}$ and the holomorphic mapping $f(\lambda) = (\lambda, 0)$. Then D is a pseudoconvex Reinhardt domain and $f : \mathbb{D} \to D$ is an extremal mapping. However, (2) is not satisfied.

COROLLARY 7. Let $G \subset \mathbb{C}^n$ be a domain and let f_1, \ldots, f_m be holomorphic functions such that

$$\widetilde{G} = \{ z \in G : |f_j(z)| < 1, j = 1, \dots, m \} \Subset G.$$

If D is any connected component of \widetilde{G} then any \widetilde{k}_D - and κ_D -extremal is almost proper.

REMARK 8. Note that if $D \subset \mathbb{C}$ is a taut domain, i.e., different from \mathbb{C} and $\mathbb{C} \setminus \{a\}, a \in \mathbb{C}$, then any k_D - and κ_D -extremal $f : \mathbb{D} \to D$ is a covering (see e.g. [3]). Therefore, f is almost proper. We do not know whether for any taut domain in \mathbb{C}^n its extremal mappings are almost proper.

Using the above technique we can show the following property of \tilde{k}_D -extremals.

PROPOSITION 9. Let $D \in \mathbb{C}^n$ be a domain and let $f : \mathbb{D} \to D$ be a holomorphic mapping such that for some $\gamma > 0$ we have

(5)
$$\operatorname{dist}(f(\lambda), \partial D) \ge \gamma(1 - |\lambda|), \quad \lambda \in \mathbb{D}.$$

Assume that f is \tilde{k}_D -extremal for $(f(0), f(\sigma))$. Then $f'(\sigma) \neq 0$.

Proof. For a fixed $t \in (0, 1)$ consider a mapping

$$g_t(\lambda) = f(t\lambda) + \frac{\lambda}{\sigma} (f(\sigma) - f(t\sigma)).$$

Note that $g_t(0) = f(0)$ and $g_t(\sigma) = f(\sigma)$. Assume that $f'(\sigma) = 0$. We want to show that for t sufficiently close to 1 we have $g_t(\mathbb{D}) \Subset D$. Indeed, put

$$\psi_t(\lambda) = \lambda \frac{f(\sigma) - f(t\sigma)}{\sigma(1-t)}.$$

Then $\|\psi_t\|_{\mathbb{D}} \to 0$ as $t \to 1$. Hence, for t sufficiently close to 1 we have $\|\psi_t\|_{\mathbb{D}} \leq \gamma/2$.

Acknowledgements. The authors thank Professor Włodzimierz Zwonek for helpful remarks.

The first author was supported in part by the Polish Ministry of Science and Higher Education Grant No. N N201 361436.

References

- A. Edigarian, On extremal mappings in complex ellipsoids, Ann. Polon. Math. 62 (1995), 83–96.
- [2] F. Forstnerič and J.-P. Rosay, Localizations of the Kobayashi metric and the boundary continuity of proper holomorphic mappings, Math. Ann. 279 (1987), 239–252.
- [3] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter, 1993.
- [4] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427–474.
- [5] E. Poletsky, The Euler-Lagrange equations for extremal holomorphic mappings of the unit disk, Michigan Math. J. 30 (1983), 317–333.
- [6] W. Rudin, *Real and Complex Analysis*, 2nd ed., McGraw-Hill, New York, 1974.
- [7] W. Zwonek, personal communication.

Armen Edigarian and Przemysław Kliś Institute of Mathematics Jagiellonian University Łojasiewicza 6 30-348 Kraków, Poland E-mail: armen.edigarian@im.uj.edu.pl przemyslaw.klis@im.uj.edu.pl

> Received May 25, 2009; received in final form June 10, 2009 (7717)