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PROBABILITY THEORY AND STOCHASTIC PROCESSES

On Measure Conentration of Vetor-Valued MapsbyMihel LEDOUX and Krzysztof OLESZKIEWICZPresented by Aleksander PE�CZY�SKISummary. We study onentration properties for vetor-valued maps. In partiular, wedesribe inequalities whih apture the exat dimensional behavior of Lipshitz maps withvalues in R
k. To this end, we study in partiular a domination priniple for projetionswhih might be of independent interest. We further ompare our onlusions with earlierresults by Pinelis in the Gaussian ase, and disuss extensions to the in�nite-dimensionalsetting.

Notation. In what follows, whenever we deal with R
k, we endow itwith the standard Eulidean struture with salar produt · and norm ‖ · ‖.By γn, we denote the standard N (0, Idn) Gaussian measure on R

n withdensity dγn/dx = (2π)−n/2e−‖x‖2/2. Let g, g1, g2, . . . be independent real
N (0, 1) random variables, so that Gn = (g1, . . . , gn) is an R

n-valued normalrandom vetor with distribution γn. For t ∈ R, let T (t) = γ1([t,∞)) =
P(g ≥ t). Obviously, T (t) = 1 − Φ(t), where Φ is the standard normaldistribution funtion but using the funtion T will be more onvenient inour omputations. Let θ be a random vetor uniformly distributed on theunit sphere Sk−1 ⊆ R

k, independent of g, g1, g2, . . . . For the sake of brevity,we denote throughout this work by C, C1, C2, . . . di�erent positive universalonstants (i.e. numerial onstants whih do not depend on n, k or any otherparameter). With little e�ort some more expliit numerial bounds an bededued from the proofs.1. Introdution. In the reent work [5℄, Gromov onsiders and analysesthe question of isoperimetry of waists and measure onentration of maps.2000 Mathematis Subjet Classi�ation: Primary 60E15.Key words and phrases: onentration of measure, vetor-valued map, moment om-parison, Gaussian measure.Researh partially supported by the Polish KBN Grant 1 PO3A 012 29.[261℄ © Instytut Matematyzny PAN, 2007
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As a typial result, he shows that whenever f : R

n → R
k is a ontinuousmap, there exists z ∈ R

k suh that for every h > 0,(1) γn((f−1(z))h) ≥ γk(B(0, h))where B(x, h) is the ball with enter x and radius h > 0 in R
k. When k = 1,this result follows from the Gaussian isoperimetri inequality with z = mfthe median of f for γn. Similar onlusions hold for more general stritlylog-onave measures and on the sphere [5℄.Although this result is perhaps more of topologial nature, it also hasonsequenes for measure onentration. Namely, whenever f : R

n → R
k is1-Lipshitz,

(f−1(z))h ⊂ f−1(B(z, h)).In partiular, inequality (1) provides an upper bound on the measure of theset {‖f − z‖ ≥ h}, namely(2) γn(‖f − z‖ ≥ h) ≤ γk(x : ‖x‖ ≥ h).When k = 1, this amounts to the lassial Gaussian ontrol of the measureof the set {|f −mf | ≥ h}. In partiular, (2) may be seen as part of the on-entration of measure phenomenon. The aim of this note is atually to applythe general theory of measure onentration (for funtions) to onentrationof vetor-valued maps in the spirit of (2). We will deal with quantitativeestimates up to numerial onstants, as is usual for measure onentration.As in the salar ase, z will always be identi�ed to the median or mean valueof the Lipshitz funtion.As a result, we �rst observe that whenever (X, d, µ) is a metri measurespae with a Gaussian deay of the onentration funtion, then for any1-Lipshitz funtion f : X → R
k with mean zero,

µ(‖f‖ ≥ r) ≤ C1γk(x : ‖x‖ ≥ r/C2)for any r ≥ 0 where C1, C2 > 0 are independent of k. The spirit of theseonentration results is that they apture the exat dimensional behavior ofLipshitz maps with values in R
k (the various bounds are learly sharp onlinear maps). The approah relies on simple moment omparisons. We nexttry to reah sharper inequalities, in partiular with C2 = 1, and develop tothis end a general domination priniple to transfer onentration inequalitiesfor (one-dimensional) projetions to vetor-valued maps. We then ompareour onlusions with earlier work by Pinelis [10℄ in the Gaussian ase. Wealso disuss, following [10℄, omparison inequalities for maps with valuesin �nite- and in�nite-dimensional normed spaes based on an inequality putforward by Pisier [11℄, and desribe general onentration results for maps ona Gaussian spae. We onlude with several open questions and onjetures.
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2. A general statement. We �rst reall some basi notions of measureonentration (f. [8℄). Let (X, d, µ) be a metri measure spae in the senseof [4℄. That is, (X, d) is a metri spae and µ a probability measure on theBorel sets of X. The onentration funtion of (X, d, µ) is de�ned as
α(r) = α(X,d,µ)(r) = sup{1 − µ(Ar) : A ⊂ X, µ(A) ≥ 1/2}, r > 0,where Ar = {x ∈ X : d(x,A) < r}. The onentration funtion appearsin the following property of Lipshitz funtions: whenever f : X → R is1-Lipshitz, and mf is the median of f for µ, then, for every r > 0,

µ(|f −mf | ≥ r) ≤ 2α(r).Reall also that (X, d, µ) has Gaussian onentration whenever there areonstants κ ≥ 1 and σ > 0 suh that(3) α(r) ≤ κe−r2/(2σ2), r > 0.Typial examples that exhibit Gaussian onentration are the standardGaussian measures γn on R
n (with κ = σ = 1, independent of the dimen-sion). While σ2 may be interpreted as the observable diameter of (X, d, µ)(f. [4℄, [8℄), the onstant κ is assumed for simpliity to be larger than orequal to 1.A �rst general onentration result for vetor-valued maps is the followingsimple statement that relies on moment omparison.Theorem 1. Let (X, d, µ) be a metri measure spae with Gaussian on-entration (3). Then, for every 1-Lipshitz funtion f : X → R

k with meanzero with respet to µ, and every r ≥ 0,
µ(‖f‖ ≥ r) ≤ Cκγk(x : ‖x‖ ≥ r/(Cσ))where C > 0 is numerial.Proof. Under the Gaussian onentration hypothesis, whenever ϕ :X→Ris 1-Lipshitz with Tϕdµ = 0, then
µ(|ϕ| ≥ r) ≤ C1κe

−r2/(2σ2C1), r ≥ 0,for some universal C1 > 0 (f. [8, Proposition 1.8℄). Hene, for every p ≥ 1,\
|ϕ|p dµ =

∞\
0

µ(|ϕ| ≥ r) d(rp) ≤ C1κ

∞\
0

e−r2/(2σ2C1) d(rp)so that \
|ϕ|p dµ ≤ 2κpC

p/2+1
1 σpMp−1where Mq =

T
R
|x|q dγ1(x) = 2q/2π−1/2Γ ((q + 1)/2), q ≥ 0.
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Now, let f : X → R

k be 1-Lipshitz with mean zero. Then, for every
y ∈ R

k, y · f : X → R is ‖y‖-Lipshitz with mean zero. Hene, by thepreeding, \
|y · f |p dµ ≤ 2κpC

p/2+1
1 σpMp−1‖y‖p.Therefore, for any p ≥ 1,\

‖f‖p dµ = M−1
p

\\
|y · f(x)|p dµ(x) dγk(y)

≤ 2κpC
p/2+1
1 σpMp−1M

−1
p

\
‖y‖p dγk(y).Easy alulation yields\∥

∥

∥

∥

f

2σ
√
C1

∥

∥

∥

∥

p

dµ ≤ C2κ
\
‖y‖p dγk(y)where C2 > 1 is some numerial onstant. We are now left with the fol-lowing lemma that we learned from Pinelis and whih we formulate withprobabilisti notation.Lemma 1. Let U ≥ 0 be a random variable suh that for any p ≥ 1,

E(Up) ≤ BE(‖Gk‖p)where B ≥ 1. Then, for any r ≥ 0,
P(U ≥ r) ≤ CBP(‖Gk‖ ≥ r/C)for some numerial C > 0.Proof. We may and do assume that k ≥ 2. Let a ∈ (0, 1/2) denote auniversal onstant, to be spei�ed later. If r ≤ a−1

√

k/2, then
P(‖Gk‖ ≥ ar) ≥ P(‖Gk‖2 ≥ k/2) → 1as k → ∞ by the law of large numbers. Hene the lemma holds in this aseprovided C > 0 is large enough.Let now r ≥ a−1
√

k/2. From the hypothesis, for any p ≥ 1,
P(U ≥ r) ≤ Br−2p

E(‖Gk‖2p) = B

(

2

r2

)p Γ (p+ k/2)

Γ (k/2)
.Choose then p ≥ 1 suh that p + k/2 = r2/2. It follows that, for somenumerial onstant C3 > 0,

P(U ≥ r) ≤ BΓ

(

k

2

)−1

(C3r)
k−1e−r2/2 ≤ C3BΓ

(

k

2

)−1

(C3r)
k−2e−r2/4,where we have used Stirling's formula. Now, integrating by parts (see the
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proof of Theorem 2 below), for every k ≥ 2 and r ≥ 0,

P(‖Gk‖ ≥ ar) ≥ Γ

(

k

2

)−1(ar

2

)k−2

e−a2r2/2 ≥ Γ

(

k

2

)−1(ar

2

)k−2

e−r2/8.Choose a ∈ (0, 1/2) small enough to have exp(1/(16a2)) ≥ 2C3/a ≥ 1. Then
er2/4e−r2/8 = er2/8 ≥ exp

(

k

16a2

)

≥
(

2C3

a

)k

≥
(

2C3

a

)k−2

and therefore P(U ≥ r) ≤ C3BP(‖Gk‖ ≥ ar). It is then easily seen that theonlusion of the lemma holds for some well hosen C.
3. A domination priniple. In this setion, we develop a dominationpriniple that will prove more preise than the general statement of thepreeding setion. Starting from a sharp Gaussian onentration inequalityalong linear funtionals, the tail of vetor-valued maps in R

k will be on-trolled by the norm of the Gaussian vetor in R
k, with only a dimensionalfator in front of the probability. We will need several lemmas. All of themare quite standard but we present their proofs for the sake of omplete-ness.Lemma 2. For every s > 0, T (s) ≤ (2π)−1/2s−1e−s2/2. Moreover ,(4) lim

s→∞
sT (s)es2/2 = (2π)−1/2.Proof. Indeed,

(2π)1/2sT (s) =

∞\
s

se−x2/2 dx ≤
∞\
s

xe−x2/2 dx = e−s2/2.The de l'Hospital rule easily shows that
lim

s→∞
T (s)

s−1e−s2/2
= (2π)−1/2.Lemma 3. There exists a onstant C1 > 0 suh that for every k ≥ 2 andall α ∈ (0, 1),

P(θ1 ≥ α) ≥ C1k
−1/2(1 − α2)(k−1)/2and , for all α ∈ (k−1/2, 1),

P(θ1 ≥ α) ≥ C1k
−1/2α−1(1 − α2)(k−1)/2where θ1 denotes the �rst oordinate of an R

k-valued random vetor θ whihis uniformly distributed on Sk−1.
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Proof. Reall that the surfae measure of the unit sphere Sk−1 ⊂ R

k isgiven by the formula ωk−1 = 2πk/2/Γ (k/2). Therefore
P(θ1 ≥ α) = ω−1

k−1

√
1−α2\
0

ωk−2t
k−2(1 − t2)−1/2 dt

=
Γ (k/2)

Γ ((k − 1)/2)
√
π

√
1−α2\
0

tk−2(1 − t2)−1/2 dt.

Obviously, for all α ∈ (0, 1),
√

1−α2\
0

tk−2(1 − t2)−1/2 dt ≥
√

1−α2\
0

tk−2 dt =
1

k − 1
(1 − α2)(k−1)/2.

We also have, for every α ∈ (k−1/2, 2−1/2),
√

1−α2\
0

tk−2(1 − t2)−1/2 dt ≥ 1√
2α

√
1−α2\

√
1−2α2

tk−2 dt

=
1√

2α(k − 1)
((1 − α2)(k−1)/2 − (1 − 2α2)(k−1)/2)

≥ (1 − e−1/4)(1 − α2)(k−1)/2

√
2α(k − 1)sine

(1 − 2α2)(k−1)/2(1 − α2)−(k−1)/2 ≤ (1 − α2)(k−1)/2 ≤ (1 − 1/k)(k−1)/2

≤ e−(k−1)/(2k) ≤ e−1/4.To �nish the proof observe that
inf
k≥2

Γ (k/2)

Γ ((k − 1)/2)
√
k
> 0by Stirling's formula.Lemma 4. Let ξ be an R

k-valued random vetor. Then for any r > s> 0,
P(‖ξ‖ ≥ r) ≤ sup

v∈Sk−1

P(|ξ · v| ≥ s)

P(|θ1| ≥ s/r)
.

Proof. Without loss of generality we an assume that a random vetor
θ uniformly distributed on Sk−1 is independent of ξ. By the rotation in-variane of θ, for any x ∈ R

k and s ≥ 0, P(|x · θ| ≥ s) = P(‖x‖ |θ1| ≥ s).
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Hene

sup
v∈Sk−1

P(|ξ · v| ≥ s) ≥ P(|ξ · θ| ≥ s) = EξPθ(|ξ · θ| ≥ s)

= EξPθ(‖ξ‖ |θ1| ≥ s) ≥ P(|θ1| ≥ s/r, ‖ξ‖ ≥ r)

= P(|θ1| ≥ s/r)P(‖ξ‖ ≥ r).whih is the onlusion.The next theorem desribes the domination priniple that allows us todedue sharp onentration inequalities for vetor-valued maps from the or-responding bounds on one-dimensional projetions with a good are of theonstants depending upon dimension.Theorem 2. Let κ ≥ 1/
√
k. Assume that ξ is an R

k-valued randomvetor suh that for every v ∈ Sk−1 and s ≥ 0, P(|ξ · v| ≥ s) ≤ κT (s). Then,for every r ≥ 0,
P(‖ξ‖ ≥ r) ≤ C

√
k κP(‖Gk‖ ≥ r)where C > 0 is some numerial onstant.The result readily applies to probability measures µ on a metri spae

(X, d) and 1-Lipshitz mean zero maps f : X → R
k suh that, for any

v ∈ Sk−1 and all s ≥ 0,
µ(|v · f | ≥ s) ≤ κT (s)(if ζ has distribution µ, take ξ = f(ζ)). We then have, for all r ≥ 0,

µ(‖f‖ ≥ r) ≤ C
√
k κγk(x : ‖x‖ ≥ r).The result applies in partiular to the standard Gaussian measure γn on

X = R
n, although in this ase the fator √k is not neessary as we will seein the next setion. As disussed in the remark below, it is however neessaryin general.Proof. For k= 1 the assertion is trivial, so assume k≥ 2. For 0 ≤ r ≤

√
k,

P(‖Gk‖ ≥ r) ≥ inf
j≥2

P(‖Gj‖ ≥
√

j) = inf
j≥2

P

(

g2
1 + g2

2 + · · · + g2
j − j

√
j

≥ 0

)

and the last expression is a positive universal onstant by the Central LimitTheorem (for another argument, giving a more expliit estimate, see forexample [7, Lemma 2℄). Hene it su�es to prove that for every r > √
k,

P(‖ξ‖ ≥ r) ≤ C
√
k κP(‖Gk‖ ≥ r)where C > 0 is some universal onstant.
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Assume r > √

k and put s = (r2 − (k − 1))1/2 so that r2 − s2 = k − 1.Observe that α = s/r ∈ (k−1/2, 1). Therefore Lemmas 4, 3 and 2 yield
P(‖ξ‖ ≥ r) ≤ κT (s)

P(|θ1| ≥ s/r)
≤ (2π)−1/2κs−1e−s2/2

2C1k−1/2α−1(1 − α2)(k−1)/2

=

√
k κrk−2e−r2/2e(r

2−s2)/2

C1

√
8π(r2 − s2)(k−1)/2

= C2

√
k

(

e

k − 1

)(k−1)/2

κrk−2e−r2/2

for some universal C2 > 0. On the other hand,
P(‖Gk‖ ≥ r) = (2π)−k/2

∞\
r

ωk−1t
k−1e−t2/2 dt

≥ (2π)−k/2ωk−1r
k−2

∞\
r

te−t2/2 dt

= (2π)−k/22πk/2Γ (k/2)−1rk−2e−r2/2

= 2−(k−2)/2Γ (k/2)−1rk−2e−r2/2

≥ C3

(

e

k − 1

)(k−1)/2

rk−2e−r2/2

for some universal C3 > 0, by Stirling's formula. This ends the proof of thetheorem.Remark 1. In general the fator √
k in Theorem 2 is neessary.Proof. Fix k ≥ 2. Choose r > √

k suh that pk(r) = k(e/k)k/2rk−2e−r2/2satis�es pk(r) < 1 and pk(r) ≤ T (r/2). Some large enough r will do beauseof (4). We will prove that for any s ∈ (0, r),(5) pk(r)P(θ1 ≥ s/r) ≤ C4T (s),where C4 > 0 is numerial. Indeed, for s ∈ (0, r/2] the inequality triv-ially follows from the fat that T (s) ≥ T (r/2) and from the hoie of r. If
s ∈ (r/2, r), then α = s/r ∈ (1/2, 1) so that

P(θ1 ≥ s/r) =
Γ (k/2)

Γ ((k − 1)/2)
√
π

√
1−α2\
0

tk−2(1 − t2)−1/2 dt

≤ C5

√
k α−1

√
1−α2\
0

tk−2 dt ≤ C6k
−1/2(1 − α2)(k−1)/2
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and therefore, by Lemma 2,

T (s)

P(θ1 ≥ s/r)
≥ C7

s−1e−s2/2

k−1/2(1 − α2)(k−1)/2

≥ C7

√
k rk−2e−r2/2 · e(r

2−s2)/2

(r2 − s2)(k−1)/2

≥ C7

√
k rk−2e−r2/2 · inf

u>0
u−(k−1)/2eu/2

= C7

√
k rk−2e−r2/2

(

e

k − 1

)(k−1)/2

≥ C8pk(r),where C5, C6, C7, C8 are some universal positive onstants.Let θ be, as before, uniformly distributed on Sk−1 and let η be a randomvariable independent of θ with P(η = r) = pk(r), P(η = 0) = 1 − pk(r). Let
ξ = ηθ. We have proved (5), whih means that for s > 0 and all v ∈ Sk−1,

P(|ξ · v| ≥ s) ≤ 2C4T (s).On the other hand, P(‖ξ‖≥ r)≥ pk(r), whereas P(‖Gk‖≥ r)≤C9k
−1/2pk(r)where C9 > 0 is numerial (to see this, modify the end of the proof of The-orem 2). Hene the fator √k in Theorem 2 annot be avoided in general.4. Gaussian onentration results of Pinelis. In this setion, weompare and disuss earlier results by Pinelis [10℄ based on moment om-parison whih provide improved onstants in a Gaussian setting. Pinelis' in-vestigation overs the ase of Lipshitz maps with values in both Eulideanspae R

k and arbitrary (�nite- or in�nite-dimensional) normed spaes.A �rst optimal result in Eulidean spae is the following statementfrom [10℄. With regard to Theorem 2, it shows that the dimensional fator√
k is not neessary for Gaussian measures. Reall that γn is the standardGaussian measure on R

n.Theorem 3. Let f : R
n → R

k be a 1-Lipshitz funtion suh thatT
f dγn = 0. Then, for any onvex funtion Ψ : R → R,\

Ψ(‖f‖) dγn ≤
\
Ψ(‖x‖) dγk(x).In partiular , for any r ≥ 0,

γn(‖f‖ ≥ r) ≤ eγk(x : ‖x‖ ≥ r).For the reader's onveniene we extrat from Pinelis' paper a diret ar-gument showing that the onvex domination implies the tail inequality withfator e (Pinelis traes this argument bak to Kemperman and ites thebook by Shorak and Wellner [12, pp. 797�799℄). It is well known and quite
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easy to prove that the random variable ‖Gk‖ has logarithmially onavetails, i.e. γk(x : ‖x‖ ≥ t) = e−w(t) for some onvex, inreasing funtion
w : [0,∞) → [0,∞). Given r > 0 one an �nd an a�ne funtion t 7→ a+ bt,with a ∈ R and b > 0, supporting the funtion w at the point t = r, so that
P(‖Gk‖ ≥ r) = e−a−br and P(‖Gk‖ ≥ t) ≤ e−a−bt for t ≥ 0. In partiular,by setting t = 0 we dedue that a ≤ 0. Let c = r− 1/b. If c ≤ 0 then br ≤ 1,so that also a+ br ≤ 1 and therefore

eγk(x : ‖x‖ ≥ r) = eP(‖Gk‖ ≥ r) = e1−a−br ≥ 1 ≥ γn(‖f‖ ≥ r).If c > 0 then onsider a nondereasing, onvex funtion Ψ(t) = (t− c)+ andobserve that
γn(‖f‖ ≥ r) = b(r − c)+γn(‖f‖ ≥ r) = bΨ(r)γn(‖f‖ ≥ r).Therefore,

γn(‖f‖ ≥ r) ≤ b
\
Ψ(‖f‖) dγn ≤ b

\
Ψ(‖x‖) dγk(x) = bE(‖Gk‖ − c)+.Now,

bE(‖Gk‖ − c)+ = b

∞\
0

P((‖Gk‖ − c)+ ≥ t) dt = b

∞\
c

P(‖Gk‖ ≥ t) dt

≤ b

∞\
c

e−a−bt dt = e−a−bc

and the onlusion follows sine e1−a−br = eγk(x : ‖x‖ ≥ r).Let dµ = e−V dx on R
n with V ′′ ≥ c Id, c > 0. By a theorem of Caf-farelli [3℄, the Brenier map [2℄ S : R

n → R
n that transports γn to µ isLipshitz with norm c−1/2. Theorem 3 thus readily extends to this familyof log-onave measures. In partiular, if f : R

n → R is 1-Lipshitz andT
f dµ = 0, then for any p ≥ 1,\

‖f‖2p dµ ≤ c−p
\
‖x‖2p dγk(x).It is worth mentioning that a slight improvement of this moment omparisonmay be obtained by an alternative semigroup proof whih we brie�y disussnow, for p an integer. For a probability measure µ on R

n, denote by λ1 itsPoinaré onstant de�ned as the largest λ suh that for all smooth enoughfuntions f : R
n → R with Tf dµ = 0,

λ
\
f2 dµ ≤

\
‖∇f‖2 dµ.Proposition 1. Let dµ = e−V dx on R

n with V ′′ ≥ c Id, c > 0. Then,for any 1-Lipshitz funtion f : R
n → R

k suh that Tf dµ = 0 and any
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integer p ≥ 1, \

‖f‖2p dµ ≤ p!

p−1
∏

i=0

1

ci+ λ1

\
‖x‖2p dγk(x).It is lassial (f. [8℄) that under the assumptions of the proposition,

λ1 ≥ c (with equality in the Gaussian ase). In partiular,\
‖f‖2p dµ ≤ c−p

\
‖x‖2p dγk(x).Proposition 1 provides a somewhat sharper result than the onjuntion ofCa�arelli's theorem with the Gaussian ase of Theorem 3 sine the inequality

λ1 ≥ c may be strit.Proof. Let (Pt)t≥0 be the semigroup generated by the seond order dif-ferential operator ∆−∇ ·∇V . Sine V ′′ ≥ c Id, it is known (f. e.g. [8℄) thatfor all smooth enough funtions ϕ : R
n → R and all t ≥ 0,

‖∇Ptϕ‖2 ≤ e−2ctPt(‖∇ϕ‖2).In partiular, if ϕ is 1-Lipshitz, ‖∇Ptϕ‖2 ≤ e−2ct.Given now ϕ : R
n → R 1-Lipshitz smooth and suh that Tϕdµ = 0,write, for every t ≥ 0,\

(Ptϕ)2p dµ = −
∞\
t

d

ds

(\\
(Psϕ)2p dµ

)

ds

≤ 2p(2p− 1)

∞\
t

e−2cs
(\\

(Psϕ)2p−2 dµ
)

ds.Iterating, we obtain\
ϕ2p dµ ≤ 2p(2p− 1)(2p− 2) · · · 3

×
∞\
0

e−2ct1 · · ·
∞\

tp−2

e−2ctp−1

\
(Ptp−1

ϕ)2 dµ dt1 · · · dtp−1.

Now, the Poinaré inequality provides an exponential deay in L2(µ) alongthe semigroup Pt in the form (f. e.g. [8℄)\
(Ptp−1

ϕ)2 dµ ≤ e−2λ1tp−1

\
ϕ2 dµ ≤ 1

λ1
e−2λ1tp−1 .Therefore, \

ϕ2p dµ ≤ (2p)!

2p

p−1
∏

i=0

1

ci+ λ1
.This is the result in the one-dimensional ase.
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Let now f = (ϕ1, . . . , ϕk) : R

n → R
k. Write\

‖f‖2p dµ = M−1
2p

\\∣
∣

∣

k
∑

i=1

yiϕi(x)
∣

∣

∣

2p
dµ(x) dγk(y),where we reall that M2p =

T
R
x2p dγ1. For every �xed y= (y1, . . . , yk)∈R

k,the map x 7→ ∑k
i=1 yiϕi(x) is Lipshitz with Lipshitz oe�ient less thanor equal to ‖y‖. The onlusion then follows from the preeding sine M2p =

(2p)!/(2pp!).We next turn to Lipshitz funtions on Gaussian spaes with values inarbitrary vetor spaes, and point out several extensions and generalizations.As developed in [10℄, omparison results are obtained here from a Poinarétype inequality put forward by Pisier [11℄. In the following, F denotes anormed vetor spae.Theorem 4. For every onvex measurable funtion Ψ : F → R andevery (smooth, su�iently integrable) funtion f : R
n → F with Tf dγn = 0,\

Ψ(f) dγn ≤
\\
Ψ

(

π

2
y · ∇f(x)

)

dγn(x) dγn(y).The example of F = ℓ1 shows that the fator π/2 in this inequality annotbe improved (f. [11℄). We brie�y reall the simple proof of Theorem 4. Let
G be a random vetor with distribution γn and G′ an independent opy of
G. For any θ ∈ R, set Gθ = G sin θ + G′ cos θ and G′

θ = G cos θ − G′ sin θ.Then, for a smooth enough funtion f : R
n → F suh that Tf dγn = 0,

f(G) − f(G′) =

π/2\
0

d

dθ
f(Gθ) dθ =

π/2\
0

G′
θ · ∇f(Gθ) dθ.Apply then Ψ and take expetation. On the one hand, by Jensen's inequality(in G′), E(Ψ(f(G)− f(G′))) ≥ EΨ(f(G)) sine f has mean zero, and on theother, by Jensen's inequality again but in dθ,

EΨ(f(G)) ≤
π/2\
0

E

(

Ψ

(

π

2
G′

θ · ∇f(Gθ)

))

dθ

π/2
.The onlusion follows sine for eah θ, the ouple (Gθ, G
′
θ) has the samedistribution as (G,G′).Although the extension below is not stritly neessary for the purposesof measure onentration, it might be worth mentioning that Ca�arelli'sontration theorem extends Theorem 4 to all stritly log-onave measureson R

n. We leave the details to the reader.Corollary 1. Let dµ = e−V dx on R
n with V ′′ ≥ c Id, c > 0. Then, forevery onvex measurable funtion Ψ : F → R and every (smooth, su�iently



Measure Conentration of Vetor-Valued Maps 273
integrable) vetor-valued funtion f : R

n → F with Tf dµ = 0,\
Ψ(f) dµ ≤

\\
Ψ

(

π

2
√
c
y · ∇f(x)

)

dµ(x) dγn(y).Theorem 4 allows us to derive onentration inequalities for funtions onGaussian spaes with values in arbitrary vetor spaes that are Lipshitz inan appropriate sense.The �rst result onerns maps f : R
n → F that are Lipshitz in theusual sense. If Ψ(x) = ψ(‖x‖), x ∈ F , where ψ : R+ → R is onvex andnon-dereasing, for any 1-Lipshitz map f : R

n → F (with respet to thenorm on F ) with Tf dγn = 0,\
ψ(‖f‖) dγn ≤

\
ψ

(

π

2
‖y‖

)

dγn(y).By the omparison theorems of [10℄ (see the omment following Theorem 3),it follows that
γn(‖f‖ ≥ r) ≤ eγn(x : ‖x‖ ≥ 2r/π)for every r ≥ 0.Let now ν be a entered Gaussian measure on a real separable Banahspae F . A map f : R

n → F is then said to be 1-Lipshitz with respetto ν if for every ξ ∈ F ′, 〈ξ, f〉 : R
n → R is Lipshitz with oe�ient

(
T
〈ξ, x〉2 dν(x))1/2. Of ourse, the hoie of ν = γk on F = R

k leads tothe usual de�nition of 1-Lipshitz funtion f : R
n → R

k. With the helpof Theorem 4, we may thus extend the onentration of maps to Lipshitzfuntions with respet to a given Gaussian measure ν.Corollary 2. Let dµ = e−V dx on R
n with V ′′ ≥ c Id, c > 0. Letfurthermore ν be a entered Gaussian measure on a Banah spae F . Then,for any funtion f : R

n → F 1-Lipshitz with respet to ν and suh thatT
f dµ = 0,

µ(‖f‖ ≥ r) ≤ Kν(x : ‖x‖ ≥ √
c r/K)for every r ≥ 0, where K is some positive universal onstant.Proof. By standard smoothing arguments (onvoluting f with a C∞

0 ap-proximation of δ0) we an assume that f is smooth. By Ca�arelli's result, itis enough to deal with the Gaussian ase µ = γn (alternatively, use Corol-lary 1). By de�nition of 1-Lipshitz with respet to ν, for any �xed x, andany ξ ∈ F ′, \
〈ξ, y · ∇f(x)〉2 dγn(y) ≤

\
〈ξ, y〉2 dν(y).This ovariane domination implies that ν is a onvolution of (∇f(x))∗γn(the image of γn under linear transportation by ∇f(x)) with some other en-tered Gaussian measure. Therefore, by Jensen's inequality, for every onvex
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funtion Ψ : F → R and any x ∈ R

n,\
Ψ(y · ∇f(x)) dγn(y) ≤

\
Ψ(y) dν(y).Now, by Theorem 4,\

Ψ(2f/π) dγn ≤
\\
Ψ(y · ∇f(x)) dγn(y) dγn(x) ≤

\
Ψ(y) dν(y).The omment following Theorem 3 does not apply here sine the norm on Fmay di�er from the Eulidean norm indued by ν. We need another argu-ment. Let G be an F -valued Gaussian random vetor with distribution ν.Denote by M the median of ‖G‖ and let σ = supξ∈F ′ : ‖ξ‖=1(E〈ξ,G〉2)1/2.The Gaussian isoperimetry implies that for g ∼ N (0, 1),

E exp((‖G‖ −M)2/(4σ2)) ≤ Eeg2/4 =
√

2(f. [9℄). Let Ψ(y) = exp(‖y‖2/(8σ2)). Sine ‖G‖2 ≤ 2M2 +2(‖G‖−M)2 wehave \
Ψ(2f/π) dγn ≤ EΨ(G) ≤ eM2/(4σ2)

E exp((‖G‖ −M)2/(4σ2))

≤
√

2 eM2/(4σ2).If r < πM then obviously γn(‖f‖ ≥ r) ≤ 2P(‖G‖ ≥ r/π). If r ≥ πM then,by Chebyshev's inequality,
γn(‖f‖ ≥ r) ≤

√
2 eM2/(4σ2)e−r2/(2π2σ2) ≤

√
2 e−r2/(4π2σ2)

≤
√

2A−1 · T
(

r

2πσ

)

,where A = infs≥0 T (s)es2 is a positive universal onstant (see Lemma 2).Choose ξ ∈ F ′ suh that ‖ξ‖ = 1 and (E〈ξ,G〉2)1/2 ≥ σ/2. Then
ν

(

x : ‖x‖ ≥ r

4π

)

= P

(

‖G‖ ≥ r

4π

)

≥ P

(

〈ξ,G〉 ≥ r

4π

)

≥ P

(

σ

2
g ≥ r

4π

)

= T

(

r

2πσ

)

≥ A√
2
· γn(‖f‖ ≥ r)and the proof is �nished by setting K = max(

√
2/A, 4π).The ouple (Rn, γn) may be replaed in the above statements by anabstrat Wiener spae. Lipshitz has then to be understood in the diretionsof the reproduing kernel Hilbert spae.The preeding results have ounterparts on the disrete ube {0, 1}n. Ithas been shown by Pisier [11℄ that for every f : {0, 1}n → F with mean zerowith respet to the uniform measure µ on the ube, and every p ≥ 1,(6) \

‖f‖p dµ ≤ Cp
\\∥

∥

∥

n
∑

i=1

yiDif(x)
∥

∥

∥

p
dµ(x) dµ(y)
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where Dif(x) = 1

2 [f(x) − f(si(x))] and si(x) is obtained from x ∈ {0, 1}nby hanging the ith oordinate. In general, the onstant C is 2e logn andannot be improved for arbitrary spaes F . It is however independent of nin the ase of F = R
k with its lassial Eulidean struture (see [13℄).By the omparison between Rademaher and Gaussian averages, we mayinrease the right-hand side of (6) replaing dµ(y) by dγn(y) (at the expenseof a multipliative fator). Now, the same reasoning as for Theorem 1 maybe applied. If f : {0, 1}n → R

k is suh that Tf dµ = 0 and, for every ξ ∈ R
k,

n
∑

i=1

(ξ ·Dif(x))2 ≤ ‖ξ‖2

uniformly in x, then \
‖f‖p dµ ≤ Cp

\
‖y‖p dγk(y).Together with Lemma 1, we onlude that

µ(‖f‖ ≥ r) ≤ Cγk(x : ‖x‖ ≥ r/C)for every r ≥ 0.5. Conluding omments and questions. In what follows, supfdenotes the supremum over all 1-Lipshitz funtions f : R
n → R

k. In viewof Gromov's result [5℄ desribed in the Introdution it is natural toask what is the optimal rate of onentration of f around some value of
f�namely, what is the asymptotis of supn supf infx∈Rn ‖f(x) − Ef(Gn)‖as k → ∞ and, for �xed k, what is the asymptotis (as t → ∞) of
supn supf infx∈Rn P(‖f(x) − f(Gn)‖ ≥ t).Dealing with onentration properties of (X × X,µ ⊗ µ) rather than
(X,µ) (see e.g. Barthe's isoperimetri inequality for Sn−1 ×Sn−1 [1, Propo-sition 11℄) an lead to onentration results of a slightly di�erent form: in-stead of estimating from above P(‖f(Gn) − Ef(Gn)‖ ≥ t) one an bound
P(‖f(Gn) − f(G′

n)‖ ≥ t) where G′
n is an independent opy of Gn. Anotherpossible diretion of researh is related to the following de�nition.Definition 1. Let F be a separable real Banah spae and let X and

Y be F -valued random vetors. We will say that X is weakly dominated by
Y if for every bounded linear funtional ϕ ∈ F ′ and all t > 0,

P(|〈ϕ,X〉| ≥ t) ≤ P(|〈ϕ, Y 〉| ≥ t).It is of interest under what additional assumptions about distributionsof X and Y weak domination implies E‖X‖ ≤ CE‖Y ‖, or even
P(‖X‖ ≥ t) ≤ CP(‖Y ‖ ≥ t/C) for all t > 0.Note that the latter inequality easily implies E‖X‖ ≤ C2

E‖Y ‖.
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It is not very di�ult to see that this is always so if both X and Y areentered Gaussian vetors (see [9℄ or [6, Chapter 5.5℄�we have used a similarapproah in the proof of Corollary 2). Some results of the present paper, es-peially Theorem 2, refer to the ase when F is equal to R

k equipped with thestandard Eulidean struture. Reently Kwapie« and Lataªa (private om-muniation) obtained several interesting results onerning the ase whenwe make some additional assumptions about Y only. Also, Lataªa provedthat the following natural onjeture would be a orollary to the so-alledBernoulli onjeture of Talagrand (whih is still open, see [14, p. 130℄):Conjeture 1. Let r1, r2, . . . be an i.i.d. sequene of symmetri ±1random variables. There exists a universal onstant C > 0 suh that for anyseparable real Banah spae F and every hoie of vetors v1, w1, . . . , vn, wnin F suh that X =
∑n

j=1 rjvj is weakly dominated by Y =
∑n

j=1 rjwj , wealso have
P(‖X‖ ≥ t) ≤ CP(‖Y ‖ ≥ t/C) for all t > 0.Below we will show an example of R

k-valued random vetors X and Y,both rotation invariant with respet to the standard Eulidean struture,indiating that even under suh additional assumptions, weak dominationannot in general imply that P(‖X‖ ≥ t) ≤ CP(‖Y ‖ ≥ t/C) for all t > 0.Reall that T is a ontinuous and stritly dereasing funtion. Fix C > 1.Choose xC > 0 so great that 2CT (xC) ≤ 1/4. Then hoose β ∈ (0, 1/(2C))so small that
2Cβ

1 − β
≤ inf

x∈[0,xC ]

T (2Cx)

T (x)
.The hoie of xC implies that, for all x ≥ xC ,(7) 2CβT (x) − (1 − β)T (2Cx) ≤ β/4.Now we will hoose b ∈ (0, 1) so little that for all x > 0,(8) 2CβT (x) ≤ (1 − β)T (2Cx) + βT (bx).From the hoie of β we dedue that (8) is satis�ed whenever x ∈ [0, xC ]and b > 0. Hene it su�es to hoose a proper b for x ≥ xC . One an easilyhek that (4) implies T−1(s)/

√

2 ln(1/s) → 1 as s→ 0+ and therefore
lim

x→∞
T−1(2CT (x) − (1 − β)T (2Cx)/β)/x = 1,so that there exists y > xC suh that for every x ≥ y,

2CβT (x) ≤ (1 − β)T (2Cx) + βT (x/2).On the other hand, by (7), we have for every x ∈ [xC , y],
2CβT (x) ≤ (1 − β)T (2Cx) + β/4 ≤ (1 − β)T (2Cx) + βT (T−1(1/4)x/y).Therefore b = min(1/2, T−1(1/4)/y) satis�es our requirements. Reall that

L(Gk) = N (0, Idk) and let ‖ · ‖ denote the standard Eulidean norm on R
k,
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as usual. Consider random vetors (Gaussian mixtures) X and Y with dis-tributions given by L(X) = (1 − 2Cβ)δ0 + 2CβL(Gk) and L(Y ) =
(1−β)L((2C)−1Gk)+βL(Gk/b). The inequality (8) means that X is weaklydominated by Y. By the law of large numbers, limk→∞ P(‖Gk‖ ≥ w

√
k) isequal to 0 if w > 1 and it is equal to 1 if w ∈ (0, 1), so that

P(‖X‖ ≥ 0.9
√
k) = 2CβP(‖Gk‖ ≥ 0.9

√
k)

k→∞−→ 2Cβ,whereas
CP(‖Y ‖ ≥ 0.9

√
k/C) ≤ C(1 − β)P(‖Gk‖ ≥ 1.8

√
k) + Cβ

k→∞−→ Cβ.Hene, in general, the weak domination annot yield the inequality
P(‖X‖ ≥ t) ≤ CP(‖Y ‖ ≥ t/C) for all t > 0,for any universal C. However, one an quite easily prove suh an inequalitywith C depending on k.On the other hand, note that for this example (and for any pair of rotationinvariant R

k-valued X and Y suh that X is weakly dominated by Y ), forevery p > 0,
E‖X‖p ≤ E‖Y ‖pfor any norm ‖ · ‖ on R

k (not neessarily Eulidean).Indeed, beause of the rotation invariane we have E‖X‖p = E‖X‖p
◦ and

E‖Y ‖p = E‖Y ‖p
◦, where ‖v‖◦ = (

T
O(k) ‖U(v)‖p dσH(U))1/p (the integral istaken with respet to the normalized Haar measure σH) for v ∈ R

k. Thenorm ‖ · ‖◦ is rotation invariant and our assertion follows from the fat that
‖ · ‖◦ must be proportional to another rotation invariant norm ‖v‖◦◦ :=
(E|θ · v|p)1/p. Obviously, E|θ ·X|p ≤ E|θ ·Y |p for θ independent of X and Y .Aknowledgements. We thank I. Pinelis for his interest in this workand his help in the proof of Lemma 1. We also thank the anonymous refereefor useful omments. Part of the work was done when the seond namedauthor visited Institut de Mathématiques at Université Paul Sabatier inToulouse. It is a pleasure to aknowledge their kind hospitality.
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