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Summary. We investigate zeta regularized products of rational functions. As an appli-
cation, we obtain the asymptotic expansion of the Euler Gamma function associated with
a rational function.

1. Introduction. Let r(z) = cph(z)/qk(z) be a rational function of z,
where ph and qk are monic polynomials with real coefficients of degree h
and k, respectively, and c 6= 0 is a real number. Factoring r(z) into the
product

r(z) = c
ph(z)
qk(z)

= c
(z + a1) · · · (z + ah)
(z + b1) · · · (z + bk)

,

it is clear (see for example [8, 12.13]) that the infinite product
∞∏
n=1

c
ph(n)
qk(n)

converges if c = 1, h = k, a1 + · · · + ah − b1 − · · · − bh = 0, and assuming
that no factor in the denominator vanishes. If this is the case, it is a result
of Euler that

∞∏
n=1

ph(n)
qh(n)

=
Γ (1 + b1) · · ·Γ (1 + bh)
Γ (1 + a1) · · ·Γ (1 + ah)

.

M. Eie [4, Main theorem II] proved that this result generalizes to zeta
regularized products when qk(z) = 1 and |al| < 1. Recall that if Λ = {λn}∞n=1

is a sequence of complex numbers with a unique accumulation point at infin-
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ity and genus g (see for example [2, 7.5], or [6, Section 2] for the definition),
and if Λ is contained in some suitable sector of the complex plane, then the
zeta regularization of the infinite product

∞∏
n=1

λn

is by definition e−ζ
′(0,Λ), where the zeta function associated to Λ is defined

by the Dirichlet series

ζ(s, Λ) =
∞∑
n=1

λ−sn

when Re(s) > g, and by analytic continuation elsewhere, and where by
ζ ′(0, Λ) we mean the finite part of ζ(s, Λ) if ζ(s, Λ) has a pole at s = 0 (we
refer to [6] for details). If the unique accumulation point of Λ is zero, then
we define the associated zeta function by ζ(s, Λ) = ζ(−s, 1/Λ).

If Λ= {cph(n)/qk(n)}∞n=1, we denote by ζ(s, cph/qk) the associated zeta
function, and we call it the zeta function associated with a rational function.
The polynomial zeta function ζ(s, pk) has been studied in the cited work of
Eie. Subsequently, the construction has been generalized by studying multiple
polynomial zeta functions in [5], and introducing polynomialmultiplicity in [3].

In this note, we extend this construction to the case of rational functions.
Our first result is the following proposition, which also gives an elementary
proof of Main Theorem II in [4].

Proposition 1. Let c 6= 0, and a1, . . . , ah and b1, . . . , bk be complex
numbers with |aj | < 1, |bj | < 1, and h 6= k. Then the zeta regularization of
the infinite product

∞∏
n=1

c
ph(n)
qk(n)

=
∞∏
n=1

c
(n+ a1) · · · (n+ ah)
(n+ b1) · · · (n+ bk)

is

e−ζ
′(0,cph/qk) = (2π)

h−k
2 c−

a1+···+ah−b1−···−bk
h−k − 1

2
Γ (1 + b1) · · ·Γ (1 + bk)
Γ (1 + a1) · · ·Γ (1 + ah)

.

As a second result, we present the following natural application of Propo-
sition 1. Define the Euler Gamma function associated with the rational func-
tion r(z) = cph(z)/qk(z), with h > k > 0, to be the Weierstrass product

Γ (z, cph/qk) =
∞∏
n=1

egz/r(n)

1 + z/r(n)
,

where we put g = 1 if h = k + 1, and g = 0 otherwise (note that g is the
genus of the sequence Λ). Then we have the following asymptotic expansion,
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where the notation Resls=s0
f(s) denotes the coefficient of the term (s− s0)−l in

the Laurent expansion of f(s) at s = s0 (see for example [1, p. 420]).

Proposition 2. For large z with |arg(z)| < π,

logΓ (z, cph/qk) =


πc

1
k−h

sin π
k−h

z
1

h−k if h > k + 1,

1
c
z log z +

(
Res0
s=1

ζ(s, cph/qk)−
1
c

)
z if h = k + 1,

+
(

1
2

+
a1 + · · ·+ ah − b1 − · · · − bk

h− k

)
log z

−
(

1
2

+
a1 + · · ·+ ah − b1 − · · · − bk

h− k

)
log c

+
h− k

2
log 2π + log

Γ (1 + b1) · · ·Γ (1 + bk)
Γ (1 + a1) · · ·Γ (1 + ah)

+ o(1).

The proofs of these propositions are presented in the next two sections.

2. The proof of Proposition 1. Expanding the powers of the binomi-
als we obtain, for large Re(s),

csζ(s, cph/qk) =
∞∑
j,l=0

(
−s
j

)(
s

l

)
ajblζ((h− k)s+ |j|+ |l|),

where ζ(s) is the Riemann zeta function, we use the multi-indices j =
(j1, . . . , jh), l = (l1, . . . , lk), and |j| = j1 + · · · + jh, |l| = l1 + · · · + lk,
ajj = aj11 · · · a

jh
h , bkk = bl11 · · · b

lk
k ,
(−s
j

)
=
(−s
j1

)
· · ·
(−s
jh

)
,
(
s
l

)
=
(
s
l1

)
· · ·
(
s
lk

)
. Thus,

csζ(s, cph/qk) = ζ((h− k)s)+
h∑

α=1

∞∑
jα=1

(
−s
jα

)
ajαα ζ((h− k)s+ jα)

+
k∑

β=1

∞∑
lβ=1

(
s

lβ

)
b
lβ
β ζ((h− k)s+ lβ) + ϕ(s),

where ϕ(s) has a zero of degree 2 at s = 0. Isolating the singular terms, we
obtain

csζ(s, cph/qk) = ζ((h− k)s)− sζ((h− k)s+ 1)
( h∑
α=1

aα −
k∑

β=1

bβ

)
(1)

+
h∑

α=1

∞∑
jα=2

(
−s
jα

)
ajαα ζ((h− k)s+ jα)

+
k∑

β=1

∞∑
lβ=2

(
s

lβ

)
b
lβ
β ζ((h− k)s+ lβ) + ϕ(s).
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The analytic continuation at s = 0 of the function on the right side of
(1) is given by that of the Riemann zeta function, and is regular at s = 0.
In particular,

d

ds

∣∣∣∣
s=0

∞∑
jα=2

(
−s
jα

)
ζ((h− k)s+ jα)ajαα =

∞∑
jα=2

(−1)jα

jα
ζ(jα)ajαα

= logΓ (1 + aα) + γaα,

d

ds

∣∣∣∣
s=0

∞∑
lβ=2

(
s

lβ

)
ζ((h− k)s+ lβ)b

lβ
β = −

∞∑
lβ=2

(−1)lβ

lβ
ζ(lβ)b

lβ
β

= − logΓ (1 + bβ)− γbβ.

This gives the expansions near s = 0 of the different terms:

−sζ((h− k)s+ 1)
( h∑
α=1

aα −
k∑

β=1

bβ

)
= − 1

h− k

( h∑
α=1

aα −
k∑

β=1

bβ

)

− γ
( h∑
α=1

aα −
k∑

β=1

bβ

)
s+O(s2),

h∑
α=1

∞∑
jα=2

(
−s
jα

)
ajαα ζ((h− k)s+ jα)=

(
log

h∏
α=1

Γ (1 + aα) + γ
h∑

α=1

aα

)
s+O(s2),

k∑
β=1

∞∑
lβ=2

(
s

lβ

)
b
lβ
β ζ((h− k)s+ lβ)=−

(
log

k∏
β=1

Γ (1 + bβ) + γ
k∑

β=1

bβ

)
s+O(s2),

and hence

ζ(0, ph/qk) = ζ(0)− 1
h− k

( h∑
α=1

aα −
k∑

β=1

bβ

)
,

ζ(0, ph/qk) = (h− k)ζ ′(0) + log
∏h
α=1 Γ (1 + aα)∏k
β=1 Γ (1 + bβ)

.

3. The proof of Proposition 2. We shall use some notations and
results from [6] and [7], concerning sequences of spectral type. Let us indicate
the main steps of the proof.

Let S be any sequence of positive real numbers, which is simple regular
of spectral type with genus g. Let F (z, S) denote the Fredholm determinant
associated to S (see [6, p. 866]; also note that its inverse is called the Gamma
function in [7]). There exists an expansion (use Definition 2.1 and Lemma
2.7 in [6] or Definitions 2.1 and 2.7 in [7])
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− logF (z, S) =
g∑
j=0

aj,1z
j log z +

J∑
j=0

aαj ,0z
αj + o(zαJ )

for large z with |arg(z)| < π and α0 > α1 > · · · > αJ . Observe that our
sequence Λ is a simply regular sequence of spectral type with genus g, where
g = 1 if h = k + 1 and g = 0 otherwise. Indeed, Λ is a sequence of spectral
type by Lemma 2.5 in [6], and is simply regular by Proposition 2.11 in
[7], since the possible poles of the zeta function ζ(s, Λ) are at most simple.
Moreover, by the same proposition the possible poles of the zeta function
are located at s = αj , and by Remark 2.9 in [7], α0 < g+ 1. Now, using the
expansion given in the previous section, it is easy to see that ζ(s, Λ) has at
most one simple pole on the positive part of the real axis, and this pole is
at s = 1 if g = 1, and at s = 1/(h− k) otherwise. It follows that the unique
possible positive value of the αj is either α0 = 1, if g = 1, or α0 = 1

h−k , if
g = 0; and that α1 = 0 for any g. Also note that logF (z, Λ) = − logΓ (z, Λ).
This means that

logΓ (z, Λ) =
g∑
j=0

aj,1z
j log z +

1∑
j=0

aαj ,0z
αj + o(1).

The values of ax,k’s can be calculated explicitly as follows (see Proposi-
tions 2.11 and 2.14 in [7], and Proposition 2.6 in [6]):

a0,0 = − Res0
s=0

ζ ′(s, Λ),

a0,1 = − Res0
s=0

ζ(s, Λ),

aα0,0 =


a 1
h−k ,0

= Γ

(
1

h− k

)
Γ

(
1

k − h

)
Res1
s= 1

h−k

ζ(s, Λ) =
πc

1
k−h

sin π
k−h

, g = 0,

a1,0 = Res0
s=1

ζ(s, Λ)− Res1
s=1

ζ(s, Λ) = Res0
s=1

ζ(s, Λ)− 1
c
, g = 1,

aα0,1 =


a 1
h−k ,1

= 0, g = 0,

a1,1 = Res1
s=1

ζ(s, Λ) =
1
c
, g = 1.

Applying Proposition 1, we are done.

4. Remarks. In this section we investigate the case h = k. Before, we
discuss multiplicativity of zeta regularization. This appears in the interpre-
tation of the infinite product

∏
λn as the determinant of the infinite diagonal

matrix Λ with entries λn. Namely, we set

detζ Λ = e−ζ
′(0,Λ).
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Then it is natural to ask: given two infinite diagonal matrices Λ1 and Λ2, is
detζ Λ1Λ2 = detζ Λ1 detζ Λ2? Multiplicativity of determinants clearly corre-
sponds to additivity of the derivative at zero of the associated zeta functions.
Now, it is clear that ζ(0, cΛ) = ζ(0, Λ) for any c 6= 0, and that

ζ ′(0, cΛ) = −ζ(0, Λ) log c+ ζ ′(0, Λ).

Restricting to the case where the λn are rational functions of n, it follows
from Proposition 1 and the formula

ζ(0, ph) = −1
2
− 1
h

(a1 + · · ·+ ah)

that ζ ′(0, c1c2p1,h1p2,h2) is not equal to ζ ′(0, c1p1,h1)+ζ
′(0, c2p2,h2) (however,

note this is the case when h1 = h2 and p1,h1 = p2,h2). Therefore, we further
restrict to monic polynomials, and in this case it is easy to see that (if
hj 6= kj)

ζ ′(0, p1,h1p2,h2/q1,k1q2,k2) = ζ ′(0, p1,h1/q1,k1) + ζ ′(0, p2,h2/q2,k2).

Thus we consider the case k = h only for monic polynomials. It is clear
that a zeta function for the sequence {ph(n)/qh(n)}∞n=1 cannot be defined,
since the exponent of convergence is not finite. However, we can introduce
the following regularization of the infinite product: we define the regularized
product
∞∏R

n=1

ph(n)
qh(n)

=
∞∏R

n=1

(n+ a1) · · · (n+ ah)
(n+ b1) · · · (n+ bh)

= ea1+···+ah−b1−···−bh
∞∏
n=1

(n+ a1) · · · (n+ ah)
(n+ b1) · · · (n+ bh)

e−(a1+···+ah−b1−···−bh)/n.

It is then easy to see that the product on the right side converges, as desired,
to

Γ (1 + b1) · · ·Γ (1 + bh)
Γ (1 + a1) · · ·Γ (1 + ah)

=
e−ζ

′(0,ph)

e−ζ′(0,qh)
.

We conclude by observing that the method described in this note can
be used to obtain a formula for the derivative at zero of the zeta function
studied by Dąbrowski in [3], where some polynomial multiplicity has been
introduced.

Acknowledgments. We thank the referee for his comments and re-
marks to strengthen the presentation of the results in this note.
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