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Summary. Negative association for a family of random variables (Xi) means that for
any coordinatewise increasing functions f, g we have

Ef(Xi1 , . . . , Xik )g(Xj1 , . . . , Xjl) ≤ Ef(Xi1 , . . . , Xik )Eg(Xj1 , . . . , Xjl)

for any disjoint sets of indices (im), (jn). It is a way to indicate the negative correlation in a
family of random variables. It was first introduced in 1980s in statistics by Alem & Saxena
and Joag-Dev & Proschan, and brought to convex geometry in 2005 by Wojtaszczyk &
Pilipczuk to prove the Central Limit Theorem for Orlicz balls.

The paper gives a relatively simple proof of negative association of absolute values for
a wide class of measures tied to generalized Orlicz balls, including the uniform measures
on such balls.

1. Introduction. We shall prove a property called the negative assoc-
tiation of absolute values for a class of measures stemming from generalized
Orlicz balls. The most important case, of uniform measures on generalized
Orlicz balls, was considered in [6]. The proof given there, however, was
complex and difficult to follow. The more general case, proved here, could
probably also be tackled using the techniques from [6], but the paper would
likely be even harder to read. The argument in this paper, using a technique
similar to the Kannan–Lovász–Simonovits localization lemma, is much sim-
pler. The result itself has quite a few consequences (see e.g. [6] or [2]); we
will not explore them in this note. Negative association is defined as follows:
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Definition 1.1. We say that a sequence X1, . . . , Xn of random vari-
ables is negatively associated if for any bounded coordinatewise increasing
functions f : Rk → R and g : Rl → R and any disjoint subsets {i1, . . . , ik}
and {j1, . . . , jl} of {1, . . . , n} we have

(1) Cov(f(Xi1 , . . . , Xik), g(Xj1 , . . . , Xjl
)) ≤ 0.

This definition was introduced in the 1980s by Alam, Joag-Dev, Proschan
and Saxena ([1], [4]) for applications in statistics. It was applied in the
context of convex geometry in [6] to prove the Central Limit Theorem for
generalized Orlicz balls and in [2] to prove a reverse Hölder inequality for
such balls.

In a linear space V with a fixed basis (e1, . . . , en), we denote by xi the
coefficients of the basis expansion of a given vector x. We write x ≤ y
for x, y ∈ V if xi ≤ yi for all i ∈ {1, . . . ,dimV }. Let V+ denote the set
{x ∈ V : x ≥ 0}, and IntlK the relative interior of K in l.

Recall the following definitions:

Definition 1.2. A Young function is an increasing, convex and lower
semicontinuous function f : R+ → R+ ∪ ∞ with f(0) = 0 and satisfying
f(x) 6= 0, f(y) 6= ∞ for some x, y > 0. A generalized Orlicz ball is a set
in Rn given by the inequality

∑n
i=1 fi(|xi|) ≤ n for some Young functions

f1, . . . , fn.

As noted in [6], if X is a random vector equidistributed on a 1-symmetric
convex body, one should consider the negative association property not for
the sequence (Xi), but rather for the absolute values (|Xi|). For 1-symmetric
bodies this is equivalent to considering random vectors equidistributed on
the positive generalized quadrant of the body (that is, vectors conditioned
by Xi ≥ 0 for all i). Thus we shall work on Rn

+ instead of Rn.
The main result of this paper is the following

Theorem 1.3. Let fi be Young functions and let m : R+ → R+ be any
log-concave nonincreasing function. Assume that the measure on Rn with
density m(

∑
fi(|xi|)) is a probability measure and let X be a random vector

distributed according to this measure. Then the sequence |X1|, . . . , |Xn| is
negatively associated.

In particular, we recover the negative association of absolute values for
random vectors uniformly distributed on generalized Orlicz balls by taking
m = 1[0,n].

1.1. Notation. Note that the property of being an Orlicz ball depends
upon the choice of the coordinate system (or basis) in the space, and thus
one should rather say that a set is an Orlicz ball in a given coordinate
system. We shall mostly use the language of functions (that is, instead of
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the Orlicz ball, we consider its characteristic function), which motivates the
following definitions:

Definition 1.4. By an oriented function we shall mean a triple F =
(s, V, E), where V is a linear space of finite dimension over R, E is a basis of
V and s : V+ → R.

Definition 1.5. An oriented function F = (s, V, E) is Orlicz-based if

s(x1, . . . , xn) = m
( n∑

i=1

fi(xi)
) n∏

i=1

wi(xi),

where (fi)n
i=1 are Young functions or fi ≡ ∞, (wi)n

i=1 are log-concave, upper
semicontinuous functions supported on R+, and m : R+ ∪ {∞} → R+ is a
log-concave upper semicontinuous function with compact support, attaining
its maximum at 0, with m(∞) = 0.

Note that an Orlicz-based function is continuous on its support, although
it may have a discontinuity on the boundary. We shall sometimes speak of s
as being a function on the whole of V by extending it by 0 outside V+.

The characteristic function of the positive generalized quadrant of a
generalized Orlicz ball gives the simplest example of an Orlicz-based function.

2. A localization type lemma. The idea given below is similar to the
so-called localization lemma proven in [5]. It allows us to circumvent the
transfinite induction used in the original proof in [6].

The crucial property of the class of Orlicz-based functions is that it is
closed under the transformations defined below.

Definition 2.1. Let F = (s, V, E) be an oriented function. Then we
define the sons of F as follows:

• For i ∈ {1, . . . ,dimV } and a log-concave, upper semicontinuous func-
tion w : R+ → R+ the triple (s̃, V, E) is a son of F , where s̃(x) =
s(x) · w(xi).
• If H is an affine hyperplane in V given by the equation xi = axj + b

for some nonnegative a, b and i, j ∈ {1, . . . ,dimV }, then the triple
(s̃, H̃, Ẽ) is a son of F , where H̃ is defined to be H with the linear
structure given by moving the origin to the point xi = b, xk = 0 for
k 6= i; Ẽ is obtained from E by substituting aei + ej for the pair ei, ej ;
and s̃ is the restriction of s to H̃.
• If x ∈ V+, then the triple (s̃, Ṽ , E) is a son of F , where Ṽ is V with

origin at x, and s̃ is s restricted to Ṽ .

We define the relation of being a descendant of an oriented function F as
the smallest transitive and reflexive extension of the relation of being a son.
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Lemma 2.2. Let F = (s, V, E) be an Orlicz-based function. Then any
descendant of F is also an Orlicz-based function.

Proof. It suffices to consider any son F ′ of F . Let the functions fi, wi

and m give a representation of F as an Orlicz-based function. We shall define
functions f ′i , w

′
i and m′ which represent F ′ as an Orlicz-based function. In

the first case of the definition (where F ′ is formed by multiplying wi by
w) we take f ′i = fi, m′ = m and w′j = wj for j 6= i, while w′i = w · wi.
In the second case it suffices to replace the pair fi, fj by a single function
fi(at+ b) + fj(t)− fi(b) (we assume ∞−∞ =∞), analogously replace wi,
wj by a single w and put m′(t) = m(t + fi(b)). In the third case, we take
f ′i(t) = fi(t+xi)− fi(xi), w′i(t) = wi(t+xi) and m′(t) = m(t+

∑
fi(xi)).

We begin by observing a simple geometric fact:

Lemma 2.3. Let (Km) be a descending sequence of compact , convex sets
of dimension k in Rk, and let K =

⋂∞
m=1Km. Let l be the affine subspace

of dimension p := dimK spanned by K. Let gm(x) = λk−p(Km ∩ P−1(x))/
λk(Km) for x ∈ l, where P is the orthogonal projection to l. Then there exists
a subsequence Kmi of Km and a log-concave function g on l with support
K such that gmi converges almost uniformly to g on IntlK and

	
K g = 1.

Moreover , the family (gm) is uniformly bounded on l.

Proof. If p = k, then (gm) converges uniformly on K to 1K/λk(K).
Further on we assume p < k.

Let Tm denote the maximum of gm on l; suppose it is attained at the
point O. Let φm be the Minkowski functional on l given by supp gm, where O
is taken to be the origin (that is, φm(x) = inf{λ : O+(x−O)/λ ∈ supp gm}).
The function gm is the density of the projection of a uniform measure on a
k-dimensional convex set to a p-dimensional subspace, thus by the Brunn–
Minkowski inequality (see e.g. [3]) k−p

√
gm is concave on its support, so if

φm(x) ≤ 1, then gm(x) ≥ Tm(1− φm(x))k−p. Further,

1 =
�

l

gm(x) dλp(x) =
Tm�

0

λp{x : gm(x) ≥ t} dt

≥
Tm�

0

λp{x : Tm(1− φm(x))k−p ≥ t} dt

=
Tm�

0

λp

{
x : φm(x) ≤ 1−

(
t

Tm

)1/(k−p)}
dt

=
Tm�

0

λp

((
1−

(
t

Tm

)1/(k−p))
supp gm

)
dt
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=
Tm�

0

(
1−

(
t

Tm

)1/(k−p))p

λp(supp gm) dt

= Tmλp(supp gm)
1�

0

(1− s1/(k−p))pds

= Tmλp(supp gm)ck,p ≥ Tmλp(K)ck,p.

Hence Tm ≤ 1/(ck,pλp(K)), and so the sequence gm is uniformly bounded.
Our aim is to apply the Arzelà–Ascoli theorem, so we need to prove al-

most uniform equicontinuity, that is, uniform equicontinuity on any compact
subset L of IntlK. By compactness we can choose a δ such that |x− z| > δ
for any x ∈ L and z /∈ K.

Fix Γ > 1. For any x, y ∈ L with |x− y| < δ/Γ we can choose a z ∈ K
such that Γy = (Γ − 1)x+ z. Then

gm(x)1/(k−p) − T
1/(k−p)
m

Γ
≤ Γ − 1

Γ
gm(x)1/(k−p)

≤ Γ − 1
Γ

gm(x)1/(k−p) +
1
Γ
gm(z)1/(k−p)

≤ gm(y)1/(k−p),

and thus

gm(y)− gm(x)

≤ T
1/(k−p)
m

Γ
(gm(y)

k−p−1
k−p + gm(y)

k−p−2
k−p gm(x) + · · ·+ gm(x)

k−p−1
k−p )

≤ (k − p)Tm

Γ
≤ k − p
Γck,pλp(K)

.

This expression is independent of m, x and y, and by choosing a sufficiently
large Γ we can make it arbitrarily small, thus indeed the sequence (gm)
on L is uniformly equicontinuous. Thus by the Arzelà–Ascoli theorem we
can choose a subsequence of gm uniformly convergent on L. By choosing a
sequence of L’s increasing to K we can diagonally construct a subsequence
(gmi) almost uniformly convergent on K. Let g be the limit of gmi on IntlK,
extended outside by 0. As the gm are uniformly bounded, by the Lebesgue
dominated convergence theorem we have

	
K gm →

	
K g; on the other hand,

as
⋂
Km = K and the gm are uniformly bounded,

	
K gm → 1, thus

	
K g = 1.

Sine all gm’s are log-concave, by a simple limit argument g is also log-concave
on IntlK, which ends the proof.

Corollary 2.4. Let Km be a descending sequence of compact , convex
sets of dimension k in Rk ⊂ Rn, and let K =

⋂
Km. Then there exists a

log-concave function g on K and a subsequence Kmi of Km such that for
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any continuous, compactly supported f on Rn we have
	
Kmi×Rn−k f(v) dλn(v)

λk(Kmi)
−−−−→
mi→∞

�

K

�

Rn−k

f(x, y)g(x) dλn−k(y) dλdim K(x).

The same holds if f has a compact , convex support , and is continuous on
its support , while K × Rn−2 contains a point from the interior of supp f .

Proof. Let p = dimK, and let l be the affine subspace of dimension p
spanned by K. Let P be the orthogonal projection from Rn onto l × Rn−k,
and set gm(x) = λk−p(Km ∩ P−1(x))/λk(Km) for x ∈ l. Take the sequence
mi and the function g on K according to Lemma 2.3 so that gmi converges to
g almost uniformly on IntlK. For simplicity we assume gm itself converges
almost uniformly to g on IntlK. Now
	
Km×Rn−k f(v) dλn(v)

λk(Km)

=

	
l

	
Rn−k

	
Km∩P−1(x) f(x, y, z) dλk−p(z) dλn−k(y) dλp(x)

λk(Km)

=
�

l

�

Rn−k

gm(x)

	
Km∩P−1(x) f(x, y, z) dλk−p(z)

λk−p(Km ∩ P−1(x))
dλn−k(y) dλp(x).

Let

fm(x, y) =


	
Km∩P−1(x) f(x, y, z) dλk−p(z)

λk−p(Km ∩ P−1(x))
, λk−p(Km ∩ P−1(x)) > 0,

f(x, y, 0), λk−p(Km ∩ P−1(x)) = 0.

Note that as the Km are compact, limm→∞ supv∈Km
dist(v,K) = 0, thus in

particular the diameter of Km∩P−1(x) converges to zero uniformly with re-
spect to x. Meanwhile f is continuous and compactly supported, so fm(x, y),
being the average of a uniformly continuous function over a set with diame-
ter uniformly converging to zero, converges uniformly to f(x, y, 0). It is also
uniformly bounded (as f is bounded).

Since gm’s are uniformly bounded and almost uniformly convergent onK,
the product fm(x, y)gm(x) is almost uniformly convergent on K×Rn−k. As
λp(supp gm \ K) → 0, while fm is compactly supported and bounded, we
have 	

Km×Rn−k f(v) dλn(v)
λk(Km)

=
�

l

�

Rn−k

gm(x)fm(x, y) dλn−k(y) dλp(x)

=
�

l\K

�

Rn−k

gm(x)fm(x, y) dλn−k(y) dλp(x)
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+
�

K

�

Rn−k

gm(x)fm(x, y) dλn−k(y) dλp(x)

−−−−→
m→∞

0 +
�

K

�

Rn−k

g(x)f(x, y, 0) dλn−k(y) dλp(x).

For the second statement, let O ∈ (K × Rn−2) ∩ Int supp f , and assume
O is the origin for the simplicity of notation. Let fε be a continuous func-
tion equal to f on (1− ε) supp f , 0 outside supp f and between sup |f | and
− sup |f | in between. Now

(2)

	
Km×Rn−2 |f − fε|

λk(Km)
≤

	
Km×Rn−2 |f − fε|λn−k(Pn−k(supp f))

λn((Km × Rn−k) ∩ supp f)

≤ 2 sup |f |λn−k(Pn−k(supp f))
λn{x ∈ Km × Rn−k : f(x) 6= fε(x)}

λn((Km × Rn−k) ∩ supp f)
,

where Pn−k denotes the orthogonal projection onto Rn−k. Now

{x ∈ Km × Rn−k : f(x) 6= fε(x)}
⊂ ((Km × Rn−k) ∩ supp f) \ ((Km × Rn−k) ∩ (1− ε) supp f)

⊂ ((Km × Rn−k) ∩ supp f) \ (1− ε)((Km × Rn−k) ∩ supp f).

The measure of the last set is (1− (1−ε)n)λn((Km×Rn−k)∩ supp f), which
gives us a uniform bound in (2) which tends to 0 as ε→ 0. By the first part
of the corollary we have the statement for each fε, and the error term tends
to 0 as ε→ 0 uniformly in m; thus we get the statement for f .

We now proceed to the localization lemma. The following definitions will
be useful:

Definition 2.5. A set K ⊂ R2 is called spanned by the points a, b if K
is convex, compact, a, b ∈ K, and for any x ∈ K we have a ≤ x ≤ b. A set
is called spanned if it is spanned by some two points a, b.

Geometrically this definition means that K is convex, compact and if we
inscribe K in a rectangle with edges parallel to the coordinate axes, then the
lower left corner and the upper right corner of the rectangle are contained
in K.

Definition 2.6. For a linear space V with a basis E , by a splitting of V
with respect to E we mean a decomposition V = V1 ⊕ V2 and E = E1 ∪ E2
such that Ei is a basis of Vi.

Definition 2.7. Consider an Orlicz-based function F = (s, V, E) and
functions f, g : V → R. We shall say that F , f and g satisfy the Θ condition
if for any splitting V = V1 ⊕ V2 with respect to E and any 0 ≤ x ≤ y ∈ V1
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we have

(3)

	
V2
f(x, z)s(x, z) dλk(z)	

V2
g(x, z)s(x, z) dλk(z)

≥
	
V2
f(y, z)s(y, z) dλk(z)	

V2
g(y, z)s(y, z) dλk(z)

,

whenever both sides are well defined, where k denotes dimV2.
We shall say that an Orlicz-based function F and functions f, g satisfy

the hereditary Θ condition if any descendant F ′ = (s′, V ′, E ′) of F and the
restrictions of f and g to V ′ satisfy the Θ condition.

Lemma 2.8. Consider an Orlicz-based function F = (s,Rn, E), where E
is the standard basis in Rn, and three continuous functions: f, g : Rn →
[0,M ] and h : Rn → [ε,M ] for some M > ε > 0, where {f > 0}∪{s > 0} ⊂
{g > 0} and

	
Rn s(x) dx > 0. Assume that F , f and g satisfy the hereditary

Θ condition. Additionally assume that f has a convex support and that

(4)

	
Rn

+
f(x)h(x)s(x) dz

	
Rn

+
g(x)h(x)s(x) dz

<

	
Rn

+
f(x)s(x) dz

	
Rn

+
g(x)s(x) dz

.

Then there exist two different points a ≤ b ∈ Rn
+ and a log-concave measure

ν on the interval I = [a, b] such that	
Rn

+
f(x)s(x) dx

	
Rn

+
g(x)s(x) dx

=

	
I f(x)s(x) dν(x)	
I g(x)s(x) dν(x)

>

	
I f(x)h(x)s(x) dν(x)	
I g(x)h(x)s(x) dν(x)

.

In particular , h cannot be coordinatewise nonincreasing.

Proof. We shall proceed by induction upon dimension. For n = 0 the
condition (4) cannot be satisfied. For n = 1 no assumptions are needed,
the interval supp s with the Lebesgue measure satisfies the conclusion of the
lemma. Let us consider higher n. We shall a construct a decreasing sequence
of spanned sets K0 ⊃ K1 ⊃ · · · in span{e1, e2} satisfying the following four
conditions: �

Km×Rn−2
+

s(x) dx > 0,(5)

	
Km×Rn−2

+
f(x)s(x) dx

	
Km×Rn−2

+
g(x)s(x) dx

=

	
Rn

+
f(x)s(x) dx

	
Rn

+
g(x)s(x) dx

,(6)

	
Km×Rn−2

+
f(x)h(x)s(x) dx

	
Km×Rn−2

+
g(x)h(x)s(x) dx

≤

	
Km×Rn−2

+
f̃(x)h(x)s(x)dx

	
Km×Rn−2

+
g(x)h(x)s(x) dx

(7)

≤

	
Rn

+
f̃(x)h(x)s(x) dx

	
Rn

+
g(x)h(x)s(x) dx

<

	
Rn

+
f(x)s(x) dx

	
Rn

+
g(x)s(x) dx

,

(8)
∞⋂

m=0

Km is an interval or a point.
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The function f̃ is a slight modification of f , which ensures that our sequence
does not approach the edge of supp s too closely. Choose M ′ so that

(9)
M ′

M
>

	
Rn

+
f(x)s(x) dx

	
Rn

+
g(x)s(x) dx

and c̃ > 0 so that

(10)
c̃M ′M +

	
Rn

+
f(x)h(x)s(x) dx

	
Rn

+
g(x)h(x)s(x) dx

<

	
Rn

+
f(x)s(x) dx

	
Rn

+
g(x)s(x) dx

.

Let
Aε := {x : s(x) ≤ ε ∨ dist(x,Rn \ supp s) ≤ ε}.

Fix t > 0 so that
	
At
s(x) dx < c̃. Let ∆f be a continuous function which

is equal to M ′ on At/2, equal to 0 on Rn
+ \ At and is bounded from below

by zero, and from above by M ′. Then f̃ := f + ∆f . Notice that the third
inequality of condition (7) is satisfied by (10), the first inequality is satisfied
as ∆f is nonnegative, and if L is a set contained in At/2 then by (9) and
(10),

(11)

	
L f̃(x)h(x)s(x) dx	
L g(x)h(x)s(x) dx

≥ M ′

M
>

	
Rn

+
f(x)s(x) dx

	
Rn

+
g(x)s(x) dx

>

	
Rn

+
f̃(x)h(x)s(x) dx

	
Rn

+
g(x)h(x)s(x) dx

.

For K0 we can take any rectangle in span{e1, e2} with edges paral-
lel to the coordinate axes and containing the projection of supp s onto
span{e1, e2}. We order all the points with both coordinates rational into
a sequence (qi)∞i=1. Having Km we now construct Km+1. Let Om be the first
point from the sequence (qi) contained in the interior of Km (by (5), Km

is a convex set of positive measure, and thus contains a point with both
coordinates rational). Consider a vertical (i.e. parallel to e2) line passing
through Om, and denote by KE the part of Km to the right of that line, and
by KW the part to the left. Lemma 2.9 below shows that under the present
assumptions we have

	
KW×Rn−2

+
f(x)s(x) dx

	
KW×Rn−2

+
g(x)s(x) dx

≥

	
KE×Rn−2

+
f(x)s(x) dx

	
KE×Rn−2

+
g(x)s(x) dx

if both sides are well defined. If one of the sides is not well defined (say the
one corresponding to KE), then (KE ×Rn−2

+ )∩ supp s has measure zero, so
we can set Km+1 = KW —all integrals on KW × Rn−2

+ will be equal to the
corresponding integrals on Km × Rn−2

+ , and as Km satisfies (5)–(7), so also
does KW . We shall check condition (8) later. Thus assume both sides are
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well defined. Then

(12)

	
KE×Rn−2

+
f(x)s(x) dx

	
KE×Rn−2

+
g(x)s(x) dx

≤

	
Km×Rn−2

+
f(x)s(x) dx

	
Km×Rn−2

+
g(x)s(x) dx

=

	
Rn

+
f(x)s(x) dx

	
Rn

+
g(x)s(x) dx

.

Similarly, when we consider a horizontal line through Om, dividing Km into
the upper part KN and lower part KS , Lemma 2.9 gives

(13)

	
KS×Rn−2

+
f(x)s(x) dx

	
KS×Rn−2

+
g(x)s(x) dx

≥

	
Rn

+
f(x)s(x) dx

	
Rn

+
g(x)s(x) dx

,

where again we can assume the left side is well defined.
If we rotate clockwise a line passing through Om in a continuous fashion

from the vertical to the horizontal position, and divideKm into two partsK+

and K−, then the integrals
	
K+×Rn−2

+
f(x)s(x) dx and

	
K+×Rn−2

+
g(x)s(x) dx

will vary continuously. If for any of the intermediate positions of the line
the second of these integrals is zero, we can take Km+1 = K− as previously.
If not, then their quotient varies continuously. For the vertical line we have
K+ = KE , so by (12) the quotient is no larger than for the whole Km. For
the horizontal line, K+ = KS , thus by (13) the quotient is no smaller than
for the whole Km. Thus by the Darboux property there exists a division of
Km into two sets K+ and K−, both of which satisfy (6) and (5). Both those
sets are spanned.

Notice that at least one of these sets has to satisfy condition (7): if both
did not, then Km could not satisfy it either. Let Km+1 be such a set.

Obviously Km+1 ⊂ Km and Km+1 is a spanned set.
Now let us consider condition (8). Notice that if a point q is used as the

point Om for some m, then it will lie on the edge of Km+1, and thus not
in the interior of any Kl for l > m, and so will not be re-used as Ol for
l > m. Thus no point with both coordinates rational lies in the interior of
K∞ :=

⋂∞
m=0Km. Moreover, K∞ is the intersection of a family of convex

sets, and thus a convex set, so it has to be an interval or a point (if it
contained three affinely independent points, it would contain their convex
hull, and inside it a point with both coordinates rational).

As all Km satisfy condition (7), every set Km × Rn−2 has a nonempty
intersection with Rn \ At/2 (for otherwise inequality (11) would contradict
condition (7)). Thus K∞×Rn−2 also intersects Rn \At/2, and thus its inter-
section with Rn \At/3 has positive (n− 2 + dimK∞)-dimensional measure,
and K∞ × Rn−2 contains a point from the interior of supp s. We can thus
apply Corollary 2.4 taking K = K∞. We obtain some subsequence Kmi of
Km and a log-concave function z on K (denoted g in Corollary 2.4).

Let H be the minimal affine subspace containing K∞ × Rn−2. We want
to apply the induction assumption to the restrictions of f , g, h and s · z
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to H. The subspace H can be given by either x1 = ax2 + b or x2 = ax1 + b,
as K∞ is a spanned set, thus the restriction of s to H is a descendant of F
(with H as domain and an appropriate modification of the basis). Since z
is log-concave and given by a single variable on K, the function s · z on H
is also a descendant of F , thus an Orlicz-based function. The restrictions of
s ·z, f and g to H satisfy the hereditary Θ condition, as s ·z is a descendant
of s. Condition (4) is satisfied by going to the limit in conditions (6) and
(7) and using Corollary 2.4. Thus all the assumptions are satisfied, and by
the induction hypothesis there exists an interval I in H and a log-concave
measure ν as in the conclusion of the lemma; and this interval and measure
satisfy the conclusion also for Rn, which ends the proof in the general case.

Note that the hereditary Θ condition implies in particular that f/g is
decreasing on I. If h were coordinatewise decreasing, we would obtain a
contradiction with inequality (4) by the continuous version of the Chebyshev
sum inequality.

To end the proof we only need Lemma 2.9, which describes the behaviour
of the proportion of integrals of f and g under the hereditary Θ condition
when we divide a spanned set by a horizontal or vertical line. This was ba-
sically proved in [6]; the proof is repeated here for the sake of completeness.

Lemma 2.9. Let F = (s,Rn, E), and let f and g be as in the assump-
tions of Lemma 2.8. Let K be a spanned set in span{e1, e2} such that	
K×Rn−2 s(x) dx > 0. Let Kx = K ∩ {v : v1 = x} be the intersection of

the set K with a vertical line. Let

Θ(x) =

	
Kx×Rn−2 f(v)s(v) dλn−1(v)	
Kx×Rn−2 g(v)s(v) dλn−1(v)

.

Then Θ(x) is decreasing on its domain. In particular , if the line v1 = x0

divides K into two parts, K−={v ∈ K :v1≤x0} and K+ ={v∈K :v1≥x0},
then 	

K−×Rn−2 f(v)s(v) dv	
K−×Rn−2 g(v)s(v) dv

≥

	
K+×Rn−2 f(v)s(v) dv	
K+×Rn−2 g(v)s(v) dv

if both sides are well defined.

Proof. First note the following simple fact:

Fact 2.10. Let µ be any measure on the interval I. Let f, g : I → R+,
suppose supp f ⊂ supp g and f/g is decreasing on supp g. Then for any
a < b ≤ d and a ≤ c < d we have

	b
a f(x) dµ
	b
a g(x) dµ

≥
	d
c f(x) dµ
	d
c g(x) dµ

if both sides are well defined.
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From the Θ property for any y0 the function

x 7→

	
{x}×{y0}×Rn−2 f(v)s(v) dλn−2(v)	
{x}×{y0}×Rn−2 g(v)s(v) dλn−2(v)

is decreasing where defined. The support of s is convex, K is also convex,
supp g ⊃ supp s, and thus the domain of this function is an interval. Thus
by Fact 2.10, we obtain	
{x}×[ya,yb]×Rn−2 f(v)s(v) dλn−1(v)	
{x}×[ya,yb]×Rn−2 g(v)s(v) dλn−1(v)

≥

	
{x}×[yc,yd]×Rn−2 f(v)s(v) dλn−1(v)	
{x}×[yc,yd]×Rn−2 g(v)s(v) dλn−1(v)

as long as ya < yb < yd and ya < yc < yd and both sides are well defined.
The second property we need is	
{x1}×[ya,yb]×Rn−2 f(v)s(v) dλn−1(v)	
{x1}×[ya,yb]×Rn−2 g(v)s(v) dλn−1(v)

≥

	
{x2}×[ya,yb]×Rn−2 f(v)s(v) dλn−1(v)	
{x2}×[ya,yb]×Rn−2 g(v)s(v) dλn−1(v)

as long as x2 > x1 and both sides are well defined. To see this, notice
that by moving the origin to (0, ya, 0, . . . , 0) and multiplying s by 1y≤yb

we
obtain a descendant of F , and thus the hereditary Θ condition guarantees
in particular	

{x1}×R×Rn−2 f(v)m(v)s̃(v) dλn−1(v)	
{x1}×R×Rn−2 g(v)m(v)s̃(v) dλn−1(v)

≥

	
{x2}×R×Rn−2 f(v)m(v)s̃(v) dλn−1(v)	
{x2}×R×Rn−2 g(v)m(v)s̃(v) dλn−1(v)

,

which gives the above property.
Now notice that as K is spanned, for x2 > x1 we have Kx1 = {x1} ×

[ya, yb], Kx2 = {x2} × [yc, yd] and ya < yb < yd and ya < yc < yd, which
gives the first part of the conclusion. The second follows from the first and
Fact 2.10.

3. Negative association of absolute values for Orlicz balls. We
shall use Lemma 2.8 to prove negative association of absolute values for
Orlicz balls. This section closely follows the arguments of [6]. We shall need
a pair of functions satisfying the Θ condition.

Lemma 3.1. Let F = (s, V, E) be an Orlicz-based function, and let V =
W×R, E = E ′∪{en} be a splitting of V with respect to E. Let f(x) = s(x, z2)
and g(x) = s(x, z1) for some numbers 0 < z1 < z2 and x ∈W , and suppose
supp g is nonempty. Let G = (t,W, E ′) be an oriented function, where

t(x) := 1supp g(x)
dim W∏

i=1

ui(xi)
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for some log-concave functions ui. Then G is an Orlicz-based function and G,
f and g satisfy the hereditary Θ condition.

Proof. Let n = dimV . First we shall check that G is an Orlicz-based
function. Let (wi)n

i=1, (fi)n
i=1 and m be functions witnessing that F is an

Orlicz-based function. Consider the following functions on W : (uiφ(wi))n−1
i=1 ,

(fi)n−1
i=1 and x 7→ φ(m(x+ fn(z1))), where φ = 1(0,∞). These functions show

G is an Orlicz-based function.
We proceed to prove the Θ condition. We will consider the splitting

W = W1 ⊕W2; let dimW1 = k. We want to check that the function	
W2

f(x, y)t(x, y) dλn−k−1(y)	
W2

g(x, y)t(x, y) dλn−k−1(y)

is coordinatewise nonincreasing on W1. Obviously it suffices to change one
coordinate at a time, keeping the others fixed. Notice that fixing the coordi-
nate xi is equivalent to intersecting W with a subspace given by xi = b and
replacing F and G by their appropriate descendants (and, correspondingly, f
and g by their appropriate restrictions), and thus by simple induction upon
dimW1 it suffices to consider the case dimW1 = 1. Without loss of generality
we can identify W2 with Rn−2. Thus it suffices to prove, for 0 < x1 < x2,

(14)
�

Rn−2

s(x1, y, z1)t(x1, y) dλn−2(y)
�

Rn−2

s(x2, y, z2)t(x2, y) dλn−2(y)

≤
�

Rn−2

s(x1, y, z2)t(x1, y) dλn−2(y)
�

Rn−2

s(x2, y, z1)t(x2, y) dλn−2(y).

Notice that as
s(xi, y, zj) = m

(
f1(xi) + f2(y1) + · · ·+ fn−1(yn−2

)
+ fn(zj))

× w1(xi)wn(zj)
n−1∏
i=2

wi(yi−1),

the expressions w1(xi) and wn(zj) cancel out in (14). Similarly the u1(xi)
expressions in t cancel out, and we can also drop the 1supp g factor from t as
all the integrands disappear outside supp g. Now consider

r(y0, y1, . . . , yn−2) = m
(
y0 + f2(y1) + f3(y2) + · · ·+ fn−1(yn−2)

)
×

n−2∏
i=1

wi+1(yi)ui+1(yi).

This function is log-concave, since the composition of an increasing convex
function with a convex function is convex and the product of log-concave
functions is log-concave. Let Px =

	
Rn−2 r(x, v) dλn−2(v). As r is log-concave,

by the Prekopa–Leindler inequality (see [3]) we have P t
xP

1−t
y ≤ Ptx+(1−t)y.
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Let a = f1(x1) + fn(z1), b = f1(x2) − f1(x1) and c = fn(z2) − fn(z1). In
particular,

P c/(b+c)
a P

b/(b+c)
a+b+c ≤ Pa+b,

P b/(b+c)
a P

c/(b+c)
a+b+c ≤ Pa+c,

and thus
PaPa+b+c ≤ Pa+bPa+c,

which proves inequality (14), and thus the conclusion.
Finally, we prove the hereditary Θ condition. Let G′ = (t′,W ′, E ′) be a de-

scendant of G. We will construct an Orlicz-based function F ′ = (s′,W ′ × R,
E ′ ∪ {e0}) and log-concave functions u′i so that f restricted to W ′ is equal
to s(·, z1), g restricted to W ′ is s(·, z2), and t′ = supp g

∏
u′i.

The construction is by induction upon the descendant hierarchy. Thus
suppose G′ is a son of G. We have to consider three cases:

• If t′(x) = t(x)w(xi), take u′i = ui · w and leave all other parameters
unchanged.
• If W ′ is given by axj + b, take as F ′ the son of F given by the same

equation xi = axj + b, and replace ui, uj by a single function u(t) =
ui(at+ b)uj(t).
• If the origin is moved to x, consider the son of F given by moving the

origin to (x, 0), and the functions u′i(t) = ui(t+ xi).

In each case we can proceed with the inductive construction, and having
constructed F ′ and u′i we apply the previous result.

Lemma 3.2. Let F = (s, V, E) be an Orlicz-based function, and let V =
W ×R, E = E ′ ∪ {en} be a splitting of V with respect to E. Let h : W+ → R
be a bounded coordinatewise decreasing function, and let 0 < z1 < z2. Let
G = (t,W, E) be an oriented function, where

t(x) = 1{s(x,z1)>0}
∏

ui(xi),

where the ui are log-concave functions. Then	
W+

h(x)s(x, z2)t(x) dλn−1(x)	
W+

h(x)s(x, z1)t(x) dλn−1(x)
≥

	
W+

s(x, z2)t(x) dλn−1(x)	
W+

s(x, z1)t(x) dλn−1(x)

if both sides are well defined.

Proof. Suppose the conclusion does not hold. Then for some fixed h,

(15)

	
W+

h(x)s(x, z2)t(x) dλn−1(x)	
W+

h(x)s(x, z1)t(x) dλn−1(x)
<

	
W+

s(x, z2)t(x) dλn−1(x)	
W+

s(x, z1)t(x) dλn−1(x)
.

We would like to apply Lemma 2.8 with the role of f played by s(x, z2),
and the role of g by s(x, z1). For this we need s(x, z1), s(x, z2) and h to be
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continuous and h to be bounded uniformly away from zero. First, notice
that if inequality (15) holds, then it will also hold if we substitute h(x) +C
for h. Thus we may assume h is strictly larger than, say, 1. Since we have
a strict inequality in (15), it will also hold after a small enough modifica-
tion of s and h. Let s(v) = m(

∑
fi(vi))

∏
wi(vi), where v = (x, z). First

we approximate m from above by a decreasing sequence mk of continuous
log-concave functions with maxima at zero, which converges pointwise to
m. Then sk(x, zi) converges monotonically to s(x, zi), and thus all the in-
tegrals in (15) converge and we can choose a k such that (15) still holds
after substituting sk for s. Similarly we can approximate fi from below by
continuous Young functions (i.e. functions that do not jump to ∞). Then
sk will still be an Orlicz-based function, and f and g will be continuous and
satisfy supp f ⊂ supp g (as f ≤ g, because both the Young functions and
m are increasing). Similarly we approximate h from above by a sequence of
continuous functions hk, decreasing coordinatewise and uniformly bounded
away from zero and pointwise convergent to h, and replace h by a suffi-
ciently close approximation hk. We can assume that (15) still holds after
these modifications.

After the modifications the assumptions of Lemma 2.8 are satisfied: the
hereditary Θ condition holds by Lemma 3.1, as sk is an Orlicz-based func-
tion, and condition (4) is simply the inequality (15). Thus the conclusion of
Lemma 2.8 holds—but we assumed hk to be coordinatewise decreasing, and
this contradiction ends the proof.

Notice that from the above lemma, by switching sides we deduce that
the function 	

Rk
+
h(x)s(x, z)t(x) dx

	
Rk

+
s(x, z)t(x) dx

is coordinatewise decreasing as a function of z for any coordinatewise de-
creasing function h and any Orlicz-based function F on Rn. Thus we can
prove the following corollary just as we proved the last part of Lemma 3.1:

Corollary 3.3. Consider F , G, and h defined as above. Then the
Orlicz-based function G and the functions

	
W+

h(x)s(x, z1)t(x) dλn−1(x) and	
W+

s(x, z1)t(x) dλn−1(x) satisfy the hereditary Θ condition.

Now we can prove our statement in full generality:

Lemma 3.4. Let ϕ = (s,Rn, E) be an Orlicz-based function, and let h :
Rk

+ → R and h̄ : Rn−k
+ → R be coordinatewise decreasing functions. Then

(16)

	
Rn−k

+
h̄(x)

	
Rk

+
h(y)s(x, y) dy dx

	
Rn−k

+
h̄(x)

	
Rk

+
s(x, y) dy dx

≤

	
Rn−k

+

	
Rk

+
h(y)s(x, y) dy dx

	
Rn−k

+

	
Rk

+
s(x, y) dy dx

.
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The proof will be almost identical to the proof of Lemma 3.2:

Proof. Again we apply Lemma 2.8. Assume the opposite inequality holds.
The role of the function h will be taken, as in Lemma 3.2, by a continu-
ous and coordinatewise decreasing approximation of h̄, uniformly bounded
from below. We define f(x) =

	
Rk

+
h(y)s(x, y)dy and g(x) =

	
Rk

+
s(x, y)dy.

Approximating m, fi and h̄ by continuous functions as in 3.2 we obtain
continuous modifications of f and g, for which (4) still holds. The hered-
itary Θ condition is satisfied by Corollary 3.3. However, our function h is
coordinatewise decreasing, which contradicts Lemma 2.8.

From the above we immediately obtain Theorem 1.3.
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