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Summary. Motivated by a question of Krzysztof Oleszkiewicz we study a notion of weak
tail domination of random vectors. We show that if the dominating random variable is
sufficiently regular then weak tail domination implies strong tail domination. In particular,
a positive answer to Oleszkiewicz’s question would follow from the so-called Bernoulli
conjecture. We also prove that any unconditional logarithmically concave distribution is
strongly dominated by a product symmetric exponential measure.

1. Introduction. This note is inspired by the following problem about
Rademacher series, posed by Krzysztof Oleszkiewicz (private communica-
tion):
Problem. Suppose that (εi) is a Rademacher sequence (i.e. a sequence

of independent symmetric ±1 r.v.’s) and xi, yi are vectors in some Banach
space F such that the series

∑
i xiεi and

∑
i yiεi are a.s. convergent and

∀x∗∈F ∗∀t>0 P
(∣∣∣x∗(∑

i

xiεi

)∣∣∣ ≥ t) ≤ P
(∣∣∣x∗(∑

i

yiεi

)∣∣∣ ≥ t).
Does this imply that

E
∥∥∥∑

i

xiεi

∥∥∥ ≤ LE
∥∥∥∑

i

yiεi

∥∥∥
for some universal constant L <∞?

Motivated by the above question we introduce a notion of weak tail dom-
ination of random vectors. We prove that if the dominating vector has a
regular distribution (including the Gaussian case), then weak tail domina-
tion yields strong tail domination (Theorem 1). In particular, Oleszkiewicz’s
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question has a positive answer provided that the so-called Bernoulli conjec-
ture holds. We also show that in general weak tail domination does not yield
comparison of means or medians of norms, even if the distribution of the
dominated vector is Gaussian.

In the last part we use Theorem 1 to extend the result of Bobkov and
Nazarov [3] and show that unconditional logarithmically concave distribu-
tions are strongly dominated by a product symmetric exponential measure.

2. Weak and strong tail domination. Let us begin with the following
definition.

Definition 1. Let X and Y be random vectors with values in some
Banach space F . We say that tails of Y are weakly dominated by tails of X
and write Y ≺ω X if

P(|x∗(Y )| ≥ t) ≤ P(|x∗(X)| ≥ t) for all x∗ ∈ F ∗, t > 0.

The following regularity property of random vectors will give us a tool
to go from weak to strong comparison. Its roots are in the paper [8], where
a modification of the majorizing measure idea was introduced for processes
controlled by a family of distances.

Definition 2. We say that a random vector X with values in F is
K-regular for some K <∞ if there exists a sequence (x∗n) ⊂ F ∗ such that

‖x∗n(X)‖log(n+2) = (E|x∗n(X)|log(n+2))1/log(n+2) ≤ KE‖X‖ for n = 1, 2, . . .

and
BF ∗ = {x∗ ∈ F ∗ : ‖x∗‖ ≤ 1} ⊂ clX(conv{±x∗n : n ≥ 1}),

where for A ⊂ F ∗, clX(A) denotes the closure of A with respect to the L2

distance dX(x∗, y∗) := (E|x∗(X)− y∗(X)|2)1/2.

Proposition 1. If X is K-regular and Y ≺ω X, then

E‖Y ‖ ≤ 20KE‖X‖.

Proof. Let x∗n be as in Definition 2. For any t > 0 we have

P(sup
n≥1
|x∗n(Y )| ≥ t) ≤

∑
n≥1

P(|x∗n(Y )| ≥ t) ≤
∑
n≥1

t− log(n+2)E|x∗n(Y )|log(n+2)

≤
∑
n≥1

t− log(n+2)E|x∗n(X)|log(n+2)

≤
∑
n≥1

(
KE‖X‖

t

)log(n+2)

.
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Notice that dY (x∗, y∗) ≤ dX(x∗, y∗), henceB∗F is also contained in the closure
of the absolute convex hull of ±x∗n in the dY metric and thus

E‖Y ‖ ≤ E sup
n≥1
|x∗n(Y )| ≤ KE‖X‖

(
e2 +

∞�

e2

P(sup
n≥1
|x∗n(Y )| ≥ tKE‖X‖) dt

)
≤ KE‖X‖

(
e2 +

∞∑
n=1

∞�

e2

t− log(n+2) dt
)
≤ 20KE‖X‖.

Theorem 1. Let X1, X2, . . . be independent copies of a symmetric ran-
dom vector X. Suppose that there exist constants K <∞ and α, β > 0 such
that for all n = 1, 2, . . . ,

(i) the random vector (X1, . . . , Xn) with values in ln∞(F ) is K-regular ,
(ii) P(maxi≤n ‖Xi‖ ≥ αE maxi≤n ‖Xi‖) ≥ β.

Then for any random vector Y such that Y ≺ω X we have, for all ε > 0,

P(‖Y ‖ ≥ t) ≤ 2
β

P
(
‖X‖ ≥ αt

80K

)
.

The main idea of how to derive comparison of tails from comparison of
means is not new—it goes back at least to the paper of Asmar and Mont-
gomery–Smith [1].

Proof. We may obviously assume that Y is symmetric; we will denote by
Y1, Y2, . . . independent copies of Y . Let n ≥ 2 be such that

2/n ≥ P(‖Y ‖ ≥ t) ≥ 1/n.

Then P(maxi≤n ‖Yi‖ ≥ t) ≥ 1 − (1 − 1/n)n ≥ 1/2, hence E maxi≤n ‖Yi‖ ≥
t/2. Let η be a r.v. independent of (Yi) such that P(η = 1) = P(η = 0) =
1/2. Then by Theorem 3.2.1 of [5], η(Y1, . . . , Yn) ≺ω (X1, . . . , Xn), where
both sides are considered as random vectors in ln∞(F ). By Proposition 1,
t

4
≤ E max

i≤n
‖ηYi‖ = E‖η(Y1, . . . , Yn)‖ln∞(F ) ≤ 20KE‖(X1, . . . , Xn)‖ln∞(F )

= 20KE max
i≤n
‖Xi‖.

Property (ii) yields

β ≤ P
(

max
i≤n
‖Xi‖ ≥

αt

80K

)
≤ nP

(
‖X‖ ≥ αt

80K

)
,

so P(‖X‖ ≥ αt/(80K)) ≥ β/n ≥ βP(‖Y ‖ ≥ t)/2.
Remark 1. The comparison of the first and second moments of maxima,

(1) E max
i≤n
‖Xi‖2 ≤ C(E max

i≤n
‖Xi‖)2,

implies by the Paley–Zygmund inequality (cf. [5, Lemma 0.2.1]) property (ii)
of the previous theorem with α = 1/2 and β = 1/(4C).
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Remark 2. The proofs of both Proposition 1 and Theorem 1 show that
both statements hold if we replace the condition Y ≺ω X by the condition

(2) ‖x∗(Y )‖p ≤ ‖x∗(X)‖p for all x∗ ∈ F ∗, p ≥ 1.

Moreover, if ‖x∗(X)‖2p ≤ C‖x∗(X)‖p for all p ≥ 1 and x∗ ∈ F ∗ it is enough
to check (2) for p being an even integer (the constants 20K and 80K will
then change to 20CK and 80CK).

Let us give a few examples of random vectors satisfying the assumptions
of Theorem 1.

Example 1. Any centered Gaussian vector on a separable Banach space
is L-regular with a universal L. This is a consequence of the majorizing
measure theorem (cf. [7] and [9, Theorem 2.1.8]). Since a product of Gaussian
measures is again Gaussian, property (i) holds with K = L. Moments of
Gaussian vectors are comparable so by Remark 1 also property (ii) holds
with α = 1/2 and a universal β.

Example 2. Let (ηi) be a sequence of independent symmetric real r.v.’s
with logarithmically concave tails satisfying the ∆2 condition, and let vi ∈ F
be such that X =

∑
i viηi is a.s. convergent. Then X is K-regular with a

constant K depending only on the ∆2 constant ([6, Theorem 3]). The ran-
dom variable (X1, . . . , Xn) has an analogous series representation in ln∞(F ),
so property (i) holds. It can also be checked that (1) is satisfied with a
universal C.

Remark 3. A positive answer to the Bernoulli conjecture ([9, Chap-
ter 4]) would imply the L-regularity of Rademacher series. Since (1) holds
for X being a Rademacher sum with vector coefficients, Theorem 1 would
give a positive answer to Oleszkiewicz’s question.

We conclude this section with an example showing that weak tail domi-
nation does not yield any comparison of strong parameters even if the dom-
inated vector has Gaussian distribution.

Example 3. Let F = ln∞, Y =
∑n

i=1 giei and X = 9(|g1|+ 1)
∑n

i=1 ηiei,
where gi are i.i.d. N (0, 1) and ηi are i.i.d. r.v.’s with uniform distribution on
[−1, 1], independent of g1.

To show that tails of Y are weakly dominated by tails of X it is enough
to check that

(3) P(|〈u, Y 〉| ≥ t) ≤ P(|〈u,X〉| ≥ t) for u ∈ Sn−1, t ≥ 0.

Let us fix u ∈ Sn−1. For t > 0 we have

P(|〈u, Y 〉| ≥ t) = P(|g1| ≥ t).
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By the Paley–Zygmund inequality,

P
(∣∣∣ n∑

i=1

uiηi

∣∣∣ ≥ 1
3

)
= P

(∣∣∣ n∑
i=1

uiηi

∣∣∣2 ≥ 1
3

E
∣∣∣ n∑
i=1

uiηi

∣∣∣2)

≥
(

1− 1
3

)2 (E|
∑n

i=1 uiηi|2)2

E|
∑n

i=1 uiηi|4
≥ 4

27
,

thus

P(|〈u,X〉| ≥ t) ≥ 4
27

P(3(|g1|+ 1) ≥ t) ≥ 4
27

P
(
|g1| ≥

t

3

)
.

Using the easy estimate 2t exp(−(2t)2/2)/
√

2π ≤ P(|g| ≥ t) ≤ exp(−t2/2),
we immediately get (3) for t ≥ 3. For 0 ≤ t ≤ 3 we have

P(|〈u,X〉| ≤ t) ≤ P
(

9
∣∣∣ n∑
i=1

uiηi

∣∣∣ ≤ t) ≤ √2 t
9
≤ t P(|g1| ≤ 3)

3

≤ P(|g1| ≤ t) = P(|〈u, Y 〉| ≤ t),

where to get the second inequality we have used Ball’s upper bound on cube
sections [2]. Hence (3) also holds for t ∈ [0, 3].

Thus Y ≺ω X. However, E‖Y ‖ = E maxi≤n |gi| ≥
√

log(n+ 1)/L and
E‖X‖ ≤ 9E(|g1|+ 1) ≤ 18.

3. Unconditional logarithmically concave distributions. A Borel
probability measure µ on Rn is called logarithmically concave if for any
nonempty compact setsA,B and λ∈ [0, 1], µ(λA+(1−λ)B)≥µ(A)λµ(B)1−λ.
If the support of µ has full dimension, µ is log-concave if and only if µ has
the density of the form e−g, where g : Rn → (−∞,∞] is convex [4]. A ran-
dom vector X = (X1, . . . , Xn) is unconditional if for any sequence of signs
si = ±1, (s1X1, . . . , snXn) has the same distribution as X.

Theorem 2. Suppose that Y = (Y1, . . . , Yn) is an unconditional vec-
tor with logarithmically concave distribution such that EY 2

i = 1, and X =
(X1, . . . , Xn), where the Xi are independent , symmetric, exponential random
variables with variance 1 (i.e. the density 2−1/2 exp(−

√
2 |x|)). Then for any

norm on Rn,

P(‖Y ‖ ≥ t) ≤ LP(‖X‖ ≥ t/L) for t > 0,

where L is a universal constant.

Proof. By Example 2 the vectorX satisfies the assumption of Theorem 1.
Moreover, ‖

∑
i aiXi‖2p ≤ C‖

∑
i aiXi‖p for p ≥ 1 and a universal C. Thus

by Remark 2 it is enough to show that for any a1, . . . , an and any positive
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even integer k,

(4)
(
E
∣∣∣ n∑
i=1

aiYi

∣∣∣k)1/k
≤ L1

(
E
∣∣∣ n∑
i=1

aiXi

∣∣∣k)1/k
.

The result of Bobkov and Nazarov [3, Proposition 3.3] gives that for t1, . . . , tn
≥ 0,

P(|Y1| ≥ L1t1, . . . , |Yn| ≥ L1tn) ≤ P(|X1| ≥ t1, . . . , |Xn| ≥ tn),

thus after integration by parts we get

E(|Y1|2l1 · · · |Yn|2ln) ≤ L2(l1+···+ln)
1 E(|X1|2l1 · · · |Xn|2ln),

and (4) immediately follows.
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