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Summary. We show that every Lipschitz map defined on an open subset of the Banach
space C(K), where K is a scattered compactum, with values in a Banach space with the
Radon–Nikodym property, has a point of Fréchet differentiability. This is a strengthening
of the result of Lindenstrauss and Preiss who proved that for countable compacta. As a
consequence of the above and a result of Arvanitakis we prove that Lipschitz functions on
certain function spaces are Gâteaux differentiable.

1. Introduction. We investigate the problem of differentiation of Lip-
schitz functions on Banach spaces. Results concerning differentiation pro-
vide an important technique of linearization of nonlinear maps and therefore
many problems in nonlinear classification of Banach spaces can be reduced
to the classical linear theory.

Let us recall some basic definitions and facts:

Definition 1.1. Let f : U → F be a Lipschitz map where F is a Banach
space and U 6= ∅ is an open set of a Banach space E. We say that f is
Gâteaux differentiable at x0 ∈ U if there exists a continuous linear operator
Df(x0) : E → F such that

Df(x0)u = lim
t→0

(f(x0 + tu)− f(x0))/t for all u ∈ E.

Moreover, if the above limit exists uniformly in u on the unit sphere in E
then we say that f is Fréchet differentiable at x0. Let us denote by DiffF(f)
and DiffG(f) the sets of all points of Fréchet and Gâteaux differentiability
of f , respectively.
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Obviously if E is finite-dimensional and the function f is Lipschitz then
the notions of Fréchet and Gâteaux differentiability coincide.

Let us recall the classical fact about differentiability of Lipschitz func-
tions:

Theorem 1.2 (Rademacher). Let f : Rn → Rk be a Lipschitz function.
Then the set DiffF(f) is of full Lebesgue measure in Rn.

We need some definitions before quoting more recent results:

Definition 1.3. We say that F has the Radon–Nikodym property (F ∈
RNP) if every Lipschitz function f : R → F is differentiable almost every-
where (equivalently, at some point).

Typical examples of Banach spaces having the Radon–Nikodym property
are all reflexive Banach spaces. It is also worth mentioning that spaces having
RNP can be defined differently in the spirit of the Radon–Nikodym theorem
(see [6] for more information).

The next definition gives a necessary condition that the codomain must
satisfy in order that most of the relevant differentiability results work.

Definition 1.4. We say that a Banach space F is Asplund if for every
closed separable subspace X ⊂ F the space X∗ is separable.

Theorem 1.5 (Aronszajn [2], Christensen [8], Mankiewicz [14]). Let E
be a separable Banach space and F ∈ RNP. Then every Lipschitz map f :
U → F , where U 6= ∅ is an open subset of E, is Gâteaux differentiable outside
a set I belonging to some non-trivial sigma ideal Σ  P(U).

In the papers of Aronszajn, Christensen and Mankiewicz the above the-
orem was proved for different sigma ideals Σ. Let us mention that Linden-
strauss and Preiss [13] recently defined another sigma ideal of gamma null
sets for which the conclusion of Theorem 1.5 holds. Let us denote this sigma
ideal by Γ . Unfortunately the above theorem is no longer true if we consider
Fréchet differentiability. Define ϕ : `2 → `2 by ϕ((xi)i∈N) = (|xi|)i∈N. It is
not difficult to check that ϕ is a Lipschitz map which is nowhere Fréchet
differentiable. However if the codomain is the space of real numbers R then
we have the following theorem:

Theorem 1.6 (Preiss [17]). Let U 6= ∅ be an open subset of an Asplund
space and f : U → R be a Lipschitz map. Then DiffF(f) is dense in U .

The assumption that U is a subset of an Asplund space cannot be weak-
ened. Namely, if E is not an Asplund space then there exists an equiva-
lent norm on E which is nowhere Fréchet differentiable (see Corollary 2.35
of [16]). It is also interesting when the space R can be replaced by any
Banach space having RNP. For instance the map f : `2 → `2 defined by
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f((x1, x2, . . .)) = (|x1|, |x2|, . . .) can be shown to be nowhere Fréchet differ-
entiable. However in some special cases this can be done:

Theorem 1.7 (Lindenstrauss and Preiss [13]). Let M be a countable
compact space and F be a Banach space having RNP. Then every Lipschitz
map f : U → F defined on an open subset U ⊂ C(M) is Fréchet differentiable
outside a set I ∈ Γ ⊂ P(U).

Here and below, C(M) denotes the Banach space of all real valued con-
tinuous functions on M equipped with the supremum norm.

Before we finish the introduction let us formulate a simple fact concerning
Gâteaux differentiability. We use it in the last section of this article.

Fact 1.8. Let V and W be two Banach spaces and T : V → W be a
continuous linear operator such that TV = W . Let f : W → Y be a Lipschitz
function where Y is a Banach space. Then T (DiffG(f ◦ T )) ⊂ DiffG(f).

Proof. We need the following simple fact (see Lemma 6.40 in [6]):

Lemma 1.9. Let E and F be Banach spaces, and let f be a Lipschitz
function from an open set in E into F . Let G be a dense additive subgroup
of E, and assume that for some x0 ∈ E and for all u ∈ G the directional
derivative at x0

lim
t→0

f(x0 + tu)− f(x0)
t

exists and is additive as a function of u. Then f is Gâteux differentiable
at x0.

Take x0 ∈ DiffG(f ◦ T ). From the linearity of T we know that the limit

lim
t→0

f(Tx0 + tTv)− f(Tx0)
t

exists for all v ∈ V and is additive as a function of Tv. Lemma 1.9 and the
obvious fact that TV is a dense additive subgroup of W finish the proof of
Fact 1.8.

2. Fréchet differentiability of Lipschitz maps on function spaces.
Let us recall that the space K is scattered if every nonempty subset of K
has an isolated point. Obviously all countable compact spaces are scattered.
This section will be devoted to a generalization of Theorem 1.7. Precisely,
we will prove that:

Theorem 2.1. Let K be a compact scattered space, G an open subset
of C(K), and Y a Banach space having RNP. Then every Lipschitz map
f : G→ Y has a point of Fréchet differentiability.

An immediate corollary of the above theorem is
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Corollary 2.2. Let K be a compact scattered space, G an open subset
of C(K), and {Yn}n∈N Banach spaces having RNP. Then for every sequence
of Lipschitz maps fn : G→ Yn we have

⋂∞
n=1 DiffF(fn) 6= ∅.

Proof. Without loss of generality we can assume that the Lipschitz con-
stants of all the fn are 1. Define g : G → Y = (Y1 × Y2 × · · · )`1 by g(x) =
(f1(x)/12, f2(x)/22, f3(x)/32, . . .). Since Y has RNP, from Theorem 2.1 we
know that there exists x0 ∈ G which is a point of Fréchet differentiability
of g. It is easy to check that x0 ∈

⋂∞
n=1 DiffF(fn), which finishes the proof.

Let us note that the assumption on K cannot be weakened because of
the following classical fact:

Fact 2.3. The Banach space C(K) is an Asplund space if and only if K
is scattered.

The proof of this fact can be found in [10]. We will reduce Theorem 2.1
to the separable case (i.e. to Theorem 1.7). We need the following notion
which appears in [7].

Definition 2.4. Let E be a normed linear space. We call a family F of
closed separable subspaces of E rich if the following conditions are satisfied:

(i) If {Vn}n∈N ⊂ F is an increasing family then
⋃
{Vn; n ∈ N} ∈ F.

(ii) For every separable subspace V ⊂ E there exists W ∈ F such that
V ⊂W .

The next theorem is essentially due to Preiss (see [17]).

Theorem 2.5. Let f : G → F be a continuous map of an open subset
G ⊂ E into F where E and F are Banach spaces, and let F be a rich family
of subspaces of E. Then for every separable subspace V ⊂ E there exists
W ∈ F such that V ⊂W and

(∗) DiffF(f |W ∩G) = W ∩G ∩DiffF(f).

Proof. For completeness we provide an idea of the proof. For every x ∈ G
let A(x) ⊂ SE be a countable subset of the unit sphere such that for all
s, t 6= 0 satisfying max{|s|, 2|t|} < dist(x,E \G) there exist u, v ∈ A(x) such
that:∥∥∥∥f(x+ t(u+ v))− f(x)

t
− f(x+ su)− f(x)

s
− f(x+ sv)− f(x)

s

∥∥∥∥
≥ −|s|+ sup

{∥∥∥∥f(x+ t(z + w))− f(x)
t

−f(x+ sz)− f(x)
s

− f(x+ sw)− f(x)
s

∥∥∥∥ : z, w ∈ SE
}
.
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The existence of such a set follows from the fact that it is enough to consider
s, t ∈ Q \ {0} only.

We define inductively a sequence of subspaces {Vn}n∈N where V0 = V
and Vn+1 is the element of F containing span(Cn ∪ A(Cn ∩ G)) where Cn
is a dense and countable subspace of Vn. In his paper Preiss shows that the
desired W ∈ F can be defined as W =

⋃
{Vn; n ∈ N}. He considers only

the case when the family F consists of all closed and separable subspaces
of E. However the proof remains the same for any rich family F. The only
difference is the definition of {Vn}n∈N. Since all the remaining part of the
proof is the same as in [17], we do not provide further details.

Proof of Theorem 2.1. It is clear that the family F of all closed and
separable subalgebras of C(K) is rich. On the other hand if A ∈ F then A
is isometric to C(L) for some compactum L (Gelfand–Naimark theorem).
Therefore C(L) embeds linearly and isometrically into C(K). Holsztyński’s
theorem [12] shows that L is a continuous image of a subset of K, hence it is
scattered. Since C(L) is separable, the compactum L is of countable weight,
hence metrizable. Thus L, being a metrizable and scattered compact space,
must be countable. Theorems 1.7 and 2.5 finish the proof.

3. Gâteaux differentiability and scattered generated spaces. In
this section we shall show how Theorem 2.1 yields results concerning Gâteaux
differentiability of Lipschitz maps on nonseparable Banach spaces with values
in RNP spaces. It turns out that the results obtained are connected with the
branch of topology dealing with different kinds of weakly compact spaces
such as Eberlein or Radon–Nikodym compacta. For more information on
this topic see [5] and [10].

Definition 3.1. Let E and F be Banach spaces and T : E → F be a
continuous linear operator. We say that E generates F if TE = F . When
additionally E = C(K) for K scattered, we call F a scattered generated
space.

As an immediate corollary of Theorem 2.1 and Fact 1.8 we obtain the
following:

Corollary 3.2. Every countable family of Lipschitz maps on a scattered
generated space F with values in a space with RNP has a common point of
Gâteaux differentiability.

Therefore a natural question arises:

Question 3.3. Which Banach spaces are scattered generated?

First of all note that all separable Banach spaces are scattered generated.
Indeed, all of them are generated by `2 (cf. [9, Lemma 2.5, p. 47]), hence
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also by c0. However this is no longer true if we consider all Hilbert spaces,
as the following well known fact shows:

Fact 3.4. Let f : `2(Γ )→ `2(Γ ) be defined by f({xγ}γ∈Γ ) = {|xγ |}γ∈Γ .
For all uncountable Γ we have DiffG(f) = ∅. In particular `2(Γ ) is not
scattered generated.

Let us list some obvious properties of the class of scattered generated
spaces:

Fact 3.5. Let {Ei}i∈N be scattered generated spaces. Then the following
spaces are scattered generated:

(i) E1 × E2,
(ii) (E1 × E2 × · · · )c0 and (E1 × E2 × · · · )`p for p ≥ 1.

Proof. Observe that (E1×E2×· · · )c0 generates (E1×E2×· · · )`p for p ≥ 1.
Let Kn (n ∈ N) be scattered spaces such that C(Kn) generates En. Since
(C(K1) × C(K2) × · · · )c0 is isomorphic to C(K) where K is the one-point
compactification of the disjoint sum of the scattered spaces K1,K2, . . . , we
find that (E1 ×E2 × · · · )c0 is generated by C(K). Obviously K is scattered
itself.

In the following considerations we shall focus on scattered generated C(L)
spaces. Let us introduce the following definition:

Definition 3.6. A compact space L belongs to the class G if C(L) is
scattered generated.

Let us now define some known classes of compact spaces that in the end
will turn out to be subclasses of G.

Definition 3.7. Let L be a compact space. We call L

(i) a uniformly Eberlein compactum if L is homeomorphic to a weakly
compact space of a Hilbert space,

(ii) an Eberlein compactum if L is homeomorphic to a weakly compact
space of a Banach space,

(iii) an almost totally disconnected space if there exists a homeomorphic
embedding ϕ of L into a Hilbert cube [0, 1]Γ such that for every
l ∈ L all but countably many coordinates of ϕ(l) ∈ [0, 1]Γ are 0
or 1.

It is easy to notice that uniformly Eberlein compacta are Eberlein. On
the other hand the characterization of Amir and Lindenstrauss in [1] says
that Eberlein compacta are weakly compact subsets of c0(Γ ), which implies
that the class of almost totally disconnected compact spaces contains all
Eberlein compacta.
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To see that the classes defined in Definition 3.7 are subclasses of G we
need the following dual characterization of G:

Fact 3.8. A compact space L belongs to G if and only if it can be embed-
ded into (BC(K)∗ , w

∗) for some scattered compact space K. Here (BC(K)∗ , w
∗)

denotes the unit ball in C(K)∗ equipped with the weak∗ topology.

Proof. Assume that K is a scattered compact space. Let Tn : C(Kn)→
C(BC(K)∗) be given by Tn(f)(µ) = 2−n

∫
f dµn where µn ∈ BC(Kn)∗ is the

product measure.
Define T : (C(K)×C(K2)×C(K3)×· · · )c0 → C(BC(K)∗) by T (f1, f2, . . .)

=
∑∞

n=1 Tn(fn). By the Stone–Weierstrass theorem the image of T is dense.
Indeed it separates points since the image of T1 does. To see that it is a
subalgebra it is enough to notice that Tn(fn)Tm(fm) = Tn+m(fn × fm).
Because Kn is scattered for all n ∈ N, by Fact 3.5 we have BC(K)∗ ∈ G.
Thus if L ⊂ BC(K)∗ then L ∈ G. On the other hand if L ∈ G then by a
duality argument L ⊂ BC(L)∗ ⊂ BC(K)∗ for some scattered compactum K.

Arvanitakis [3] considers a similar class (a subclass of G) of compact
spaces. More precisely he considers all compacta that can be embedded into
the compact space P (K) of all probability measures on a scattered compact
space K endowed with the weak∗ topology. He shows that all almost totally
disconnected compact spaces are embeddable in P (K) for some scattered
compact space K, hence by Fact 3.8 the almost totally disconnected spaces
constitute a subclass of G.

Corollary 3.9. The classes of compact spaces defined in Definition 3.7
are subclasses of G.

However it is of independent interest that the class of uniformly Eberlein
compacta can be characterized in the spirit of Definition 3.6. More precisely,
L is an Eberlein compactum if C(L) is generated by the simplest possible
C(K) space where K is scattered.

Theorem 3.10. Let L be a compact space. The following conditions are
equivalent:

(i) L is uniformly Eberlein,
(ii) C(L) is Hilbert generated,
(iii) C(L) is generated by c0(Γ ) for some nonempty set Γ .

Proof. Conditions (i) and (ii) are equivalent (Theorem 2 of [11]). Since
the natural embedding shows that `2(Γ ) generates c0(Γ ) the proof will be fin-
ished once we show that C(L) is generated by some c0(Γ ) if L is a uniformly
Eberlein compact space. Note that according to Fact 3.4 no nonseparable
Hilbert space is generated by c0(Γ ) (or even scattered generated).
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Let us denote by A(Γ ) the one-point compactification of a discrete set Γ .
From Theorem 4 of [4] we know that for every uniformly Eberlein compact
space L there exists a closed subset M of the space A(Γ )ω and an onto map
ϕ : M → L admitting a regular averaging operator. Hence there exists an
operator from C(M) onto C(L), and by taking the restriction operator from
C(A(Γ )ω) onto C(M) we arrive at the conclusion that C(L) is generated by
C(A(Γ )ω). Let T : (C(A(Γ )) × C(A(Γ )2) × · · · )c0 → C(A(Γ )ω) be defined
by

T ((f1, f2, . . .)) =
∞∑
n=1

1
2n
fn ◦ πn

where πn : A(Γ )ω → A(Γ )n is the natural projection onto the first n
coordinates. From the Stone–Weierstrass theorem we clearly see that the
image of T is dense in C(A(Γ )ω). As for every n there exists an isomor-
phism Λn : c0(Γ ) → C(A(Γ )n) (see Theorem 1.1 of [15]), the operator
Λ : c0(Γ ) = (c0(Γ ) × c0(Γ ) × · · · )c0 → (C(A(Γ )) × C(A(Γ )2) × · · · )c0 de-
fined by

Λ(f1, f2, . . .) =
(

1
‖Λ1‖

Λ1f1,
1

2‖Λ2‖
Λ2f2, . . .

)
has a dense range in (C(A(Γ )) × C(A(Γ )2) × · · · )c0 . The operator T ◦ Λ
shows that C(A(Γ )ω) is generated by c0(Γ ), hence also C(L) is generated
by c0(Γ ).

Let us remark that reasoning as above one can easily prove that the class
G is closed under countable products.

In order to obtain an upper estimate for the class G we need the following:

Theorem 3.11 (Stegall [18]). Let L be a compact space. Then L ∈ RN
(i.e. L is a Radon–Nikodym compactum) if and only if C(L) is Asplund
generated. In particular G ⊂ RN (see Fact 2.3).

Let us recall the definition of the class RN:

Definition 3.12. Let L be a compact space. We say that L ∈ RN if
L is homeomorphic to a weak∗ compact subset of the dual of an Asplund
space.

However the following problem remains open:

Problem 3.13. Is G = RN?

A similar problem was posed by Argyros (see [3]):

Problem 3.14. Is every Radon–Nikodym compactum embeddable into a
compact space P (K) for some scattered compact space K?

Obviously a positive answer to the above question would also give a
positive answer to Problem 3.13 (see Theorem 3.8). Both problems are also
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recalled in the survey paper of Avilés and Kalenda [5]. On the other hand it
is of interest whether Problems 3.13 and 3.14 are equivalent. More precisely:

Problem 3.15. Consider the space (BC(K)∗ , w
∗) for some scattered com-

pact space K. Is (BC(K)∗ , w
∗) homeomorphic to a subspace of P (L) for some

scattered compact L?

Obviously if the answer is negative the counterexample would give an
answer to Problem 3.14.
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