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Summary. We show that some partitions related to two of Ramanujan’s mock theta
functions are related to indefinite quadratic forms and real quadratic fields. In particular,
we examine a third order mock theta function and a fifth order mock theta function.

1. Introduction. In [2, Theorem 6], Andrews, Dyson, and Hickerson
proved the following q-series identity:

(1)
∞∑

n=1

(−1)nqn2

(1− q)(1− q3) · · · (1− q2n−1)

=
∞∑

n=1

(−1)nqn(3n−1)(1 + q2n)
2n−1∑
j=0

q−j(j+1)/2.

This was rather surprising because they were able to show that certain
partitions related to those enumerated by one of Ramanujan’s third order
mock theta functions can be represented by indefinite quadratic forms. Let
β(n) be the number of partitions of n into odd parts, with the property that
if k occurs as a part, then all positive odd numbers less than k also occur. If
S3(n) (resp. S1(n)) denotes the number of partitions counted by β(n) with
largest part ≡ 3 (mod 4) (resp. ≡ 1 (mod 4)) then

(2)
∞∑

n=1

(S3(n)− S1(n))qn =
∞∑

n=1

(−1)nqn2

(1− q)(1− q3) · · · (1− q2n−1)
.

Interestingly, this is the same partition function generated by a third
order mock theta function (see Section 3 below), but with an additional

2000 Mathematics Subject Classification: 05A17, 33D15, 05A19.
Key words and phrases: q-series, partitions, mock theta functions.

DOI: 10.4064/bp57-1-1 [1] c© Instytut Matematyczny PAN, 2009



2 A. E. Patkowski

weight function attached. In this paper, we establish some further informa-
tion about the partition functions S3(n) and S1(n), by establishing a new
q-series identity that is closely related to (1). Further, we relate the differ-
ence of S1(n) and S3(n) to the arithmetic of Q(

√
3). We also show that

the partition function enumerated by Ramanujan’s fifth order mock theta
function [1]

∞∑
n=0

(−q)nq
(n+1)(n+2)/2,

with an additional weight function, is related to the arithmetic of Q(
√

15).

Theorem 1.1. For n ≡ 1 (mod 24), let s1(n) be the excess of the number
of inequivalent solutions to x2 − 48y2 = n for which x+ 6y ≡ ±1 (mod 12)
over the number of those for which x+ 6y ≡ ±5 (mod 12). Then

2(−1)n(S3(n)− S1(n)) = s1(1− 24n).

From here we can relate this partition function to the arithmetic
of Q(

√
3). The proof of the next result is straightforward, but rather te-

dious, and so we leave this for the reader.

Corollary 1.2. For n ≡ 1 (mod 24), let s2(n) be the excess of the
number of inequivalent solutions to x2 − 3y2 = n for which either x ≡ ±2
(mod 24) or 2x + 3y ≡ ±2 (mod 24) over the number of those for which
either x ≡ ±10 (mod 24) or 2x+ 3y ≡ ±10 (mod 24). Then

2(−1)n(S3(n)− S1(n)) = s2(1− 24n).

Our next result is slightly more elegant, and is mentioned in the ac-
knowledgments. In particular, we state a result mentioned in [2, Section 6]
involving a relation of S3(n)− S1(n) to the arithmetic of Q(

√
3).

Corollary 1.3. For n ≡ 1 (mod 24), let I(n) be the excess of the
number of inequivalent solutions to x2 − 3y2 = n for which x + 3y ≡ ±1
or ±5 (mod 24) over the number of those for which x + 3y ≡ ±7 or ±11
(mod 24). Then

2(S3(n)− S1(n)) = I(1− 24n).

Theorem 1.4. Let L(n) be the number of partitions of n such that each
part occurs at most twice, the largest part is unique, and if k occurs as a
part then all smaller positive integers occur. Let Le(n) (resp. Lo(n)) be the
number of partitions counted by L(n) with an even (resp. odd) number of
parts. Then Lo(n) − Le(n) equals the sum of (−1)r+j over all pairs (r, j)
such that n = r(5r ± 1)/2− j(3j + 1)/2, −r ≤ j ≤ r − 1.

Theorem 1.5. Let f(n) be the excess of the number of inequivalent so-
lutions to x2 − 15y2 = 6(60n − 1) for which x + 5y ≡ ±2 or ±8 (mod 60)
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over the number of those for which x+ 5y ≡ ±22 or ±28 (mod 60). Then

2(Lo(n)− Le(n)) = f(n).

2. Proofs of main theorems. First we need to present some informa-
tion about Bailey pairs to establish our q-series identities. In [4], we find the
following well-known lemma that is key in our proofs of the main theorems.

Bailey’s Lemma. If , for every n ≥ 0,

(3) βn =
n∑

r=0

αr

(q)n−r(aq)n+r
,

then

(4)
∞∑

n=0

(x)n(y)n(aq/xy)nβn =
(aq/x)∞(aq/y)∞
(aq)∞(aq/xy)∞

∞∑
n=0

(x)n(y)n(aq/xy)nαn

(aq/x)n(aq/y)n
.

We have employed standard notation [6]

(a; q)n = (a)n := (1− a)(1− aq) · · · (1− aqn−1).

We say that a pair of sequences (αn, βn) is a Bailey pair with respect to a
if (3) holds.

Proof of Theorem 1.1. It is known ([1, Theorem 4] with a = 1 and b→ 0)
that (αn, βn) is a Bailey pair with respect to 1 where

αn =


qn2
(

(−1)nq−n(n−1)/2(1 + qn)

− qn2−n(1− q2n)
n−1∑

j=−n+1

(−1)jq−j(3j+1)/2
)
, n > 0,

1, n = 0,
βn = 1.

Now inserting this pair into (4) with a = 1, and y = −1, we get an equation
of the form (using βn = 1)

(5) 1 + (1− x)
∞∑

n=1

(qx)n−1(−1)n(−q/x)n

=
(q/x)∞(−q)∞
(q)∞(−q/x)∞

(
1 + (1− x)

∞∑
n=1

(xq)n−1(−1)n(−q/x)nαn

(q/x)n(−q)n

)
.

Now differentiating the right side of (5) with respect to x and setting x = 1
gives

∞∑
n=1

qn

1− qn
+
∞∑

n=1

qn

1 + qn
− 2

∞∑
n=1

(−q)nαn

1− q2n
.
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This easily follows from the fact that limx→1
d
dx(1− x)f(x) = −f(1) if f(x)

is differentiable at x = 1, and the fact that

d

dx

(q/x)∞(−q)∞
(q)∞(−q/x)∞

=
(q/x)∞(−q)∞
(q)∞(−q/x)∞

( ∞∑
n=1

qn/x2

1− qn/x
+
∞∑

n=1

qn/x2

1 + qn/x

)
.

Using the identity
∞∑

n=1

qn

1− qn
+
∞∑

n=1

qn

1 + qn
= 2

∞∑
n=1

q2n−1

1− q2n−1

gives us

−
∞∑

n=1

(q2; q2)n−1(−q)n =
∞∑

n=1

q2n−1

(1− q2n−1)
−
∞∑

n=1

qn(n+3)/2

(1− qn)

+
∞∑

n=1

(−1)nq2n2
n−1∑

j=−n+1

(−1)jq−j(3j+1)/2.

By [3] and [5], we can write the above equation as

(6)
∞∑

n=1

qn2

(−q; q2)n
=
∞∑

n=1

qn(n+1)/2 +
∞∑

n=1

(−1)nq2n2
n−1∑

j=−n+1

(−1)jq−j(3j+1)/2.

Inspecting the sum on j gives

(7)
∞∑

n=1

qn2

(−q; q2)n
=
∞∑

n=1

(−1)nq2n2
n−1∑

j=−n

(−1)jq−j(3j+1)/2.

By (2), it is clear that the sum on the left hand side is the generating function
for (−1)n(S3(n)−S1(n)). We are now ready to consider the sum on the right
side of (7).

The equation n = 2r2 − j(3j + 1)/2 is equivalent to 1 − 24n =
(6j + 1)2 − 48r2. So taking the weight of this sum into consideration, we
find that (−1)n(S3(n)− S1(n)) equals the number of solutions of 1− 24n =
x2 − 48y2 with x ≡ 1 (mod 6) and −6y < x < 6y for which x + 6y ≡ 1
(mod 12) minus the number of those for which x+6y ≡ −5 (mod 12). Map-
ping (x, y) to (−x, y) shows that it also equals the number of solutions with
x ≡ −1 (mod 6) and −6y < x < 6y for which x+ 6y ≡ −1 (mod 12) minus
the number of those for which x+ 6y ≡ 5 (mod 12). Furthermore, Lemma 3
of [2] with D = 48, x1 = 7, and y1 = 1 shows that each equivalence class of
solutions has a unique element (x, y) with −6y < x < 6y. The result follows
after equating the coefficients of qn on both sides of (7).

The proofs of Corollaries 1.2 and 1.3 follow in a similar manner from
the fact that the equation n = 2r2 − j(3j + 1)/2 is equivalent to 1− 24n =
(6j + 1)2 − 3(4r)2. We leave the details to the reader.
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Proof of Theorem 1.4. First insert the same Bailey pair from the previous
proof with a = 1 in (4). Then let y →∞, to obtain

1 + (1− x)
∞∑

n=1

(qx)n−1x
−n(−1)nqn(n+1)/2

=
(q/x)∞
(q)∞

(
1 + (1− x)

∞∑
n=1

(xq)n−1x
−n(−1)nαnq

n(n+1)/2

(q/x)n

)
,

where we have used βn = 1. Now differentiate with respect to x, and set
x = 1 to get the following identity:

(8) −
∞∑

n=1

(q)n−1(−1)nqn(n+1)/2 =
∞∑

n=1

qn

(1− qn)
−
∞∑

n=1

qn2+n(1 + qn)
(1− qn)

+
∞∑

n=1

(−1)nqn(5n−1)/2(1 + qn)
n−1∑

j=−n+1

(−1)jq−j(3j+1)/2,

where we have used the fact that

−
∞∑

n=1

αn(−1)nqn(n+1)/2

1− qn
= −

∞∑
n=1

qn2+n(1 + qn)
(1− qn)

+
∞∑

n=1

(−1)nqn(5n−1)/2(1 + qn)
n−1∑

j=−n+1

(−1)jq−j(3j+1)/2.

Now the left hand side of (8) generates the partitions counted by L(n),
weighted by −1 raised to 1 plus the number of parts. To see this, note the
generating function of L(n) is

∞∑
n=0

L(n)qn =
∞∑

n=0

(−q)nq
(n+1)(n+2)/2.

It is not difficult to see that the second sum on the right hand side of (8) is
given by

∞∑
n=1

qn2+n(1 + qn)
(1− qn)

=
∞∑

n=1

qn2
(1 + qn)

(1− qn)
−
∞∑

n=1

qn2
(1 + qn).

Thus, it can now be seen (by [5, p. 16, eq. (14.51)]) that we have the identity

(9) −
∞∑

n=1

(q)n−1(−1)nqn(n+1)/2

=
∞∑

n=1

qn2
(1 + qn) +

∞∑
n=1

(−1)nqn(5n−1)/2(1 + qn)
n−1∑

j=−n+1

(−1)jq−j(3j+1)/2,
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which reduces to

−
∞∑

n=1

(q)n−1(−1)nqn(n+1)/2

=
∞∑

n=1

(−1)nqn(5n−1)/2(1 + qn)
n−1∑

j=−n

(−1)jq−j(3j+1)/2.

Paraphrasing this identity gives the theorem.

Proof of Theorem 1.5. This follows from Theorem 1.4, by using the fact
that the equation

n = r(5r ± 1)/2− j(3j + 1)/2

is equivalent to

360n− 6 = (30r ± 3)2 − 15(6j + 1)2.

The details are left to the reader.

3. Further results. The rank of a partition is defined as the largest
part minus the number of parts. In this section, we notice that some results
of [5] on the rank of a partition can be mixed with our Theorem 1.1 and
Corollary 1.2 to give some interesting formulas for the functions S3(n) and
S1(n). Fine’s β(n) function, the number of partitions of n into odd parts
without gaps, has the following generating function:

∞∑
n=1

β(n)qn =
∞∑

n=1

qn2

(1− q)(1− q3) · · · (1− q2n−1)
,

which is one of Ramanujan’s third order mock theta functions alluded to in
the introduction (see [5]). It is clear that

S3(n) + S1(n) = β(n).

In keeping with the notation in [5], let Pr(n;Q) be the number of partitions
of n with rank ≡ r (mod Q); then

β(2n) = P1(2n; 4)− P2(2n; 4),(10)
β(2n+ 1) = P0(2n+ 1; 4)− P1(2n+ 1; 4),(11)

for any positive integer n. These two partition identities were obtained in [5],
and will prove useful in establishing the following theorem:

Theorem 3.1. For i = 1 or i = 2 and any positive odd integer n, we
have

2S1(n) = P0(n; 4)− P1(n; 4) +
1
2
si(1− 24n),

2S3(n) = P0(n; 4)− P1(n; 4)− 1
2
si(1− 24n).
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Further , if n is a positive even integer , then

2S1(n) = P1(n; 4)− P2(n; 4)− 1
2
si(1− 24n),

2S3(n) = P1(n; 4)− P2(n; 4) +
1
2
si(1− 24n).

Proof. By Theorem 1.1 and Corollary 1.2 we have

(12) (−1)n(S3(n)− S1(n)) =
1
2
si(1− 24n)

for i = 1 or i = 2. Taking n to be an even positive integer, and adding β(n)
to (12), we obtain

2S3(n) = P1(n; 4)− P2(n; 4) +
1
2
si(1− 24n).

Similarly, taking n to be an odd positive integer and subtracting (12) from
β(n), we obtain

2S3(n) = P0(n; 4)− P1(n; 4)− 1
2
si(1− 24n).

Similar computations for S1(n) give the other equations in the theorem.

4. Concluding remarks. There are a number of interesting points
that should be mentioned from this study. First, it was pointed out by the
referee that the function f(n) is related to the factorization of 60n − 1 in
Q(
√

3) and Q(
√

5). In fact, it was further noted that this is another example
of a q-series related to three different real quadratic fields (the first noted
from [2]). Further research on this will be done in a subsequent study, as it
would be much desired to find some further examples of q-series with this
property.
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