Extending Nearaffine Planes to Hyperbola Structures

by
Kinga CUDNA-SALMANOWICZ and Jan JAKÓBOWSKI

Presented by Jan RYCHLEWSKI

Summary. H. A. Wilbrink [Geom. Dedicata 12 (1982)] considered a class of Minkowski planes whose restrictions, called residual planes, are nearaffine planes. Our study goes in the opposite direction: what conditions on a nearaffine plane are necessary and sufficient to get an extension which is a hyperbola structure.

1. Basic concepts. Let Ω be a nonempty set, and Ξ some family of subsets of Ω. Elements of Ω are called points, elements of Ξ lines. Moreover let $\triangleright: \Omega \times \Omega \backslash\{(Z, Z) ; Z \in \Omega\} \rightarrow \Xi$ be a surjection, called join, and let $\equiv \subset \Xi \times \Xi$ be an equivalence relation called parallelism of lines. The image of (X, Y) under the join map will be denoted by $X \triangleright Y$. The point X is called a base point of the line $X \triangleright Y$. In general join is not commutative. A line $X \triangleright Y$ satisfying $X \triangleright Y=Y \triangleright X$ is called straight. All remaining lines are called proper. The set of all straight lines will be denoted by Υ [4, p. 345].

Definition 1.1 ([7, pp. 53-54]). A quadruple NA $=(\Omega, \Xi, \triangleright, \equiv)$ is a nearaffine plane if the following three groups of axioms hold:
I. Axioms of lines:
(L1) $X, Y \in X \triangleright Y$ for all $X, Y \in \Omega, X \neq Y$.
(L2) $Z \in X \triangleright Y \backslash\{X\} \Leftrightarrow X \triangleright Y=X \triangleright Z$ for all $X, Y, Z \in \Omega$, $X \neq Y$.
(L3) $X \triangleright Y=Y \triangleright X=X \triangleright Z \Rightarrow X \triangleright Z=Z \triangleright X$ for all $X, Y, Z \in \Omega$, $Y \neq X \neq Z$.

[^0]
II. Axioms of parallelism:

(P1) For every line a and every point X there exists exactly one line with base point X parallel to a (we denote this line by $(X \equiv a)$).
(P2) $X \triangleright Y \equiv Y \triangleright X$ for all $X, Y \in \Omega, X \neq Y$.
(P3) $a \equiv b \wedge a \in \Upsilon \Rightarrow b \in \Upsilon$ for all $a, b \in \Xi$.
III. Axioms of richness:
(R1) There exist at least two nonparallel straight lines.
$(\mathbf{R 2})$ Every line a meets every straight line g with $g \not \equiv a$ in exactly one point.
Definition 1.2 ([7, p. 56]). A bijection $\varphi: \Omega \rightarrow \Omega$ is an automorphism of NA $=(\Omega, \Xi, \triangleright, \equiv)$ if $\varphi(P \triangleright Q)=\varphi(P) \triangleright \varphi(Q)$ and $a \equiv b \Leftrightarrow \varphi(a) \equiv \varphi(b)$ for any $P \neq Q$ and $a, b \in \Xi$.

Among nearaffine planes there is a distinguished class satisfying the following postulate [7, p. 55]:
(V) (The Veblen condition) Let a be a straight line containing points P, Q, R, and b a line different from a with base point P; moreover, let $S \in b \backslash\{P\}$. Then $(R \equiv Q \triangleright S) \cap b \neq \emptyset$.
Now, let Π be some other set of points, provided with three pairwise disjoint families $\Sigma_{+}, \Sigma_{-}, \Lambda$ of subsets, elements of which are called $(+)$ gener ators, (-)generators and circles, respectively. Consider the following axioms:
(M1) For every point P there exists a unique (+)generator, denoted by $[P]_{+}$, and a unique (-)generator, denoted by $[P]_{-}$, containing P.
(M2) Every (+)generator meets every (-)generator in a unique point.
(M3) There is a circle containing at least three points.
(M4) Through three distinct points P, Q, R, no two of which are on a common generator, there is a unique circle, denoted by (P, Q, R).
(M5) Every circle intersects every generator in a unique point.
(T) Given a circle λ, a point $P \in \lambda$ and a point $Q \notin \lambda$ with P and Q not on a generator, there is one and only one circle μ through Q such that $\lambda \cap \mu=\{P\}$.
Definition 1.3 ([5, p. 269]). The quadruple $\mathbf{M}=\left(\Pi, \Sigma_{+}, \Sigma_{-}, \Lambda\right)$ is a Minkowski plane (resp. a hyperbola structure) if the axioms (M1)-(M5) and (T) (resp. (M1)-(M5)) hold.
2. New results. As H. A. Wilbrink has demonstrated in [6], every point Z of a Minkowski plane \mathbf{M} satisfying two additional conditions induces a nearaffine (so-called residual) plane. For a given nearaffine plane NA we shall construct some hyperbola structure $\mathbf{H}(\mathbf{N A})$ such that NA is a residual
plane with respect to some point Z of $\mathbf{H}(\mathbf{N A})$. A special case of this problem is solved in [4].

Such a construction is possible if NA satisfies a number of additional conditions. Since the straight lines of a residual plane are obtained from generators, it is obvious that $\mathbf{N A}=(\Omega, \Xi, \triangleright, \equiv)$ must have exactly two classes Ψ_{1}, Ψ_{2} of straight lines. Note that there exist nearaffine planes with more than two classes of straight lines, and two distinct lines may have three or more points in common (see e.g. [2, p. 207]). Let $\Omega_{1}, \Omega_{2},\{Z\}$ be sets (elements of which are also called points) disjoint from each other and from Ω. We assume that there exist bijections $f_{i}: \Omega_{i} \rightarrow \Psi_{i}$ for $i=$ 1,2 . Let $[P]_{i}$ denote the straight line through P belonging to Ψ_{i}, and set $P^{i}=f_{i}^{-1}\left([P]_{i}\right)$. All points marked with the superscript " i " belong to Ω_{i} (see Figure 1). Points of any structure will be denoted by capital Latin letters, lines of a nearaffine plane by small Latin letters, and circles of a hyperbola structure by small Greek letters.

Definition 2.1 (cf. [6, p. 123]).
(a) $\Gamma=\left\{(P, Q) \in \Omega \times \Omega ; P \neq Q, P \triangleright Q \notin \Psi_{1} \cup \Psi_{2}\right\}$.
(b) For $(S, T) \in \Gamma$ we put

$$
\begin{aligned}
& {[S, T]=\{S, T, Z\} \cup} \\
& \quad\{R \in \Omega ;(R, S),(R, T) \in \Gamma \wedge \neg(\exists P \triangleright Q \in \Xi S, T, R \in P \triangleright Q \backslash\{P\})\}
\end{aligned}
$$

Fig. 1

Corollary 2.1. $[S, T]=[T, S]$ and $U \in[S, T] \Leftrightarrow T \in[S, U]$. For every automorphism φ we have $\varphi([S, T] \backslash\{Z\})=[\varphi(S), \varphi(T)] \backslash\{Z\}$.

Definition 2.2.

$$
\begin{aligned}
\Pi & =\Omega \cup \Omega_{1} \cup \Omega_{2} \cup\{Z\} \\
\Sigma_{+} & =\left\{[P]_{1} \cup\left\{P^{1}\right\} ; P \in \Omega\right\} \cup\left\{\Omega_{2} \cup\{Z\}\right\}
\end{aligned}
$$

$$
\begin{aligned}
\Sigma_{-} & =\left\{[P]_{2} \cup\left\{P^{2}\right\} ; P \in \Omega\right\} \cup\left\{\Omega_{1} \cup\{Z\}\right\}, \\
\Lambda_{1} & \left.=\left\{(P \triangleright Q \backslash\{P\}) \cup\left\{P^{1}, P^{2}\right\} ;(P, Q) \in \Gamma\right)\right\}, \\
\Lambda_{2} & =\{[S, T] ;(S, T) \in \Gamma\}, \quad \Lambda_{1} \cup \Lambda_{2}=\Lambda .
\end{aligned}
$$

Lemma 2.1. The structure $\left(\Pi, \Sigma_{+}, \Sigma_{-}, \Lambda\right)$ described in Definition 2.2 satisfies (M1)-(M3) (see Figure 1).

THEOREM 2.1. The quadruple $\mathbf{H}(\mathbf{N A})=\left(\Pi, \Sigma_{+}, \Sigma_{-}, \Lambda\right)$ described in Definition 2.2 is a hyperbola structure if and only if the nearaffine plane $\mathbf{N A}=(\Omega, \Xi, \triangleright, \equiv)$ satisfies the following conditions:
(H1) If $U \in[S, T]$ and $U \neq S$ then $[S, T]=[S, U]$.
(H2) Every set $[S, T]$ intersects every straight line in exactly one point.
(H3) For two proper lines $P \triangleright Q$ and $R \triangleright S$ with $(P, R) \in \Gamma$, the sets $P \triangleright Q \backslash\{P\}$ and $R \triangleright S \backslash\{R\}$ have at most two distinct points in common.
(H4) For every straight line a and two distinct points $P, Q \notin a$ with $(P, Q) \in \Gamma$, there exists a unique point $S \in a$ such that $S \triangleright P=$ $S \triangleright Q$ (see Figure 2).

Fig. 2

Proof. Let (M1)-(M5) hold in H(NA).
For (H1), by Definitions 2.1, 2.2 and (M4), $U \in[S, T]$ means that $(U, S, T)=(S, T, Z)=(S, U, Z)$ in $\mathbf{H}(\mathbf{N A})$, i.e. $[S, T]=[S, U]$.

To prove (H2), consider any set $[S, T]$ and any straight line $a \in \Psi_{1}$. The set $[S, T]$ is a circle and $a \cup\left\{f_{1}^{-1}(a)\right\}$ is a generator in $\mathbf{H}(\mathbf{N A})$. Then by (M5), there exists a point R such that $\{R\}=[S, T] \cap\left(a \cup\left\{f_{1}^{-1}(a)\right\}\right)$. Since $f_{1}^{-1}(a) \notin[S, T]$, we have $\{R\}=[S, T] \cap a$.
(H3) is immediate from (M4).
Finally, we prove (H4). Let a, P, Q satisfy the assumptions of (H4) and e.g. $a \in \Psi_{1}$. In $\mathbf{H}(\mathbf{N A}), a \cup\left\{f_{1}^{-1}(a)\right\}, \Omega_{1} \cup\{Z\}, \Omega_{2} \cup\{Z\}$ are generators and $P, Q, f_{1}^{-1}(a)$ are distinct points, no two of which are on the same generator
(see Figure 2). By (M2) we have $\left\{f_{1}^{-1}(a)\right\}=\left(a \cup\left\{f_{1}^{-1}(a)\right\}\right) \cap\left(\Omega_{1} \cup\{Z\}\right)$ and by (M4), $P, Q, f_{1}^{-1}(a)$ determine exactly one circle λ. Define $\left\{S^{2}\right\}=$ $\left(\Omega_{2} \cup\{Z\}\right) \cap \lambda($ cf. $(\mathbf{M} 5))$ and $\{S\}=\left[S^{2}\right]_{-} \cap\left[f_{1}^{-1}(a)\right]_{+}$, i.e. $f_{1}^{-1}(a)=S^{1}$. By Definition 2.2 and (M4) we have

$$
\begin{aligned}
S \triangleright P \backslash\{S\} & =\lambda \backslash\left\{S^{1}, S^{2}\right\}=\left(P, S^{1}, S^{2}\right) \backslash\left\{S^{1}, S^{2}\right\} \\
& =\left(Q, S^{1}, S^{2}\right) \backslash\left\{S^{1}, S^{2}\right\}=S \triangleright Q \backslash\{S\} .
\end{aligned}
$$

Hence $S \triangleright P=S \triangleright Q$.
Conversely, let (H1)-(H4) hold in NA.
To prove (M4), let $P, Q, R \in \Pi$ be points such that no two are on a common generator. We have the following possibilities:

1. $P, Q, R \in \Omega$. Either there exists a proper line $X \triangleright Y$ such that $P, Q, R \in X \triangleright Y \backslash\{X\}$, or such a line does not exist. In the former case the line $X \triangleright Y$ is uniquely determined by $(\mathbf{H} 3)$ and we put $\lambda=(X \triangleright Y \backslash\{X\}) \cup\left\{X^{1}, X^{2}\right\}$. In the latter case, by (H1) and Corollary 2.1, $[P, Q]=[P, R]=[Q, R]$ and $\lambda=[P, Q]$ is a unique circle containing P, Q, R.
2. $P, Q \in \Omega, R=Z$. No circle from Λ_{1} contains Z. Then $[P, Q]$ is a unique circle through P, Q, R.
3. $P, Q \in \Omega, R^{1} \in \Omega_{1}$. No circle from Λ_{2} contains an element of Ω_{1}. Thus a circle through P, Q, R^{1} must belong to Λ_{1}. There exists the straight line $f_{1}\left(R^{1}\right)$. Of course $P, Q \notin f_{1}\left(R^{1}\right)$. In view of $(\mathbf{H} 4)$ there is a unique point $S \in f_{1}\left(R^{1}\right)$ such that $S \triangleright P=S \triangleright Q$. Therefore

$$
\lambda=(S \triangleright P \backslash\{S\}) \cup\left\{R^{1}, f_{2}^{-1}\left([S]_{2}\right)\right\}=(S \triangleright P \backslash\{S\}) \cup\left\{S^{1}, S^{2}\right\}
$$

is the only circle containing P, Q, R^{1}.
4. $P \in \Omega, Q^{1} \in \Omega_{1}, R^{2} \in \Omega_{2}$. Let $\{Y\}=f_{1}\left(Q^{1}\right) \cap f_{2}\left(R^{2}\right)$ (cf. (R2)). We obtain $\lambda=(Y \triangleright P \backslash\{Y\}) \cup\left\{Q^{1}, R^{2}\right\}=(Y \triangleright P \backslash\{Y\}) \cup\left\{Y^{1}, Y^{2}\right\}$.
For (M5), consider $\lambda \in \Lambda=\Lambda_{1} \cup \Lambda_{2}$ and $\sigma \in \Sigma_{+} \cup \Sigma_{-}$. The following cases are possible:

1. $\lambda=(P \triangleright Q \backslash\{P\}) \cup\left\{P^{1}, P^{2}\right\}, \sigma=[R]_{1} \cup\left\{R^{1}\right\}$ for some $P, Q, R \in \Omega$, $(P, Q) \in \Gamma$. By (R2) we have $P \triangleright Q \cap[R]_{1}=\{X\}$ for some $X \in \Omega$ and $X=P \Leftrightarrow P^{1}=X^{1}=R^{1}$. Then $\lambda \cap \sigma=\{X\}$ for $R^{1} \neq P^{1}$ and $\lambda \cap \sigma=\left\{R^{1}\right\}$ for $R^{1}=P^{1}$.
2. $\lambda=(P \triangleright Q \backslash\{P\}) \cup\left\{P^{1}, P^{2}\right\}, \sigma=\Omega_{1} \cup\{Z\}$. Then $\lambda \cap \sigma=\left\{P^{1}\right\}$.
3. $\lambda=[S, T], \sigma=\Omega_{1} \cup\{Z\}$. Then $\lambda \cap \sigma=\{Z\}$.
4. $\lambda=[S, T], \sigma=[R]_{1} \cup\left\{R^{1}\right\}$. By (H2) we have $[S, T] \cap[R]_{1}=\{U\}$ for some $U \in \Omega$ and we obtain $\lambda \cap \sigma=\{U\}$.
Proposition 2.1. Every automorphism φ of a nearaffine plane NA satisfying the conditions (H1)-(H4) extends to an automorphism $\bar{\varphi}$ of the hyperbola structure $\mathbf{H}(\mathbf{N A})$.

Proof. We define $\left.\bar{\varphi}\right|_{\Omega}=\varphi, \bar{\varphi}(Z)=Z, \bar{\varphi}\left(X^{i}\right)=f_{j}^{-1}\left(\varphi\left(f_{i}\left(X^{i}\right)\right)\right)$ for $X^{i} \in \Omega_{i}$, where $i, j \in\{1,2\}, j=i$ if $\varphi\left(\Psi_{i}\right)=\Psi_{i}$, and $j \neq i$ if $\varphi\left(\Psi_{i}\right) \neq \Psi_{i}$ (Figure 3). Thus $\bar{\varphi}$ is a bijection. By Definition 2.2, Definition 1.2 and Corollary 2.1, $\bar{\varphi}$ maps every circle of $\mathbf{H}(\mathbf{N A})$ onto a circle.

Fig. 3
We shall use the notation $P \triangleright Q=\lambda^{*}$ for $\lambda \in \Lambda_{1}, \lambda=\left(P^{1}, P^{2}, Q\right)$.
Lemma 2.2 (see [2, Corollary 1, p. 215] for the finite case). Let distinct lines a, b have base points on a common straight line.
(a) If $a \equiv b$ then $a \cap b=\emptyset$.
(b) If the Veblen condition holds and $a \cap b=\emptyset$ then $a \equiv b$.

Proof. Let $g \in \Upsilon$ and let $P, Q \in g$ be the base points of a, b, respectively. If $a \equiv b$ and $S \in a \cap b$, then $a=P \triangleright S, b=Q \triangleright S$. By (P2) and (P1), we obtain $S \triangleright P \equiv P \triangleright S \equiv Q \triangleright S \equiv S \triangleright Q$, i.e. $S \triangleright P=S \triangleright Q$. This contradicts (R2). Now assume that $a \cap b=\emptyset$ and $a \not \equiv b$. Let $P \neq S \in a$ and $(S \equiv b) \cap g=\{R\}$. Then $b \equiv(S \equiv b)=S \triangleright R \equiv R \triangleright S$ and $a \cap R \triangleright S \neq \emptyset$ but $a \cap b=\emptyset$, which contradicts (\mathbf{V}).

The following generalizes Theorem 2.4 from [2, p. 217].
Proposition 2.2. For any straight line g of a nearaffine plane NA = $(\Omega, \Xi, \triangleright, \equiv)$ let $\mathcal{L}_{g}=\{a \in \Xi ; a \equiv g\} \cup\{P \triangleright Q \in \Xi ; P \in g\}$. Then $\mathbf{A}(g)=$ $\left(\Omega, \mathcal{L}_{g}\right)$ is an affine plane if and only if (\mathbf{V}) and $(\mathbf{H} 4)$ hold in NA.

Proof. $\Leftarrow:$ Let $X, Y \in \Omega, X \neq Y$. If $X \triangleright Y$ is straight in NA then it is a unique line through X, Y in $\mathbf{A}(g)$. Let $(X, Y) \in \Gamma$. If $X \in g$ then $X \triangleright Y \in \mathcal{L}_{g}$ and of course, it is a unique line through X, Y with base point on g. Similarly for $Y \in g$. If $X, Y \notin g$ then (H4) means exactly that there exists a unique (proper) line a through X, Y with base point on g, i.e. $a \in \mathcal{L}_{g}$.

Let $a \in \mathcal{L}_{g}, P \notin a$. Set $b=(P \equiv a)$. If $a \in \Upsilon$ then by (R2), b is the only line through P disjoint from a. Either $b \equiv g$, or $b \neq g$ has a base point on g. In both cases $b \in \mathcal{L}_{g}$. If $a \notin \Upsilon$ then put $b \cap g=\{Q\}$. By (P1) and (P2), $(Q \equiv b) \equiv b \equiv a$, where $P \in(Q \equiv b)$, and the base points of $(Q \equiv b), a$ are on g. By Lemma $2.2(\mathrm{a}),(Q \equiv b) \cap a=\emptyset$ and by Lemma $2.2(\mathrm{~b})$, only $(Q \equiv b)$ is a line through P, with base point on g and disjoint from a.
\Rightarrow : Assume that $\mathbf{A}(g)$ is affine for every $g \in \Upsilon$. In particular, for every $P, Q \notin g$ such that $(P, Q) \in \Gamma$, there exists exactly one line from \mathcal{L}_{g} passing through P, Q, i.e. a proper line with base point S on g. Thus (H4) holds. Suppose that (\mathbf{V}) does not hold, i.e. for some pairwise distinct points $P, Q, R \in g$ and $S \notin g$ we have $(R \equiv Q \triangleright S) \cap P \triangleright S=\emptyset$. By Lemma 2.2(a), $Q \triangleright S \cap(R \equiv Q \triangleright S)=\emptyset$. Thus $P \triangleright S$ and $Q \triangleright S$ are distinct lines through S, both parallel to $(R \equiv Q \triangleright S)$ in the affine plane $\mathbf{A}(g)$, a contradiction.

Proposition 2.3. For any $\lambda \in \Lambda_{1}, P^{1} \in \lambda, Q \in \Omega \cup \Omega_{2} \backslash \lambda$ there exists a circle μ such that $\lambda \cap \mu=\left\{P^{1}\right\}$ and $Q \in \mu$.

Proof. Let $\lambda^{*}=P \triangleright S$ for some $S \in \lambda \cap \Omega$. If $Q \in \Omega$ then $(Q \equiv P \triangleright S)$ intersects $[P]_{1}$ in some point R and by (P2) we get

$$
P \triangleright S \equiv(Q \equiv P \triangleright S)=Q \triangleright R \equiv R \triangleright Q=(R \equiv P \triangleright S)
$$

If $Q=Q^{2} \in \Omega_{2}$ then define $\{R\}=\left[P^{1}\right]_{+} \cap\left[Q^{2}\right]_{-}$. In both cases let $\mu^{*}=(R \equiv$ $P \triangleright S)=b$. Thus $b \equiv P \triangleright S$ and the base points are on the common straight line $f_{1}\left(P^{1}\right)$, so $b \cap P \triangleright S=\emptyset$ (cf. Lemma 2.2(a)), whence $\lambda \cap \mu=\left\{P^{1}\right\}$. Of course $Q \in \mu$.

Proposition 2.4. If (\mathbf{V}) holds in NA then the following conditions are satisfied:
(a) The circle μ from Proposition 2.3 is uniquely determined.
(b) Let $\lambda^{*}=P \triangleright U, \alpha \cap \lambda=\left\{P^{1}\right\}, Q^{2} \in \alpha, \mu \cap \alpha=\left\{Q^{2}\right\}$ and $Q^{1} \in \mu$. If $\beta \cap \lambda=\left\{P^{2}\right\}, Q^{1} \in \beta, \nu \cap \beta=\left\{Q^{1}\right\}$ and $Q^{2} \in \nu$ then $\mu=\nu$. If $U=Q$ then $P \in \mu$ (see Figure 4).

Proof. From Propositions 2.3 and Lemma 2.2(b) item (a) is immediate. Therefore α, β, μ, ν exist and they are uniquely determined. Set $\{R\}=$ $\left[P^{1}\right]_{+} \cap\left[Q^{2}\right]_{-}$and $\{S\}=\left[Q^{1}\right]_{+} \cap\left[P^{2}\right]_{-}$. For some points $T \in \alpha$ and $V \in \beta$ we obtain $\alpha^{*}=R \triangleright T, \beta^{*}=S \triangleright V$, and the conditions $\alpha \cap \lambda=\left\{P^{1}\right\}$, $\beta \cap \lambda=\left\{P^{2}\right\}$ mean $R \triangleright T \equiv P \triangleright U \equiv S \triangleright V$. Since parallelity is symmetric, we have $S \triangleright V \equiv R \triangleright T$ and there exists a line $Q \triangleright X=\gamma^{*}$, where $\gamma \cap \beta=\left\{Q^{1}\right\}$ and $\gamma \cap \alpha=\left\{Q^{2}\right\}$. Therefore $\mu=\gamma=\nu$.

Now assume $U=Q$. Then we have $\alpha^{*}=R \triangleright T, \lambda^{*}=P \triangleright Q$ and $\mu^{*}=Q \triangleright Y$ for some $Y \in \mu \cap \Omega$. The base points P, R lie on the same straight line and so do R, Q. We obtain $P \triangleright Q \cap R \triangleright T=\emptyset$ and $R \triangleright T \cap Q \triangleright Y=\emptyset$. By (P2) and Lemma 2.2(b) we get $Q \triangleright P \equiv P \triangleright Q \equiv R \triangleright T \equiv Q \triangleright Y$. Now
(P1) implies that $Q \triangleright P=Q \triangleright Y$, i.e. $P \in Q \triangleright Y=\mu^{*}$.

Fig. 4
Propositions 2.3 and 2.4(a) imply that for Veblenian NA, H(NA) satisfies (\mathbf{T}) with the range of P restricted to $\Omega_{1} \cup \Omega_{2}$. In order to extend this range to $\Omega_{1} \cup \Omega_{2} \cup\{Z\}=[Z]_{+} \cup[Z]_{-}$we have to require
(H5) For every $[S, T]$ and $R \notin[S, T]$ there exists a unique $[U, V]$ such that $R \in[U, V]$ and $[S, T] \cap[U, V]=\{Z\}$.
So-called classical models in any geometry are constructed "over a field". Some non-classical models are usually connected with algebraic structures which are weaker than fields. However, even for such weaker structures we often use a field as a tool. In a nearaffine plane over a field every proper line is given by an equation $(x-p)(y-q)=r$. If the field is pseudoordered, then this equation may be modified: if $-r$ is positive, then we put $(f(x)-p)(y-q)=r(c f .[4$, p. 348] $)$.

Example 2.1. Consider a Moulton nearaffine plane, i.e.

$$
f(x)= \begin{cases}x & \text { for } x \geq 0 \\ k x & \text { for } x \leq 0\end{cases}
$$

(cf. [4, p. 355]) using the field of rational numbers. Then proper lines are given in the following form:

$$
Q \triangleright S=\{(p, q)\} \cup\left\{(x, y) ; r=\left\{\begin{array}{ll}
(x-p)(y-q) & \text { for } x \geq 0 \\
(k x-p)(y-q) & \text { for } x \leq 0
\end{array}\right\}\right.
$$

for some fixed k, where $0<k \neq 1$. This nearaffine plane extends to a hyperbola structure [4, Corollary 3.3, p. 359]. But the Veblen condition does not hold in this case. Indeed, let $k=2, P=(1,0), Q=(1,6), R=(1,2)$, $S=(0,2)$. We have

$$
P \triangleright S=\{(1,0)\} \cup\{(x, y)\} ;(x-1) y=-2\}
$$

$$
\begin{gathered}
Q \triangleright S=\{(1,6)\} \cup\left\{(x, y) ; 4=\left\{\begin{array}{ll}
(x-1)(y-6) & \text { for } x \geq 0 \\
(2 x-1)(y-6) & \text { for } x \leq 0
\end{array}\right\}\right. \\
(R \equiv Q \triangleright S)=\{(1,2)\} \cup\left\{(x, y) ; 4=\left\{\begin{array}{ll}
(x-1)(y-2) & \text { for } x \geq 0 \\
(2 x-1)(y-2) & \text { for } x \leq 0
\end{array}\right\} .\right.
\end{gathered}
$$

Therefore $P \triangleright S \cap(R \equiv Q \triangleright S)=\emptyset$. This example shows that nearaffine planes which do not satisfy the Veblen condition may extend to hyperbola structures. But they cannot extend to Minkowski planes (cf. [6, p. 124]). Note that $P \triangleright S \not \equiv(R \equiv Q \triangleright S)$ (see Lemma 2.2(b)).

We shall show that the Veblen condition is an essential assumption in Proposition 2.4. Let $\lambda, \alpha, \mu, \beta, \nu$ be circles given by the following equations:

$$
\begin{gathered}
\lambda:(x-1) y=-2, \quad \alpha:(x-1)(y-1)=-2, \\
\mu:(x+1)(y-1)=-2, \quad \beta:(x+1) y=-2, \\
\nu: 4= \begin{cases}(x+1)(y-1) & \text { for } x \geq 0 \\
(2 x+1)(y-1) & \text { for } x \leq 0 .\end{cases}
\end{gathered}
$$

Set $P=(1,0), Q=(1,1)$. Then $\lambda \cap \alpha=\left\{P^{1}\right\}, Q^{2} \in \alpha, \alpha \cap \mu=\left\{Q^{2}\right\}$, $Q^{1} \in \mu, \lambda \cap \beta=\left\{P^{2}\right\}, Q^{1} \in \beta, \beta \cap \nu=\left\{Q^{1}\right\}, Q^{2} \in \nu$ and $\mu \neq \nu$.

For λ^{*} with base point P and ν^{*} with base point Q we have $Q \in \lambda$ but $P \notin \nu$.

Example 2.2. The field $\mathbb{Q}(\sqrt{2})=\{p+q \sqrt{2} ; p, q \in \mathbb{Q}\}$ is pseudo-ordered if we declare that $p+q \sqrt{2}$ is positive if $p^{2}-2 q^{2} \succ 0$. We define $f\left(x_{1}+x_{2} \sqrt{2}\right)=$ $x_{1}-x_{2} \sqrt{2}$. Then proper lines are given by

$$
\begin{aligned}
\left(x_{1}+x_{2} \sqrt{2}-\left(p_{1}+p_{2} \sqrt{2}\right)\right)\left(y_{1}+y_{2} \sqrt{2}\right. & \left.-\left(q_{1}+q_{2} \sqrt{2}\right)\right) \\
& =r_{1}+r_{2} \sqrt{2} \quad \text { for } r_{1}^{2}-2 r_{2}^{2} \succ 0
\end{aligned}
$$

and

$$
\begin{aligned}
\left(x_{1}-x_{2} \sqrt{2}-\left(p_{1}+p_{2} \sqrt{2}\right)\right)\left(y_{1}+y_{2} \sqrt{2}\right. & \left.-\left(q_{1}+q_{2} \sqrt{2}\right)\right) \\
& =r_{1}+r_{2} \sqrt{2} \quad \text { for } r_{1}^{2}-2 r_{2}^{2} \prec 0 .
\end{aligned}
$$

One can easily prove that this plane satisfies Desargues' postulates (D1), (D2) (cf. [1, p. 72], [3, p. 339]). Therefore it is a translation plane. By Proposition 2.1, every translation extends to a translation of some hyperbola structure.

References

[1] J. André, On finite non-commutative affine spaces, in: M. Hall and J. H. von Lint (eds.), Combinatorics, Part I, Math. Centre Tracts 55, 1974, 60-107.
[2] -, Some new results on incidence structures, in: Atti dei Convegni Lincei 17, Colloquio Internazionale sulle teorie combinatori II, 1976, 201-222.
[3] K. Cudna-Lasecka and J. Jakóbowski, Central automorphisms of veblenian nearaffine planes, Bull. Polish Acad. Sci. Math. 53 (2005), 337-347.
[4] J. Jakóbowski, Nearaffine planes related to pseudo-ordered fields, ibid. 50 (2002), 345-360.
[5] N. Percsy, Finite Minkowski planes in which every circle-symmetry is an automorphism, Geom. Dedicata 10 (1981), 269-282.
[6] H. A. Wilbrink, Finite Minkowski planes, ibid. 12 (1982), 119-129.
[7] -, Nearaffine planes, ibid. 12 (1982), 53-62.
Kinga Cudna-Salmanowicz and Jan Jakóbowski
Faculty of Mathematics and Informatics
University of Warmia and Mazury in Olsztyn
Żołnierska 14
10-561 Olsztyn, Poland
E-mail: salmanowicz@matman.uwm.edu.pl
jjakob@matman.uwm.edu.pl

[^0]: 2000 Mathematics Subject Classification: 51A15, 51A45, 51A30, 51A35.
 Key words and phrases: affine plane, Desargues postulate, hyperbola structure, nearaffine plane, Veblen condition.

