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Summary. J. Andre constructed a skewaffine structure as a group space of a normally
transitive group. In this paper his construction is used to describe the structure of the set
of circles not passing through a point of a Laguerre plane. Sufficient conditions to ensure
that this structure is a skewaffine plane are given.

Introduction. The derived affine plane associated with a point p of a
Laguerre plane consists of all points nonparallel to p and, as lines, all circles
passing through p (extended by all parallel classes not passing through p).
A natural question is to characterize the structure of the set of circles not
passing through p by some linear geometry.

In the wide class of noncommutative (in general) linear structures con-
structed by J. Andre (cf. [1]) there are skewaffine planes which are good
candidates for obtaining the characterization we are looking for. One of the
classical examples of a skewaffine plane is the set of circles of the Euclidean
plane with centers as basepoints (cf. [1]). Under weak conditions Wilbrink
(cf. [12]) constructed, at a fixed point of a Minkowski plane, a skewaffine
plane such that any straight line intersects any nonparallel line in exactly
one point. This is known as a residual nearaffine plane. In the known ex-
amples (circles and hyperbolas) the construction is based on the observation
that any circle (resp. hyperbola) has exactly one center which can be taken
as the basepoint of the line corresponding to a given conic. This center is
the image of our point p in the symmetry with respect to the circle. In the
case of Laguerre planes this construction cannot be used, since the image
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of the point p in the symmetry is parallel to p and the symmetry does not
distinguish any point which could be taken as a basepoint. It seems natural
to investigate a symmetry with two pointwise fixed generators. However, two
fixed generators do not define a symmetry of a Laguerre plane. To make the
construction uniquely determined we fix an invariant pencil (p, K) of circles
tangent at p. The basepoint of a line corresponding to a circle (which does
not pass through p) is obtained as the point of tangency of the circle with
the unique circle of the pencil (p, K). In contrast to Mébius and Minkowski
planes, the basepoints belong to the corresponding circles, moreover, the
residual skewaffine plane is not determined by the point p alone, but by the
pencil (p, K).

A large class of regular skewaffine planes was given in [1], [10] as the group
space V(G) of a normally transitive group G. In such skewaffine planes a
line is obtained as the union of the basepoint and the orbit of another point
with respect to the stabilizer of the basepoint.

The starting point of our paper is a group G of automorphisms of a La-
guerre plane such that V(G) contains the set of circles not passing through
p as lines. The group G fixes points parallel to p and the pencil (p, K).
Minimal conditions for the group G are transitivity (call it (Al)) and cir-
cular transitivity for some circle of the pencil (p, K') (call it (A2)). The last
axiom, (A3), is the condition that for any L € C with p ¢ L there exists
exactly one M € (p, K) tangent to L. It guarantees that each circle not
passing through p corresponds to some line of V(G). We show that under
axioms (A1)-(A3) the group G contains L-translations and L-strains fixing
the pencil (p, K). This group is the subdirect product of the normal sub-
group of [L-translations and an arbitrary subgroup of LL-strains with a fixed
center (cf. Theorem 3.2). We give an example of a nonovoidal Laguerre plane
which satisfies our axioms for some pencil (p, K) (cf. Remark 2.2). Miquelian
Laguerre planes of characteristic distinct from 2 satisfy the axioms for any
pencil (cf. Remark 2.1).

We use skewafline planes to get a characterization of tangency in La-
guerre planes. We obtain a condition determining whether a circle through
two points tangent to a circle can be constructed (cf. Theorem 4.2). As
an application we also show that the tangency points of the circles of
pencils (p, K) and (g, z), where ¢ is parallel to p, form a circle (cf. The-
orem 4.1).

Acknowledgements. The author wishes to thank the reviewer for

many helpful suggestions.

1. Notations and basic definitions. A Laguerre plane is a structure
L = (P,C,~), where P is a set of points denoted by small Latin letters,
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C c 2P is a set of circles denoted by capital Latin letters, and ~ is an
equivalence relation on P called parallelity (cf., for example, [4]).

(We use the notation ~ to avoid confusion which would result from the
use of the common notation “||” for the parallelity of points of a Laguerre
plane and of lines on a skewaffine plane.)

The equivalence classes of the relation ~, called generators, are denoted
by capital Latin letters. The following conditions must be satisfied:

(1) Three pairwise nonparallel points are joined by a unique circle.

(2) For every circle K and any two nonparallel points p € K, q ¢ K
there is precisely one circle L passing through ¢ which touches K at
p (i.e. KNL={p}).

(3) For any point p and circle K there exists exactly one point ¢ such
that p~qgand q € K.

(4) There exists a circle containing at least three points, but not all
points.

The unique generator containing the point p is denoted by p. If a, b, c are
pairwise nonparallel points, the unique circle containing them is denoted by
(a,b,c)°. The circle tangent to a circle K and passing through points p, g
(p € K, q ¢ K, p~ q)is denoted by (p, K,q)°. If p € K, the symbol
(p, K) stands for the pencil of circles tangent to K at the point p. If z,y
are nonparallel, then the set of circles containing x,y is called the pencil of
circles with vertices x,y and is denoted by (z, y). For a point « and a circle K
the unique point of K parallel to x (which exists by (3)) is denoted by =K.

The derived plane at a point p of a Laguerre plane L, denoted by A,,, con-
sists of all points not parallel to p and, as lines, all circles passing through p
(excluding p) and all generators not passing through p. This is an affine
plane.

An automorphism of a Laguerre plane is a permutation of the set of
points which maps circles to circles (and generators to generators). An au-
tomorphism ¢ is called central if there exists a point p such that ¢ induces
a central collineation of Ap, the projective extension of the derived affine
plane A,

An L-translation is a central automorphism of a Laguerre plane L. which
fixes the points of p and induces a translation of A, for some point p. The
group of translations which fix the circles of a pencil (p, K) (respectively the
family of generators G) is denoted by T(p, K) (resp. T(p,G)) (cf. [6]).

An LL-strain with respect to a generator is a central automorphism of
L which fixes the points of some generator p and the circles of some pencil
(q, M) (p » q). The group of all L-strains fixing the points of p and the circles
of the pencil (g, M) is denoted by A(p, ¢, M). An involutory automorphism
which fixes pointwise two generators X, Y and a circle M (not pointwise) is
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called a Laguerre symmetry and denoted by Sxy.ar (Sx,y.m € A(D,q, M)
forpe X, qe€Y).

A group of central automorphisms is called circular transitive if the ex-
tension to Kp of its restriction to A, is linear transitive, i.e. is transitive on
any line passing through the center. A group of automorphisms of L is called
(p, K)-transitive (resp. p-transitive) if it contains a circular transitive group
T(p, K) (resp. T(p,G), cf. [8]). A group of automorphisms of L is called
(P, {(q, M ))-transitive if it contains a circular transitive group A(p, q, M).

A skewaffine space (cf. [1]) is an incidence structure S = (X, L, ||), where
X is a nonempty set of points, denoted by small Latin letters, and

Ui {(z,y) € X* | oy} — 2%

is a function. Sets of the form x Ly (z # y) are called lines. They will also
be denoted by capital Latin letters. The symbol || denotes an equivalence
relation among lines. The following axioms are assumed:

(L) z,y ez Uy,

(L2) z€ xUy\ {z} implies x Uy = x U z (exchange condition),

(P1) given any line L and any point z there exists exactly one line x LIy
parallel to L (Euclid’s aziom),

(P2) Vo, 2, y,y : (x #y, 2’ #y AeUy | 2'UY) - yUz |y U
(symmetry condition),

(T) if z,y, z are pairwise different points such that z Uy || 2’ U/, then
there exists a point 2z’ such that x Uz || 2’ Uz and yU z || v/ U 2/
(Tamaschke’s condition).

If we assume x = 2’ in axiom (T), then the axiom is called the affine
Veblen condition (V).
We will consider additional conditions for a skewaffine space:

(Pgm) Va,y,z € X, {x,y,2}» Jw € X with zUy || zUw and zUz || yUw,

(Des) Vu,z,y,z,2" € X, {u,z,y, 2} 2’ € udz\{u} — Fy' € uly\{u},
Zeulz\{u} withzUy || 2'Uy, zUz || 2"UZ, yUz |y U7,

(Pap) Vu,z,y,z,2" € X, {u,z,2'}x withulUz =uly =ulz —
Jy, 2 € X withulla' = ully =ulz and U2’ || U2/, 2Uy ||
yUz, yua | zuy.

A skewaffine plane satisfying (Des) resp. (Pap) is called desarguesian
resp. pappian.

If a line L has the form zLly then x is called a basepoint of L. It is a simple
consequence of the axioms that any line has either exactly one basepoint or
all its points are basepoints (cf. [10]). A line such that all of its points are
basepoints is called a straight line. A line which is not straight (and hence
has exactly one basepoint) is called a proper line.
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A group G acting on a set X is called normally transitive if G is transitive
and G, \ Gy # 0 for any z,y € X with z # y (G, denotes the stabilizer
of the point x with respect to G). For any group acting on a set X one can
construct a group space V(G) = (X, U, ||) with

erlly= Gx{a:,y} = {l‘} U Gy,
e L || L' if there exists g € G such that gL = L' for any lines L, L.

The following theorem will be the basis of our construction ([1, p. 5], cf.
also [10, Proposition 6.5, p. 94]).

THEOREM 1.1. The group space V(G) with respect to a normally tran-
sitive group G is a desarguesian skewaffine space.

A more detailed discussion of the properties of the group space V(QG)
can be found in [10].

ExAMPLE 1.1. Let Ay = (P, L, €) be an affine plane over a Euclidean
field F, and Lo := {Lom | m € F}, where Lo, :=F x m = {(z,y) € F? |
y = m}. The set of affine transformations

G = {¢rap | k,a,b e F, k # 0},
where
Sok,a,b . P — P, (pk7a7b(x7 y) = (kx + a’ k2y + b),

is a subgroup of AutAr and G(Ly) = Lo. A transformation ¢, is a
translation for £ = 1 and a strain for k& # 1.

For any point (a,b) the stabilizer G, equals {pg q—kap—k2 | k € F*}.
For the group space V(G) = (P, L, ||) we have

(11)  (a,b)U(zo,50) == {(a,0)} U{(z,y) | y = r(z — a)* + b},
where r = (yo — b)/(x¢ — a)? for 29 # a and

(1.2)  (a,b) U (z0,50) == {(a,0)} U{(z,y) | & = 20, y = b+ k*(y0 — )}

for g = a. The class of parallel parabolas of equation (1.1) is determined by
the coefficient r. The class of parallel half-lines of equation (1.2) is determined
by the sign of yg — b. The set of straight lines is Lg.

The construction can be generalized for any affine plane over a field of
characteristic different from 2. The parallel classes of the sets of equation
(1.2) are associated with the classes of squares of the field.

If the affine plane Ay is the derived plane at a point p of a miquelian
Laguerre plane of characteristic different from 2, the lines of V(G) are asso-
ciated with the circles of the Laguerre plane and subsets of the generators.
The straight lines are associated with the line of one pencil of circles with
vertex p.
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2. Residual skewaffine plane. Let (p, K) be a fixed pencil of circles
of a Laguerre plane L = (P,C, ~) and A(p, K) the group of automorphisms
of L which fix the pencil (p, K) (not pointwise) and all points parallel to p.
We assume that A(p, K) satisfies the following conditions:

(A1) A(p, K) is transitive on the set P \ P.
(A2) For any z,y € K \ {p,r} there exists 0 € A(p, K), with o(z) = y.

From (A1), (A2) we obtain a generalization of (A2).

COROLLARY 2.1. For any z,y € M \ {p,r} where M € (p, K) there
exists o € A(p, K), such that o(z) =y.

DEFINITION 2.1. The residual skewaffine plane with respect to (p, K)
(written SA(p, K)) is the group space V(A(p, K)) = (P \p,U, ||).

By the definition A(p, K) is normally transitive and according to Theo-
rem 2.1 we get

THEOREM 2.1. Suppose (p, K) is a fized pencil of a Laguerre plane . =
(P,C,~) and conditions (A1), (A2) are satisfied. Then the residual skewaffine
plane SA(p, K) is a skewaffine desarguesian space.

In the following let (p, K) be a fixed pencil such that the corresponding
group A(p, K) satisfies axioms (A1), (A2).

PROPOSITION 2.1.

(a) If 7 ~ x, then r Ux = M \ p, where M 1is a circle of (p,K) or a
circle tangent at r to some circle of (p, K).

(b) If r —x, thenrUx CT.

Proof. (a) If r ¢ K, then consider the circle L = (p, K,r)°. For x € L,
by Corollary 2.1, L\ {p} = A(p, K),z. In the case © ¢ L we define M =
(r,L,x)°, 2/ = xL and y € M\ P, y # r. The circle M is invariant with
respect to the group A(p, K), since it is tangent to L at r and has a fixed
point at p. By Corollary 2.1 there exists 8 € A(p, K), such that §(z') = yL.
Hence ((z) = y.

(b) This follows directly from the definition. m

DEFINITION 2.2. The line z Uy of SA(p, K) is called special if x ~ y.

From the proof of Proposition 2.1 we get a further generalization of ax-
iom (A2).

COROLLARY 2.2. Let r ¢ P and suppose M is invariant with respect to
A(p, K),. Then for any x,y € M with x,y # pM,r there exists 0 € A(p, K),
such that o(x) =y (i.e. A(p, K), is circular transitive for any r ¢ p).

PROPOSITION 2.2. The lines determined by the circles of the pencil
(p, K) are straight lines.
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Proof. If x,y are distinct points of a circle L € (p, K), then A(p, K),(y)
= L\ {p} by Corollary 2.2. m

The group A(p, K) fixes the generator p pointwise. Hence by the defini-
tion of parallelity we get:

PROPOSITION 2.3. For any M,N € C if M \p || N\ p, then pM = pN.

Propositions 2.1-2.3 provide a representation of the basic notions of a
residual skewaffine plane of a Laguerre plane. However, this representation
is not complete. The construction does not assume that any circle of the
Laguerre plane corresponds to some line of the skewaffine plane. Similarly,
the statements converse to Propositions 2.2 and 2.3 do not hold (as an ex-
ample, take any miquelian Laguerre plane of characteristic 2). To make the
representation more complete the following axiom will be needed throughout
the rest of the paper.

(A3) For any circle M such that p ¢ M there exists exactly one circle
L € (p, K) tangent to M.

PROPOSITION 2.4. If M is a circle such that p ¢ M, then M\p = x Uy,
where T is the point of tangency of M with the unique circle of the pencil
(p, K) and y is any point of M different from x and pM.

Proof. According to (A3) there exists exactly one circle L € (p, K) tan-
gent to M. Let = be the point of tangency. The circle L is invariant with
respect to A(p, K), since L € (p, K) and x # p is fixed. Hence M, as a circle
tangent to an invariant circle and containing a fixed point pM, is invariant
with respect to A(p, K),. The assertion follows from Corollary 2.2. m

According to Proposition 2.4 in the case x Uy = M \ p the basepoint z
of the line x Ly will also be called the basepoint of the circle M.

PROPOSITION 2.5. If M \ P is a straight line, then M € (p, K).

Proof. Assume that M \p = z Uy = y U x for some distinct points
x,y € M\pand M ¢ (p, K). Then the subgroup of A(p, K) fixing the circle
M is transitive on its points, contrary to (A3). m

PROPOSITION 2.6. If pM = pL with p ¢ M, L, then M\ | L\P.

Proof. From Proposition 2.4, M \ p = z Uy where = is the point of
tangency of M with some M’ € (p, K) and L\P = 2zt where z is the point
of tangency of L with some L' € (p, K). By (A1) there exists o € A(p, K)
such that o(x) = 2. We obtain ¢(M') = L' and hence o(M) = L by the
touching axiom. =

REMARK 2.1. In the case of miquelian planes of characteristic different
from 2 any pencil (p, K) satisfies (A3) and the group A(p, K) has properties
(A1) and (A2). Additionally, V(A(p, K)) satisfies (Papp) and (Pgm).
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REMARK 2.2. Examples of nonmiquelian (even nonovoidal) planes sat-
isfying (A1)-(A3) may be obtained if in the construction in [2] we put
f@) = la” (r > 1) and p = (00,0), K = {(2,0) | 2 € K} U {(00,0)}.
The transformations of the form 2/ = kz, v/ = |k|"y (identity for points
(00, a)) form the stabilizer of the point (0,0).

REMARK 2.3. Axiom (A3) is satisfied for any pencil (p, K) of a topologi-
cal Laguerre plane of dimension 2 and 4 (this is a special case of the solution
of the Apollonius problem for such planes, cf. [11]).

3. A characterization of the group A(p, K)

THEOREM 3.1. For any point r ¢ P the stabilizer A(p,K), is a
(P, (r, L))-transitive group of L-strains A(p,r,L) containing Sip. K, where
L=(p,K,7r)°.

Proof. As in the proof of Proposition 2.4, for any ¢ € A(p, K), and
M € (r,L) we have ¢(M) = M. The (p, (r, L))-transitivity of the group
A(p, K) follows from Corollary 2.2. To obtain Sy x consider an arbitrary
x ¢ LUTUTD and the circles M = (r,L,z)°, N = (p,L,x)°. According
to (A3) these circles are not tangent, so there exists a point y with y # =,
y € M N N. By (p, (r, L))-transitivity there exists ¢ € A(p, K), such that
Y(z) =y. Hence ¥)(N) = N and ¢(y) = x. This shows that ) = Sz ;.. =

PROPOSITION 3.1. The group A(p, K) is (p, K)-transitive.

Proof. Let x,y € K be such that #{x,y,p} = 3. Consider an arbitrary
circle M such that MNK = {z,y} and let r be the basepoint of M. According
to Theorem 3.1 the symmetries Sy 5. and Sz 5. ;¢ exist and the superposition
Srp:i © Sz p:k 1s a translation which maps z to y. =

From the proof of Proposition 3.1 we obtain:

COROLLARY 3.1. For any distinct points x,y such that x,y # p, T,y €
R € (p, K) there exists r € R such that Sy p.i(z) = y.

LEMMA 3.1. Any fized point free (outside D) automorphism from A(p, K)
1s a translation.

Proof. Suppose there exists = such that x « ¢(x) for some ¢ satisfying
the assumptions of the lemma. Then ¢(x) » ¢?(x). If  # ¢*(z), then the
automorphism ¢ fixes the circle M = (z, ¢(z), $*(x))°. If z = ¢?(x), then ¢
fixes any circle M € (x, ¢(x)). Hence p € M, because otherwise the basepoint
of the circle M is fixed. This means that ¢ is a translation with the invariant
pencil (p, M). In the case x ~ ¢(z) the assumption that there exists y such
y ~ ¢(y) implies that the circle N = (y, ¢(y), ¢*(y))° is invariant and zN
is fixed, a contradiction. Thus in this case ¢ is a translation which fixes all
generators. m
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PROPOSITION 3.2. The group A(p, K) is p-transitive.

Proof. Let x ~ y, x # y and r » x. Suppose ¢ € A(p,K),, z = ¢(x),
2 = Spri(z) and M = (y, 2z, 2')°. Because Sp7.x (M) = M the basepoint s
of the circle M is parallel to r. By Theorem 3.1 there exists ¢ € A(p, K)s
such that ¢(z) = y, so that 1 o ¢(z) = y. The automorphism ) o ¢ fixes (not
pointwise) two generators distinct from p. Additionally it is not an L-strain
so it is fixed point free outside p. By Lemma 3.1, 1) 0 ¢ is a translation which
maps £ to y. m

The group of translations contained in A(p, K) will be denoted by
T(p, 4).

THEOREM 3.2. Elements of the group A(p, K) without fized points (out-
side P) are either translations in the direction of any L (p € L) or transla-
tions which fix generators. The group T(p, A) is transitive on the set P\ P
and T(p, A) < A(p, K). Elements of A(p, K) with fized points are LL-strains
and A(p, K) ~ T(p, A) x A(p, K), for any r ¢ P.

Proof. The first part of the theorem follows from Proposition 3.1, Propo-
sition 3.2, and [7, Theorem 4.19, p. 100]. For any L-strain ¢ and a trans-
lation 1 the superposition ¢ o 1) o ¢~ ! is a translation. Indeed, otherwise
r=¢oto¢ !(z) for some x ¢ p and ¢~ !(z) is a fixed point of the trans-
lation 1, a contradiction. m

COROLLARY 3.2. The group A(p,K) is of type 1H in the classifica-
tion [8] of Laguerre planes.

COROLLARY 3.3. The group space V(A(p, K)) satisfies condition (Pgm).

Proof. The group T(p, A) is commutative by [7, Theorem 4.14, p. 97]
and transitive by [7, Theorem 4.19, p. 100]. Hence condition 5 in [10, Propo-
sition 6.5, p. 94| is satisfied. =

COROLLARY 3.4. Lines A, B of a residual skewaffine plane are parallel
iff there exists a translation ¢ such that ¢p(A) = B.

4. Some properties of residual skewaffine planes and their ap-
plications to Laguerre planes

PROPOSITION 4.1. There are no three circles L, M, N that are pairwise
tangent at different points with L € (p, K) and M NN C P.

Proof. Suppose the circles M, N are tangent to the circle L of the pencil
(p, K) at points z,y respectively and M, N have a common point on the
generator p. By Corollary 3.1 there exists r € L \ P such that Sz 5.k (z) = y.
We obtain Sy p.x (M) = N and hence "M = rN is another common point
of M/,N. m
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COROLLARY 4.1. Parallel lines of SA(p, K) determined by circles with
basepoints on a straight line determined by a circle have a common point.

PROPOSITION 4.2. Proper parallel lines of SA(p, K) determined by cir-
cles are disjoint iff their basepoints are distinct and parallel.

Proof. <= Let m,n be distinct and parallel basepoints of circles M, N
and suppose M, N have a common point on the generator p. A translation
a € T(p,G) such that a(m) = n maps M onto N, hence (M \p)N(N\p) = 0.

= Assume the circles M, N are tangent at a point ¢ € p and their
basepoints m,n are not parallel. Define L = (p, K,m)°, z = nL and M’ =
(2,L,q)°. By Corollary 4.1, M’ is not tangent to M. This contradicts the
part of the proposition already proved. m

PROPOSITION 4.3. Suppose that the basepoints of parallel lines A, A’ be-
long to a straight line B determined by a circle. If a straight line C' determined
by a circle intersects A then it intersects A’.

Proof. Let x,x’ be the basepoints of A and A’, respectively. Let also y
be one of the common points of A, C. There exists a translation 7 € T (p, K)
such that 7(x) = 2/. We obtain 7(4) = A’ and the point ¥/ = 7(y) is a
common point of A',C.

LEMMA 4.1. Let circles P,Q,R be tangent to a circle L € (p,K) at
pairwise distinct points. If QQ has common points with P, R, then P, R have
a common point.

Proof. If two of the circles P, @, R determine parallel lines, the assertion
follows from Propositions 4.1 and 4.3. Assume 2z € PNQ, vy € QN R
and z,y ¢ p. If Q € (p, K), consider a translation 7 € T(p, K) such that
7(x) =y, and the circle P’ = 7(P). We obtain y € PN R and P’ is tangent
to L. Hence, by the Veblen condition (V), the circles P, R have a common
point. In the case QN L = {r} # {p} instead of the translation 7 we use the
L-strain ¢ € A(p, K, r) such that ¢(z) = y, and the assertion follows by the
Veblen condition or Proposition 4.3. =

DEFINITION 4.1. Let L be a circle of the pencil (p, K). We say that
points a,b & L are equivalent (under L), and write a =, b, if |[PNQ| > 1 for
any circles P, Q) tangent to L and passing through a and b, respectively.

Lemma 4.1 gives the following.

PROPOSITION 4.4. For any circle L € (p, K) the relation =y, is an equiv-
alence relation on the set P\ L.

PROPOSITION 4.5. For any points a,b € P\ L, a =, b iff there exist cir-

cles P,Q tangent to L at distinct points and passing through a,b respectively
such that [PNQ| > 1.
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The set of points of a special line can be described by the relation = as
follows:

PROPOSITION 4.6. Let x Uy be a special line, and let L = (p, K,x)°,
z~y, z#x. Thenz € x Uy iff 2= y.

Proof. = Assume y' € (p, K,y)°, M = (z,L,y')° for some 3/ # p,y. By
the definition of z Ll y there exists ¢ € A(p, K), such that o(y) = z. Then
o(M)=M.1f 2/ =o(y'), we obtain y =1 v/ =1, 2/ =, 2.

< Let y € N € (p,K) and M be a circle passing through z tangent to
L at a point different from p. Since z =, y, there exists a point r such that
r € M NN. Define P= (z,L,r)° and Q = (p, K, z)°. Then P and @ have
a common point s because r =p z. An L-strain ¢ € A(p, K, x) such that
¢(r) =smaps y to z. m

PROPOSITION 4.7. If x ~ p, © # p, then for any point y ¢ L, x = y iff
there exist exactly two circles M, M’ tangent to L such that x,y € M, M’.

Proof. 1t is sufficient to prove =. Let N be any circle tangent to L
such that « € N and P = (p,L,y)°. From x =, y it follows that there
exists z € PN N. Then M = 7(N) where 7 € T(p,K), 7(2) = y and
M' = Sp 5,k (M) # M. Suppose, contrary to our claim, that there is a circle
M" through z,y, tangent to L and distinct from M, M’. Denote by r, 7/, r"”
the basepoints of M, M’ M"| respectively. There exists ¢ € A(p, K),» with
oé(r) = r’. We have ¢(M") = M", (M) = M' and ¢(y) # x,y. Hence
x,y,d(y) are three distinct points of two distinct circles M’ M”, a contra-
diction. =

LEMMA 4.2. For any q parallel to p and different from p there exists
exactly one ¢’ parallel to p with the property:

Va,y ((x =y, p~x,y) Ag € (z(p, K,2)°y)° — ¢ € (v, (0, K,y)%, 2)°).
Proof. The assertion is a consequence of axiom (P2). If the point ¢ de-
termines the class of lines parallel to a line x Ly, then ¢’ determines the class
of lines parallel to y Ll x. =

THEOREM 4.1. Let q # p, q ~ p, © ~ p. Then the points of tangency
of circles of the pencil (p, K) with circles of the pencil (x,q) form a circle
(without a point of the generator p).

Proof. Let L = (p, K, x)° and M = (z, L, q)°. The point z is the point of
tangency of the circles L and M of the pencils (p, K) and (g, x), respectively.
Consider an arbitrary circle N € (q,z), N # M. By axiom (A3), there
exists exactly one circle P € (p, K) tangent to N at some point y. The circle
Q = (z,L,y)° is fixed by the group A(p, K),. According to Corollary 2.2,
any point of () distinct from x and p@ is the image of y under some o €
A(p, K),. Hence it is a point of tangency of circles of the pencils (p, K) and
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(pQ, x), respectively. It follows that the circle @) satisfies the assertion of the
theorem. m

COROLLARY 4.2. The circle Q) determined in Theorem 4.1 passes through
the point ¢’ from Lemma 4.2.

In the case of miquelian Laguerre planes of characteristic different from 2,
the point p in Theorem 4.1 can be chosen arbitrarily by Remark 2.1. For such
planes we also obtain a condition determining whether a circle through two
points tangent to a circle can be constructed.

THEOREM 4.2. Let x,y be points and L a circle with x ~ vy, z,y ¢ L of
a miquelian Laguerre plane of characteristic distinct from 2. The following
conditions are equivalent:

(1) There exist exactly two circles through x,y tangent to L.

(2) Any circle through x tangent to L intersects any circle through y
tangent to L.

(3) There exist two intersecting circles tangent to L at distinct points
containing x,y, respectively.

Proof. According to Remark 2.1 the assertion follows by Definition 4.1,
Proposition 4.5 and Proposition 4.7 applied to the pencil (zL,L). m

REMARK 4.1. In miquelian Laguerre planes over a field F of character-
istic different from 2 the conditions of Theorem 4.2 define the relation “=;”
for any circle L. In an analytic representation of such planes given in [9], for
a circle K = {(z,0) | z € F} U{(c0)}, points (a1,b1) and (ag,bs2) are equiva-
lent with respect to K iff by € b1F2. In this case the classes of parallelity of
special lines correspond to the classes of squares of F.

REMARK 4.2. If F is quadratically closed, then any special line coincides
with a generator and is a straight line. In this case SA(p, K) contains two
families of straight lines like a nearaffine residual plane connected with a
Minkowski plane (cf. [12]). But the class of straight lines determined by the
circles of the pencil (p, K) does not satisfy the condition of having exactly
one common point with other lines.
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