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Summary. A class of infinite-dimensional dissipative dynamical systems is defined for
which there exists a unique equilibrium point, and the rate of convergence to this point
of the trajectories of a dynamical system from the above class is exponential. All the
trajectories of the system converge to this point as t → +∞, no matter what the initial
conditions are.

This class consists of strongly dissipative systems. An example of such systems is
provided by passive systems in network theory (see, e.g., MR0601947 (83m:45002)).

1. Statement of the problem and assumptions. Consider the evo-
lution problem

(1) u̇ = −F (u), u(0) = u0; u̇ :=
du

dt
,

where u0 ∈ D(F ) is arbitrary, and F : H → H is a monotone and hemicon-
tinuous operator in a Hilbert space H:

(2) (F (u)− F (v), u− v) ≥ 0, u, v ∈ D(F ).

Here (u, v) is the inner product in H, D(F ), the domain of definition of F ,
is assumed to be a linear set, dense in H, and F is assumed to be maximal
monotone,

(3) R(I + F ) = H,

where R(F ) is the range of F . The definition of hemicontinuity can be found
in [6] and we recall it in Section 2 for the convenience of the reader.
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Let F be Fréchet differentiable, set B := F ′(u), assume that the linear
operator

(4) B ≥ m > 0

is selfadjoint, and define A := B−1. The operator A is selfadjoint and
bounded, ‖A‖ ≤ m−1. One may replace the assumption of the Fréchet dif-
ferentiability by the assumptions of strong monotonicity

(F (u)− F (v), u− v) ≥ m‖u− v‖2

plus hemicontinuity, but this is not important for our purposes. The Fréchet
differentiability implies hemicontinuity.

The above standing assumptions are not repeated below.
The system described by equation (1) is called dissipative if assump-

tion (2) holds, and strongly dissipative if assumptions (2) and (4) hold.
Such systems arise in many applications in physics, where the energy

is dissipated. For example, the theory of passive networks developed in [2,
Chapter 3] and [3] is based on the equation (1). In [5] one finds a justification
of a method for calculating slow invariant manifolds for dissipative systems.
In [7] one finds many examples and a general discussion of dissipative dy-
namical systems.

We are interested in finding forward invariant manifolds (sets) for sys-
tems described by equation (1) such that these manifolds are minimal global
attractors, which consist of just one point, the unique equilibrium point
for (1).

It will be shown that for any initial data u0 the trajectories u(t) :=
u(t;u0) of the system (1) as t→ +∞ converge at an exponential rate to this
point, so that F (u(∞;u0)) = 0 for any u0.

A proper subset M ⊂ H is called a forward (or positively) invariant set
for (1) if u0 ∈M implies u(t) ∈M for all t > 0.

A forward invariant set A is called a global attractor for (1) if

(5) lim
t→∞

d(u(t),A) = 0,

where d(u,A) is the distance from u to A, u(t) = u(t;u0) is the solution
to (1), and (5) holds for every u0 ∈ H.

A subset of the set A may also be a global attractor. Then one may be
interested in finding a minimal global attractor.

In Theorem 1 of Section 2 such a minimal global attractor consists of
just one point. This point is the unique equilibrium point for the system (1)
under the assumptions of Theorem 1.

A forward invariant set may often be a manifold. In this case it is called
a forward invariant manifold for the system (1).
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A solution to (1) is called global if it is defined for all t > 0. Under the as-
sumptions of Theorem 1, as we prove in Section 2, equation (1) has a unique
global solution for every initial data u0 ∈ H, the limit u(∞) := limt→∞ u(t)
exists, and F (u(∞)) = 0. Such results are basic in the monograph [4], where
they form a basis of the Dynamical Systems Method (DSM) for solving
the stationary equation F (u) = 0. The ideas from [4] are used in this pa-
per.

Our main result, Theorem 1 in Section 2, says that for strongly dissipative
dynamical systems satisfying the assumptions of that theorem, a minimal
global attractor exists, consists of just one point, this point is the equilibrium
point for the system (1) (so it is an invariant set for the system (1)), and all
the trajectories of the system (1), that is, solutions u = u(t;u0) to problem
(1) for arbitrary initial data u0, converge at an exponential rate to that point
as t→∞.

This is a typical situation for strongly dissipative dynamical systems.
The main result is illustrated by an example in Section 3. The presenta-

tion in our short note is essentially self-contained.
The steps of our proof include: (a) proof of the uniqueness of the so-

lution, (b) proof of the existence of a global solution, (c) and (e) deriva-
tion of a priori bounds on the solution, (d) proof of the existence of u(∞),
(e) derivation of the estimate (13) and proof that u(∞) solves the equation
F (u(∞)) = 0, (f) proof that the trajectory remains in a ball of a fixed radius
for all times.

The example we consider is the Ginzburg–Landau boundary-value prob-
lem, but other examples can be provided easily (see [2, Chapter 3]).

2. Results. Our main result is:

Theorem 1. Under the assumptions of Section 1 problem (1) has a
unique global solution u(t), the limit u(∞) exists, F (u(∞)) = 0, and we
have ‖u(t)− u(∞)‖ ≤ ce−mt, where m > 0 is the constant from (4).

Proof. (a) Problem (1) has at most one solution: if u and v solve (1),
then w := u− v solves the problem

(6) ẇ = −[F (u)− F (v)], w(0) = 0.

Multiply (6) by w and use (2) to get

(7) (ẇ, w) ≤ 0, w(0) = 0.

This implies w = 0, so u = v.
(b) Problem (1) has a unique global solution because F is maximal

monotone (see, e.g., [6, p. 174, Komura–Kato Theorem]; the Fréchet dif-
ferentiability is not used in the proof of this result). This solution is an
absolutely continuous function [0,∞) → H and ‖u′‖L∞(0,∞;H) ≤ c(u0)
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([6, p. 174]). Moreover, u(t) ∈ D(F ) for all t > 0. Therefore the expres-
sion F ′(u(t))u̇(t) = −BF (u(t)) makes sense on the trajectory u(t), and
F (u(t)) ∈ D(B).

If F is a locally Lipschitz monotone operator, then the proof of the global
existence of the solution to problem (1) is much shorter than the proof of the
Komura–Kato Theorem and can be found in [4] and [6]. The idea of the proof
of the Komura–Kato Theorem is to approximate F by a Lipschitz operator
using Yosida approximation, and then pass to the limit as the parameter of
the approximation tends to zero. The Yosida approximation is defined by
Fa := a−1(I − Ja), where Ja := (I + aF )−1, a = const > 0. The operator
Fa is maximal monotone and Lipschitz with Lipschitz constant a−1. For
each v ∈ D(F ) the sequence ‖Fa(v)‖ is increasing and bounded, hence it
converges. If F is maximal monotone, condition (4) holds, and u ∈ D(F ),
then the limit lima→0 Ja(u) := F (u) exists (see [6, p. 160–163] for proofs of
these statements).

(c) This solution is bounded on every interval:

(8) ‖u(t)‖ ≤ ct.

By c > 0 we denote various constants independent of t.
Let us derive (8). Multiply (1) by u, let g := g(t) := ‖u(t)‖, and get

gġ = (u̇, u) = −(F (u)− F (0), u)− (F (0), u)(9)
≤ −(F (0), u) ≤ cg, c := ‖F (0)‖.

Inequality (9) implies (8). Thus, the global solution to (1) is bounded on ev-
ery fixed time interval. Actually, the solution u(t) to (1) is uniformly bounded
on [0,∞), as follows from (e) below.

(d) Let us now prove the existence of u(∞) and estimate the rate of
convergence of u(t) to u(∞).

Let h(t) = ‖F (u(t))‖. Using (1) and (4) one gets

(10) hḣ = −(BF (u(t)), F (u(t))) ≤ −mh2.

Here we have used the inclusion F (u(t)) ∈ D(B) and the inequality (4).
Since h ≥ 0, inequality (10) implies

(11) h(t) ≤ ce−mt, c = h(0).

From (1) and (11) it follows that

(12) ‖u̇(t)‖ ≤ ce−mt.

From (12) and the Cauchy criterion the existence of the limit u(∞) follows.
The limit u(∞) also exists if a weaker estimate ‖u̇(t)‖ ∈ L1(R+) is satisfied,
where R+ = [0,∞).
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(e) To estimate the rate of convergence of u(t) to u(∞), let us integrate
(12) from t to ∞:

(13) ‖u(t)− u(∞)‖ ≤
∞�

t

ce−msds ≤ cm−1e−mt.

From (1), (12), and the demicontinuity of F it follows that F (u(∞)) = 0.
Let us give a detailed explanation of this statement. Denote by ⇀ weak

convergence in H, by → strong convergence in H, and recall that hemi-
continuity means that F (u + sv) ⇀ F (u) as s → +0, where s ∈ R+,
u, v ∈ D(F ) and u + sv ∈ D(F ), while demicontinuity means that u → w
implies F (u) ⇀ F (w), where u,w ∈ D(F ). It is known ([1, p. 98]) that a
monotone hemicontinuous operator is demicontinuous on sets on which F is
bounded. In our case, the trajectory u(t) is such a set.

Since in [1, p. 98], the demicontinuity of a monotone hemicontinuous op-
erator at a point v is derived under an additional assumption that v is an inte-
rior point of the domain D(F ), and since under our assumptions F is densely
defined and D(F ) may have no interior points, let us prove that F (u) ⇀ 0
and u→ v imply F (v) = 0, provided that F is monotone and hemicontinu-
ous. By the monotonicity of F one has (F (u) − F (v − sh), u − v + sh) ≥ 0
for any h ∈ D(F ) and any s > 0. Passing to the limit F (u) ⇀ 0 and
u → v, one gets (−F (v − sh), h) ≥ 0. Using the hemicontinuity of F
and letting s → +0 yields (−F (v), h) ≥ 0 for all h ∈ D(F ). Since D(F )
is dense in H by assumption, one concludes that F (v) = 0. In our case
v := u(∞).

From (12) one gets limt→∞ ‖u̇(t)‖ = 0. Together with (1) this implies
F (u(t)) → 0 as t → ∞. Inequality (13) implies limt→∞ ‖u(t) − u(∞)‖ = 0.
This, as we have proved, yields F (u(∞)) = 0. The desired relation is proved.

(f) One can estimate the radius R of the ball B(u0, R) := {u : ‖u− u0‖
≤ R} to which the orbit of the solution u(t) belongs: integrate (12) from 0
to t to get

‖u(t)− u0‖ ≤ cm−1 ∀t > 0.

Therefore, the solution u(t) stays in the ball B(u0, h(0)m−1) for all t > 0.
The proof of Theorem 1 is complete.

Remark 2.1. Let N := {u : F (u) = 0}. Theorem 1 implies that N ⊂ A.
Indeed, the set N consists of equilibrium points for the system (1). The set
N is an invariant set for the system (1). However, if dimN > 1, then the
limit u(t;u0) of the solution to (1) as t → ∞ depends on the choice of u0.
Therefore, if dimN > 1, then the global attractor for the system (1) is no
longer just one point, while under the assumptions of Theorem 1 the set
N consists of one element, and the global attractor is just one point. If the
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operator F is monotone but the assumption (4) is dropped, then the set N
may have arbitrarily many elements.

3. Example. Consider the Ginzburg–Landau (GL) evolution problem
(14) u̇ = ∆u− u3 + f in D × [0,∞), u(0) = u0, u|S = 0,

where D ⊂ R3 is a bounded domain with a sufficiently smooth boundary S,
H = L2(D), f ∈ H, F (u) = −∆u+u3−f , D(F ) = H2∩H1

0 , H l = H l(D) is
the Sobolev space, H1

0 is the closure of C∞0 (D) in the norm of H1, u0 ∈ H.
One has

F ′(u)v = Bv = −∆v + 3u2v, B ≥ m > 0,

wherem > Λ > 0, and Λ > 0 is the first eigenvalue of the Dirichlet Laplacian
in D.

The set N is the set of solutions to the problem
(15) −∆u+ u3 − f = 0 in D, u|S = 0.

Problem (15) has a unique solution: if u and v solve (15) then w := u − v
solves the problem
(16) −∆w + u3 − v3 = 0 in D, u|S = v|S = 0.

Multiply (16) by w, integrate over D and then by parts, to get

(17)
�

D

[|∇w|2 + (u3 − v3)(u− v)] dx = 0, u|S = v|S = 0.

This implies that w = 0, so u = v. Uniqueness of the solution to (15) is
proved.

To prove the existence of the solution to (15), one uses the known result:
coercive monotone operators are surjective (see, e.g., [4]). The coercivity of
the map F , F (u) = −∆u+ u3 − f , can be easily checked.

Thus, the global attractor for problem (14) with the given f consists of
one point, the solution to (15). This point is an invariant manifold for the
problem (14).

In other applied problems the dimension of N may be greater than one.
In that case A may have more than one point.
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