
BULLETIN OF THE POLISH

ACADEMY OF SCIENCES

MATHEMATICS

Vol. 57, No. 2, 2009

ORDINARY DIFFERENTIAL EQUATIONS

Existence Theorems for a
Fourth Order Boundary Value Problem

by

A. EL-HAFFAF

Presented by Czesław OLECH

Summary. This paper treats the question of the existence of solutions of a fourth order
boundary value problem having the following form:

x(4)(t) + f(t, x(t), x′′(t)) = 0, 0 < t < 1,

x(0) = x′(0) = 0, x′′(1) = 0, x(3)(1) = 0.

Boundary value problems of very similar type are also considered. It is assumed that f
is a function from the space C([0, 1]× R2, R). The main tool used in the proof is the
Leray–Schauder nonlinear alternative.

1. Introduction. Recently, fourth order boundary value problems have
been considered in many papers. For example, Ma [20] studied the existence
of positive solutions for the fourth order boundary value problem of the form

(1.1)
x(4)(t) = λf(t, x(t), x′′(t)), 0 < t < 1,

x(0) = x′(0) = x′′(1) = x(3)(1) = 0,

under some sublinear semipositone conditions. The boundary conditions con-
sidered here are a special case of the (p, n−p) right focal boundary conditions,
in which n = p = 2.

Extensive research has been done on focal boundary value problems.
For some recent results, we refer the reader to the papers by Agarwal and
O’Regan [1], Anderson [2], and Henderson and Kaufmann [16]. The fourth
order boundary value problems have been studied by many authors, for
example Yang [22], Kosmatov [18], and Graef, Qian and Yang [10]. Most
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of them studied the existence of positive solutions for the equation

x(4)(t) = g(t)f(x), 0 < t < 1,
x(0) = x′(0) = x′′(1) = x′′(1) = 0,
or x(0) = x(1) = x′(0) = x′(1) = 0.

Recent contributions on the existence of multiple positive solutions in-
clude the papers of Henderson, Graef and Yang [9] and Henderson and
Ntouyas [17].

The method of lower and upper solutions has been extensively developed
for lower order equations with linear and nonlinear boundary conditions. But
there are only a few applications to higher order ordinary differential equa-
tions. In this paper, the lower and upper solutions method is employed to
obtain the existence results for some boundary value problems with mono-
tonic or quasi-monotonic nonlinear term f which does not depend on any
lower order derivatives.

2. Preliminaries. This paper is organized as follows. In Section 2, we
present two lemmas that will be used to prove the main results. In Section 3,
we obtain some results on existence of nontrivial solution of the BVP (1.1)
without imposing any monotonicity and nonnegativity conditions on f . Fi-
nally, in Section 4, we study the existence of solutions for two classes of
nonlinear fourth order boundary value problems (1.1) and also very similar
boundary value problems. The method used here is based on the Schauder
fixed-point theorem and the lower and upper solutions method. The con-
struction of lower or upper solutions is also presented.

We consider the BVP (1.1) under the assumption that f ∈ C([0, 1] ×
R2,R). Let E = C4[0, 1] with ‖x‖ = max{|x|∞, |x′′|∞} where |x|∞ =
maxt∈[0,1] |x(t)| for any x ∈ E.

Lemma 2.1 ([22]). Let y ∈ C[0, 1]. Then the four-point BVP

x(4) + y(t) = 0, 0 < t < 1,

x(0) = x′(0) = x′′(1) = x(3)(1) = 0,

is equivalent to the integral equation

x(t) =
1�

0

G(t, s)y(s) ds

where G : [0, 1]× [0, 1]→ [0,∞) denotes the Green function given by

G(t, s) =

{
1
6 t

2(3s− t), 0 ≤ t ≤ s ≤ 1,
1
6s

2(3t− s), 0 ≤ s ≤ t ≤ 1,
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Define the integral operator T : E → E by

(2.1) Tx(t) =
1
6

t�

0

s2(3t− s)y(s) ds+
1
6

1�

t

t2(3s− t)y(s) ds.

By Lemma 2.1, the BVP (1.1) has a solution if and only if the operator T
has a fixed point in E. So we only need to seek a fixed point of T in E.
By the Ascoli–Arzelà theorem, we can prove that T is a completely continu-
ous operator. The key tool in our approach is the following Leray–Schauder
nonlinear alternative:

Lemma 2.2 ([6]). Let E be a Banach space and Ω be a bounded open
subset of E with 0 ∈ Ω. Let T : Ω → E be a completely continuous operator.
Then, either

(i) there exist x ∈ ∂Ω and λ > 1 such that T (x) = λx, or
(ii) there exists a fixed point x∗ ∈ Ω.

3. Existence of nontrivial solutions. In this section, we prove the
existence of a nontrivial solution for the BVP (1.1). Suppose that f ∈
C([0, 1]× R2,R).

Theorem 3.1. Suppose that f(t, 0, 0) 6≡ 0 and there exist nonnegative
functions k, h, l ∈ L1[0, 1] such that

|f(t, x, y)| ≤ k(t)|x|+ h(t)|y|+ l(t), a.e. (t, x, y) ∈ [0, 1]× R2,

and
1�

0

(
1
2
s2 +

1
3
s3
)

(k(s) + h(s)) ds < 1.

Then the BVP (1.1) has at least one nontrivial solution x∗ ∈ C4[0, 1].

Proof. Let

M =
1�

0

(
1
2
s2 +

1
3
s3
)

(k(s) + h(s)) ds,

N =
1�

0

(
1
2
s2 +

1
3
s3
)
l(s) ds.

Then M < 1. Since f(t, 0, 0) 6≡ 0, there exists an interval [a, b] ⊂ [0, 1] such
that mina≤t≤b |f(t, 0, 0)| > 0. On the other hand, from l(t) ≥ |f(t, 0, 0)|, a.e.
t ∈ [0, 1], we know that N > 0.

Let A = N(1−M)−1 and Ω = {x ∈ E : ‖x‖ < A}. Suppose x ∈ ∂Ω and
λ > 1 are such that Tx = λx. Then



138 A. El-Haffaf

λA = λ‖x‖ = ‖Tx‖ = max
0≤t≤1

|(Tx)(t)|

≤ 1
6

t�

0

s2(3t− s)|f(s, x(s), x′′(s))| ds+
1
6

1�

t

t2(3s− t)|f(s, x(s), x′′(s))| ds

≤ 1
6

1�

0

s2(3− s)|f(s, x(s), x′′(s))| ds+
1
6

1�

0

s2(3s)|f(s, x(s), x′′(s))| ds

≤ 1
6

1�

0

(s2(3− s) + 3s3)|f(s, x(s), x′′(s))| ds

≤
1�

0

(
1
2
s2 +

1
3
s3
)

(k(s)|x(s)|+ h(s)|x′′(s)|+ l(s)) ds

≤
1�

0

(
1
2
s2 +

1
3
s3
)

(k(s) max
0≤s≤1

|x(s)|+ h(s) max
0≤s≤1

|x′′(s)|+ l(s)) ds

≤
1�

0

(
1
2
s2 +

1
3
s3
)

(k(s)|x|∞ + h(s)|x′′|∞ + l(s)) ds

≤
1�

0

(
1
2
s2 +

1
3
s3
)

(k(s)‖x‖+ h(s)‖x‖+ l(s)) ds

≤
1�

0

(
1
2
s2 +

1
3
s3
)

(k(s) + h(s))‖x‖ ds+
1�

0

(
1
2
s2 +

1
3
s3
)
l(s) ds

≤M‖x‖+N.

Therefore,

λ ≤M +
N

A
= M +

N

N(1−M)−1
= 1 + (1−M) = 1.

This contradicts λ > 1. By Lemma 2.2, T has a fixed point x∗ ∈ Ω. In
view of f(t, 0, 0) 6≡ 0, the BVP (1.1) has a nontrivial solution x∗ ∈ E. This
completes the proof.

Theorem 3.2. Suppose that f(t, 0, 0) 6≡ 0, and there exist nonnegative
functions k, h, l ∈ L1[0, 1] such that

|f(t, x, y)| ≤ k(t)|x|+ h(t)|y|+ l(t), a.e. (t, x, y) ∈ [0, 1]× R2.

Assume that one of the following conditions holds:

(1) There exists a constant α > −3 such that

k(s) + h(s) ≤ 6(3 + α)(4 + α)
18 + 5α

sα, a.e. s ∈ [0, 1],
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meas
{
s ∈ [0, 1] : k(s) + h(s) <

6(3 + α)(4 + α)
18 + 5α

sα
}
> 0.

(2) There exists a constant α > −1 such that

k(s) + h(s) ≤ 6 + α

(1 + α)(2 + α)(3 + α)(4 + α)
(1− s)α, a.e. s ∈ [0, 1],

meas
{
s∈ [0, 1] : k(s) + h(s)<

6 + α

(1 + α)(2 + α)(3 + α)(4 + α)
(1− s)α

}
>0.

(3) There exists a constant p > 1 such that
1�

0

(k(s) + h(s))p ds <
[

1
1
2

(
1

2q+1

)1/q + 1
3

(
1

3q+1

)1/q ]p (
1
p

+
1
q

= 1
)
.

Then the BVP (1.1) has at least one nontrivial solution x∗ ∈ E.

Proof. LetM be as in the proof of Theorem 3.1. In view of Theorem 3.1,
we only need to prove that M < 1.

(1) In this case, we have

M <
6(3 + α)(4 + α)

18 + 5α

1�

0

(
1
2
s2 +

1
3
s3
)
sα ds

=
6(3 + α)(4 + α)

18 + 5α

1�

0

(
1
2
sα+2 +

1
3
s3+α

)
ds

<
6(3 + α)(4 + α)

18 + 5α

[
1

2(3 + α)
+

1
3(4 + α)

]
= 1.

(2) In this case, we have

M ≤ 6 + α

(1 + α)(2 + α)(3 + α)(4 + α)

1�

0

(
1
2
s2 +

1
3
s3
)

(1− s)α ds

<
6 + α

(1 + α)(2 + α)(3 + α)(4 + α)

×
( 1�

0

(
1
2
s2
)

(1− s)α ds+
1�

1

(
1
3
s3
)

(1− s)α ds
)
.

A simple computation (integration by parts) yields

M <
6 + α

(1 + α)(2 + α)(3 + α)(4 + α)

×
(

1
(1 + α)(2 + α)(3 + α)

+
2

(1 + α)(2 + α)(3 + α)(4 + α)

)
= 1.
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(3) Using the Hölder inequality, we have

M ≤
[1�
0

(k(s) + h(s))p ds
]1/p{1

2

[1�
0

(s2)q ds
]1/q

+
1
3

[1�
0

(s3)q ds
]1/q}

≤
[1�
0

(k(s) + h(s))p ds
]1/p{1

2

(
1

2q + 1

)1/q

+
1
3

(
1

3q + 1

)1/q}

≤
[

1
1
2

(
1

2q+1

)1/q + 1
3

(
1

3q+1

)1/q ]{1
2

(
1

2q + 1

)1/q

+
1
3

(
1

3q + 1

)1/q}
= 1.

This completes the proof.

4. Examples. In order to illustrate the above results, we consider some
examples.

Example 4.1. Consider the following problem:

x(4) +
2
√
t x3

5 + x4
e−|cos(x2−t)| +

t2(x′′)2e−(x′′)2

t2 + (x′′)2
+ 2et − 3 sin t = 0,

x(0) = x′(0) = 0, x′′(1) = x(3)(1).

(4.1)

Set

f(t, x, y) =
2
√
t x3

5 + x4
e−|cos(x2−t)| +

t2y2e−y
2

t2 + y2
+ 2et − 3 sin t,

k(t) =

√
t

5
, h(t) =

t

2
, l(t) = 2et + 3 sin t.

It is easy to prove that k, h, l ∈ L1[0, 1] are nonnegative functions and

|f(t, x, y)| ≤ k(t)|x|+ h(t)|y|+ l(t), (t, x, y) ∈ [0, 1]× R2.

Moreover, we have

M =
1�

0

(
1
2
s2 +

1
3
s3
)

(k(s) + h(s)) ds =
1

4
√

5
+

23
240

< 1.

Hence, by Theorem 3.1, problem (4.1) has at least one nontrivial solution.

Example 4.2. Let us consider the problem

x(4) +
x2

3(1 + x2)
√
t
e−x

2
+

(x′′)2e−t

5(1 + (x′′)2)(1 + 3ex′′)
√
t

+
1

3
√
t
x′′ − et +

√
sin t = 0,

x(0) = x′(0) = 0, x′′(1) = x(3)(1) = 0.

(4.2)
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Set

f(t, x, y) =
x2

3(1 + x2)
√
t
e−x

2
+

y2e−t

5(1 + y2)(1 + 3ey)
√
t

+
1

3
√
t
y − et +

√
sin t,

k(t) =
1

6
√
t
, h(t) =

1
15
√
t

+
1

3
√
t
, l(t) = 2et + 3 sin t.

It is easy to prove that k, h, l ∈ L1[0, 1] are nonnegative functions and

|f(t, x, y)| ≤ k(t)|x|+ h(t)|y|+ l(t), a.e. (t, x, y) ∈ [0, 1]× R2.

Let α = −1/2. Then
6(3 + α)(4 + α)

18 + 5α
=

105
31

.

Therefore,

k(s) + h(s) =
1

6
√
s

+
1

15
√
s

+
1

3
√
s

=
1

6
√
s

+
2

5
√
s
≤ 3

5
s−1/2 <

105
31

s−1/32,

meas
{
s ∈ [0, 1] : k(s) + h(s) <

6(3 + α)(4 + α)
18 + 5α

sα
}
> 0.

Hence, by Theorem 3.2(1), problem (4.2) has at least one nontrivial solution.

Example 4.3. Consider the problem

x(4) +
x2e−t

3/3

2(1 + x2)(1 + 7ex) 4
√

1− t
x+

1
7 4
√

1− t

+
(x′′)4

(3 + (x′′)5) 4
√

1− t
e−|sin(x′′−t)| − 3e−t + 3sin2t = 0,

x(0) = x′(0) = 0, x′′(1) = x(3)(1) = 0.

(4.3)

Set

f(t, x, y) =
x2e−t

3/3

2(1 + x2)(1 + 7ex) 4
√

1− t
x+

1
7 4
√

1− t

+
l(y)4

(3 + (y)5) 4
√

1− t
e−|sin(y−t)| − 3e−t + 3sin2t,

k(t) =
1

14 4
√

1− t
+

1
7 4
√

1− t
, h(t) =

1
3 4
√

1− t
, l(t) = 3e−t + 3sin2t.

It is easy to prove that k, h, l ∈ L1[0, 1] are nonnegative functions and

|f(t, x, y)| ≤ k(t)|x|+ h(t)|y|+ l(t), a.e. (t, x, y) ∈ [0, 1]× R2.
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Let α = −1/4. Then
6 + α

(1 + α)(2 + α)(3 + α)(4 + α)
=

1600
3465

.

Therefore,

k(s) + h(s) =
1

14 4
√

1− s
+

1
7 4
√

1− s
+

1
3 4
√

1− s

=
10

42 4
√

1− s
<

1600
3465

(1− s)−1/4.

Hence, by Theorem 3.2(2), problem (4.3) has at least one nontrivial solution.

Example 4.4. Consider the problem

x(4) + (
√
t− t)|x| cosx− tx+

3
√
t(x′′)2e−|sin((x′′)2−t)|

4 + (x′′)3

+ sin(et) + 3 cos2 t = 0,

x(0) = x′(0) = 0, x′′(1) = x(3)(1) = 0.

(4.4)

Set
f(t, x, y) = x(4) + (

√
t− t)|x| cosx− tx

+
3
√
t y2e−|sin (y2−t)|

(4 + y3)
+ sin(et) + 3 cos2 t

k(t) =
√
t, h(t) =

√
t, l(t) = sin(et) + 3 cos2 t.

It is easy to prove that k, h, l ∈ L1[0, 1] are nonnegative functions and

|f(t, x, y)| ≤ k(t)|x|+ h(t)|y|+ l(t), a.e. (t, x, y) ∈ [0, 1]× R2.

Let p = q = 2. Then
1�

0

(k(s) + h(s))p ds =
1�

0

(2
√
t)2 = 2.

Moreover, we have

2 <
[

1
1
2

(
1

2q+1

)1/q + 1
3

(
1

3q+1

)1/q ]p =
[

1
1
2

[
1
5

]1/2 + 1
3

[
1
7

]1/2]2

=
1260

(3
√

7 + 2
√

5)2
.

Hence, by Theorem 3.2(3), problem (4.4) has at least one nontrivial solution.

5. Upper and lower solutions method. The purpose of this section
is to study the existence of solution for two nonlinear fourth order boundary
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value problems

x(4)(t) + f(t, x(t), x′′(t)) = 0, 0 < t < 1,

x(0) = x′(0) = x′′(1) = x(3)(0) = 0,
(5.1)

and
x(4)(t) + f(t, x(t), x′′(t), x(3)(t)) = 0, 0 < t < 1,

x(0) = x′(0) = x′′(1) = x(3)(0) = 0.
(5.2)

We consider (5.1) under the assumption that f : [0, 1]×R2 → R is continuous.
We give some lemmas which indicate some restrictions on the nonlinear term
and let us construct lower and upper solutions.

Definition 5.1. We call α, β ∈ C3[0, 1]∩C4(0, 1) a lower and an upper
solution of problem (5.1), respectively, if

α(4)(t) + f(t, α(t), α′′(t)) ≥ 0, 0 < t < 1,

α(0) = α′(0) = α′′(1) = 0, α(3)(0) ≥ 0,

β(4)(t) + f(t, x(t), x′′(t)) ≤ 0, 0 < t < 1,

β(0) = β′(0) = β′′(1) = 0, β(3)(0) ≤ 0.

Denote by G(t, s) the Green’s function of the following BVP:

(5.3)
−x(3)(t) = 0, 0 < t < 1,
x(0) = x′(0), x′′(1) = 0.

Then

(5.4) G(t, s) =

{
1
2 t

2, 0 ≤ t ≤ s ≤ 1,
st− 1

2 s
2, 0 ≤ s ≤ t ≤ 1,

Lemma 5.2. For G(t, s) defined by (5.3), the following holds:

(1) G(t, s)/G(s, s) ≤ 1 for t, s ∈ (0, 1),
(2) G(t, s)/G(s, s) > 0 for t, s ∈ (0, 1).

The proof of Lemma 5.2 is very straightforward and therefore omitted.
Let ` =

	1
0G(s, s)s ds. It is easy to see that ` = 1/8.

Lemma 5.3. If there exists a constant A ≥ 0 such that

f(t, p, q) ≤ A for 0 ≤ t ≤ 1, 0 ≤ p ≤ `A, 0 ≤ q ≤ A/2,
then problem (5.1) has an upper solution.

Proof. Set u(t) = −x(3)(t). Then problem (5.1) is equivalent to

u′(t) = f(t, (Tu)(t), (Ku)(t)), 0 < t < 1,
u(0) = 0,

(5.5)
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where (Tu)(t) =
	1
0G(t, s)u(s) ds, x′′(t) =

	1
t u(s) ds = (Ku)(t) and G(t, s)

is the Green’s function defined by (5.4). It is clear that the restriction on f
guarantees that ψ(t) = At satisfies the first order equation

ψ′(t)− f(t, (Tψ)(t), (Kψ)(t)) ≥ 0, 0 < t < 1,
ψ(0) ≥ 0.

This shows that β(t) = (Tψ)(t) is an upper solution of problem (5.1).

Lemma 5.4. If there exists a constant B ≤ 0 such that

f(t, p, q) ≥ B for 0 ≤ t ≤ 1, `B ≤ p ≤ 0, 0 ≤ q ≤ −B/2,
then problem (5.1) has a lower solution.

Proof. Set φ(t) = Bt. Then it is clear that the restriction on f guarantees
that

φ′(t)− f(t, (Tφ)(t), (Kφ)(t)) ≤ 0, 0 < t < 1,
φ(0) ≤ 0.

This shows that α(t) = (Tφ)(t) is a lower solution of problem (5.1).

Remark 5.5. Explicitly, we can write the upper solution β(t) and lower
solution α(t) of problem (5.1) as

β(t) = − A
24
t4 +

A

4
t2, α(t) = −B

24
t4 +

B

4
t2.

Theorem 5.6. Suppose there exist two constants A ≥ 0 ≥ B with
A ≥ |B| such that

f(t, p, q) ≤ A for 0 ≤ t ≤ 1, 0 ≤ p ≤ `A, 0 ≤ q ≤ A/2,(5.6)
f(t, p, q) ≥ B for 0 ≤ t ≤ 1, `B ≤ p ≤ 0, 0 ≤ q ≤ −B/2.(5.7)

If f(t, p, q) is increasing in p, then problem (5.1) has a solution x(t) such
that

α(t) ≤ x(t) ≤ β(t), β(3)(t) ≤ x(3)(t) ≤ α(3)(t), t ∈ [0, 1],

where

α(t) = B

1�

0

G(t, s)s ds, β(t) = A

1�

0

G(t, s)s ds.

Proof. From the conditions (5.6) and (5.7), and Lemmas 5.3 and 5.4,
problem (5.1) has an upper solution β(t) and a lower solution α(t).

Set φ = −α(3) and ψ = −β(3). Then φ(t) = Bt ≤ At = ψ(t). On the other
hand, A ≥ 0 ≥ B implies that α(3)(t) ≥ β(3)(t). The fact that G(t, s) ≥ 0
and the boundary condition yield

α(t) ≤ β(t) for 0 ≤ t ≤ 1.
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Now define

D : domD = {u ∈ C1(0, 1) ∩ C[0, 1] : u(0) = 0} → C[0, 1],
(Du)(t) = u′(t), t ∈ (0, 1),

and let F : C[0, 1]→ C[0, 1] be the continuous operator defined by

(Fu)(t) = f(t, T (min{ψ,max{u, φ}}),K(min(ψ,max{u, φ}))).
Consider the equation

(5.8) Du = Fu, u ∈ domD.

If u∗ is a solution of (5.8), then φ(t) ≤ u∗(t) ≤ ψ(t) for t ∈ [0, 1]. Conse-
quently, u∗(t) is a solution of (5.5). Furthermore, u∗(t) = (Tu∗)(t) is a solu-
tion of (5.1) satisfying α(t) ≤ u∗(t) ≤ β(t). In fact, if φ(t) > u∗(t), then there
exists t1 ∈ [0, 1] such that φ(t1) > u∗(t1). As u∗(0) = −α′′(0) = φ(0) = 0,
by the continuity of u∗ and φ, there exists an interval (t2, t3) such that
φ(t2) = u∗(t2) and φ(t) > u∗(t) for t ∈ (t2, t3). Therefore, for t ∈ [t2, t3],

(Fu∗)(t) = f(t, T (min{ψ,max{u∗, φ}}),K(min{ψ,max{u∗, φ}}))
= f(t, T (min{ψ,max{u∗, φ}}),K(φ)).

Let k(t) = u∗(t)− φ(t). By the monotonicity of f and T , one has

φ′(t) = −α(4)(t) ≤ f(t, α(t), α′′(t)) = f(t, (Tφ)(t), (Kφ)(t)), t ∈ [0, 1],

u∗′(t) = (Fu∗)(t) = f(t, T (min{ψ,max{u∗, φ}}), (Kφ)(t)), t ∈ [t2, t3].

Then k′(t) ≥ 0 for t ∈ [t2, t3]. Thus k(t2) = 0 implies k(t) ≥ 0 for t ∈ [t2, t3],
so φ(t) ≤ u∗(t) for t ∈ [t2, t3]. This contradicts our supposition. Thus, φ(t) ≤
u∗(t) for t ∈ [0, 1]. The proof of ψ(t) ≥ u∗(t) for t ∈ [0, 1] is quite similar and
is omitted.

Let now H : C[0, 1]→ [0, 1], be defined by

(Hu)(t) =
t�

0

(Fu)(s) ds, t ∈ [0, 1].

It is clear thatH is a continuous operator, and a fixed point ofH is a solution
of problem (5.8).

Set MA={θ∈C[0, 1] : ‖θ‖≤A}. It is not difficult to see that ψ, φ∈MA.
We now prove that H : MA → MA is a completely continuous operator.

From the condition (5.6), one has

|(Hu)(t)− (Hu)(s)| =
∣∣∣t�
s

(Fu)(r) dr
∣∣∣ ≤ A|t− s|.

That is, {H(MA)} is equicontinuous and uniformly bounded. From the
Arzelà–Ascoli theorem, we know that H : MA → MA is a completely con-
tinuous operator, and the Schauder fixed-point theorem guarantees that H
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has a fixed point u∗ ∈MA. Therefore x∗(t) =
	1
0G(t, s)u∗(s) ds is a solution

of problem (5.1) such that

α(t) ≤ x∗(t) ≤ β(t), α(3)(t) ≤ x∗(3)(t) ≤ β(3)(t), t ∈ [0, 1].

Now consider problem (5.2). Assume that f : [0, 1] × R3 → R is con-
tinuous. Lemmas similar to Lemmas 5.3 and 5.4 can be obtained. It is not
difficult to see that the equation of problem (5.2) is equivalent to

u′(t) = f(t, (Tu)(t), (Ku)(t),−u(t)), 0 < t < 1,
u(0) = 0,

where (Tu)(t) =
	1
0G(t, s)u(s) ds and (Ku)(t) =

	1
t u(s) ds.

Lemma 5.7. If there exists a constant A ≥ 0 such that

f(t, p, q, r) ≤ A for 0 ≤ t ≤ 1, p/`, 2q ∈ [0, A], r ∈ [−A, 0],

then problem (5.2) has an upper solution.

Lemma 5.8. If there exist a constant B ≤ 0 such that

f(t, p, q, r) ≥ B for 0 ≤ t ≤ 1, p ∈ [`B, 0], 2q, r ∈ [0,−B],

then problem (5.2) has a lower solution.

Lemmas 5.7 and 5.8 can be proved similarly to Lemmas 5.3 and 5.4 and
so the proof is omitted. An argument similar to the one in Theorem 5.6
provides the following result about problem (5.2).

Theorem 5.9. Suppose there exist constants A ≥ 0 ≥ B with A ≥ |B|
such that

f(t, p, q, r) ≤ A for 0 ≤ t ≤ 1, p/`, 2q ∈ [0, A], r ∈ [−A, 0],(5.9)
f(t, p, q, r) ≥ B for 0 ≤ t ≤ 1, p ∈ [`B, 0], 2q, r ∈ [0,−B].(5.10)

If f(t, p, q, r) is increasing in each of p and q, then problem (5.2) has a
solution x(t) such that

α(t) ≤ x(t) ≤ β(t), β(3)(t) ≤ x(3)(t) ≤ α(3)(t), ∀t ∈ [0, 1],

where

α(t) = B

1�

0

G(t, s)s ds, β(t) = A

1�

0

G(t, s)s ds, ` =
1
8
.

Example 5.10. Consider the problem

(5.11)
x(4)(t) +

1
8
[t+ ex(t) + x′′(t)] = 0,

x(0) = x′(0) = x′′(1) = 0, x(3)(0) = 0.
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Let f(t, p, q) = 1
8 [t+ ep + q]. It is easy to check that A = 4 and B = 0 satisfy

the conditions (5.6)–(5.7), respectively, therefore,

α(t) = 0, β(t) = 4
1�

0

G(t, s)s ds

are lower and upper solutions of (5.11). By Theorem 5.6, problem (5.11) has
a solution x∗ such that

0 ≤ x∗(t) ≤ 4
1�

0

G(t, s)s ds.

Example 5.11. Consider the problem

(5.12)
x(4)(t) +

1
3

[t+ ln(1 + x(t)) + (x′′(t))2 − x(3)(t)],

x(0) = x′(0) = x′′(1) = 0, x(3)(0) = 0.

Let f(t, p, q, r) = 1
3 [t+ ln(1 + p) + q2 − r]. It is easy to check that A = 1

and B = 0 satisfy the conditions (5.9) and (5.10), respectively, therefore,

α(t) = 0, β(t) =
1�

0

G(t, s)s ds

are lower and upper solutions of (5.12). By Theorem 5.9, problem (5.12) has
a solution x∗ such that

0 ≤ x∗(t) ≤
1�

0

G(t, s)s ds.
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