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tion of a Skewa�ne Stru
ture inLaguerre GeometrybyAndrzej MATRA�Presented by Jan RYCHLEWSKI
Summary. J. Andre 
onstru
ted a skewa�ne stru
ture as a group spa
e of a normallytransitive group. In this paper his 
onstru
tion is used to des
ribe the stru
ture of the setof 
ir
les not passing through a point of a Laguerre plane. Su�
ient 
onditions to ensurethat this stru
ture is a skewa�ne plane are given.Introdu
tion. The derived a�ne plane asso
iated with a point p of aLaguerre plane 
onsists of all points nonparallel to p and, as lines, all 
ir
lespassing through p (extended by all parallel 
lasses not passing through p).A natural question is to 
hara
terize the stru
ture of the set of 
ir
les notpassing through p by some linear geometry.In the wide 
lass of non
ommutative (in general) linear stru
tures 
on-stru
ted by J. Andre (
f. [1℄) there are skewa�ne planes whi
h are good
andidates for obtaining the 
hara
terization we are looking for. One of the
lassi
al examples of a skewa�ne plane is the set of 
ir
les of the Eu
lideanplane with 
enters as basepoints (
f. [1℄). Under weak 
onditions Wilbrink(
f. [12℄) 
onstru
ted, at a �xed point of a Minkowski plane, a skewa�neplane su
h that any straight line interse
ts any nonparallel line in exa
tlyone point. This is known as a residual neara�ne plane. In the known ex-amples (
ir
les and hyperbolas) the 
onstru
tion is based on the observationthat any 
ir
le (resp. hyperbola) has exa
tly one 
enter whi
h 
an be takenas the basepoint of the line 
orresponding to a given 
oni
. This 
enter isthe image of our point p in the symmetry with respe
t to the 
ir
le. In the
ase of Laguerre planes this 
onstru
tion 
annot be used, sin
e the image2000 Mathemati
s Subje
t Classi�
ation: Primary 51B20.Key words and phrases: miquelian Laguerre plane, symmetry axiom.[277℄
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of the point p in the symmetry is parallel to p and the symmetry does notdistinguish any point whi
h 
ould be taken as a basepoint. It seems naturalto investigate a symmetry with two pointwise �xed generators. However, two�xed generators do not de�ne a symmetry of a Laguerre plane. To make the
onstru
tion uniquely determined we �x an invariant pen
il 〈p,K〉 of 
ir
lestangent at p. The basepoint of a line 
orresponding to a 
ir
le (whi
h doesnot pass through p) is obtained as the point of tangen
y of the 
ir
le withthe unique 
ir
le of the pen
il 〈p,K〉. In 
ontrast to Möbius and Minkowskiplanes, the basepoints belong to the 
orresponding 
ir
les, moreover, theresidual skewa�ne plane is not determined by the point p alone, but by thepen
il 〈p,K〉.A large 
lass of regular skewa�ne planes was given in [1℄, [10℄ as the groupspa
e V(G) of a normally transitive group G. In su
h skewa�ne planes aline is obtained as the union of the basepoint and the orbit of another pointwith respe
t to the stabilizer of the basepoint.The starting point of our paper is a group G of automorphisms of a La-guerre plane su
h that V(G) 
ontains the set of 
ir
les not passing through
p as lines. The group G �xes points parallel to p and the pen
il 〈p,K〉.Minimal 
onditions for the group G are transitivity (
all it (A1)) and 
ir-
ular transitivity for some 
ir
le of the pen
il 〈p,K〉 (
all it (A2)). The lastaxiom, (A3), is the 
ondition that for any L ∈ C with p /∈ L there existsexa
tly one M ∈ 〈p,K〉 tangent to L. It guarantees that ea
h 
ir
le notpassing through p 
orresponds to some line of V(G). We show that underaxioms (A1)�(A3) the group G 
ontains L-translations and L-strains �xingthe pen
il 〈p,K〉. This group is the subdire
t produ
t of the normal sub-group of L-translations and an arbitrary subgroup of L-strains with a �xed
enter (
f. Theorem 3.2). We give an example of a nonovoidal Laguerre planewhi
h satis�es our axioms for some pen
il 〈p,K〉 (
f. Remark 2.2). MiquelianLaguerre planes of 
hara
teristi
 distin
t from 2 satisfy the axioms for anypen
il (
f. Remark 2.1).We use skewa�ne planes to get a 
hara
terization of tangen
y in La-guerre planes. We obtain a 
ondition determining whether a 
ir
le throughtwo points tangent to a 
ir
le 
an be 
onstru
ted (
f. Theorem 4.2). Asan appli
ation we also show that the tangen
y points of the 
ir
les ofpen
ils 〈p,K〉 and 〈q, x〉, where q is parallel to p, form a 
ir
le (
f. The-orem 4.1).A
knowledgements. The author wishes to thank the reviewer formany helpful suggestions.1. Notations and basi
 de�nitions. A Laguerre plane is a stru
ture
L = (P, C,∼), where P is a set of points denoted by small Latin letters,
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C ⊂ 2P is a set of 
ir
les denoted by 
apital Latin letters, and ∼ is anequivalen
e relation on P 
alled parallelity (
f., for example, [4℄).(We use the notation ∼ to avoid 
onfusion whi
h would result from theuse of the 
ommon notation �‖� for the parallelity of points of a Laguerreplane and of lines on a skewa�ne plane.)The equivalen
e 
lasses of the relation ∼, 
alled generators, are denotedby 
apital Latin letters. The following 
onditions must be satis�ed:(1) Three pairwise nonparallel points are joined by a unique 
ir
le.(2) For every 
ir
le K and any two nonparallel points p ∈ K, q /∈ Kthere is pre
isely one 
ir
le L passing through q whi
h tou
hes K at

p (i.e. K ∩ L = {p}).(3) For any point p and 
ir
le K there exists exa
tly one point q su
hthat p ∼ q and q ∈ K.(4) There exists a 
ir
le 
ontaining at least three points, but not allpoints.The unique generator 
ontaining the point p is denoted by p. If a, b, c arepairwise nonparallel points, the unique 
ir
le 
ontaining them is denoted by
(a, b, c)◦. The 
ir
le tangent to a 
ir
le K and passing through points p, q(p ∈ K, q /∈ K, p ≁ q) is denoted by (p,K, q)◦. If p ∈ K, the symbol
〈p,K〉 stands for the pen
il of 
ir
les tangent to K at the point p. If x, yare nonparallel, then the set of 
ir
les 
ontaining x, y is 
alled the pen
il of
ir
les with verti
es x, y and is denoted by 〈x, y〉. For a point x and a 
ir
le Kthe unique point of K parallel to x (whi
h exists by (3)) is denoted by xK.The derived plane at a point p of a Laguerre plane L, denoted by Ap, 
on-sists of all points not parallel to p and, as lines, all 
ir
les passing through p(ex
luding p) and all generators not passing through p. This is an a�neplane.An automorphism of a Laguerre plane is a permutation of the set ofpoints whi
h maps 
ir
les to 
ir
les (and generators to generators). An au-tomorphism φ is 
alled 
entral if there exists a point p su
h that φ indu
esa 
entral 
ollineation of Ap, the proje
tive extension of the derived a�neplane Ap.An L-translation is a 
entral automorphism of a Laguerre plane L whi
h�xes the points of p and indu
es a translation of Ap for some point p. Thegroup of translations whi
h �x the 
ir
les of a pen
il 〈p,K〉 (respe
tively thefamily of generators G) is denoted by T(p,K) (resp. T(p,G)) (
f. [6℄).An L-strain with respe
t to a generator is a 
entral automorphism of
L whi
h �xes the points of some generator p and the 
ir
les of some pen
il
〈q,M〉 (p ≁ q). The group of all L-strains �xing the points of p and the 
ir
lesof the pen
il 〈q,M〉 is denoted by ∆(p, q,M). An involutory automorphismwhi
h �xes pointwise two generators X,Y and a 
ir
le M (not pointwise) is
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alled a Laguerre symmetry and denoted by SX,Y ;M (SX,Y ;M ∈ ∆(p, q,M)for p ∈ X, q ∈ Y ).A group of 
entral automorphisms is 
alled 
ir
ular transitive if the ex-tension to Ap of its restri
tion to Ap is linear transitive, i.e. is transitive onany line passing through the 
enter. A group of automorphisms of L is 
alled
〈p,K〉-transitive (resp. p-transitive) if it 
ontains a 
ir
ular transitive group
T(p,K) (resp. T(p,G), 
f. [8℄). A group of automorphisms of L is 
alled
(p, 〈q,M〉)-transitive if it 
ontains a 
ir
ular transitive group ∆(p, q,M).A skewa�ne spa
e (
f. [1℄) is an in
iden
e stru
ture S = (X,⊔, ‖), where
X is a nonempty set of points, denoted by small Latin letters, and

⊔ : {(x, y) ∈ X2 | x 6= y} → 2Xis a fun
tion. Sets of the form x ⊔ y (x 6= y) are 
alled lines. They will alsobe denoted by 
apital Latin letters. The symbol ‖ denotes an equivalen
erelation among lines. The following axioms are assumed:(L1) x, y ∈ x ⊔ y,(L2) z ∈ x ⊔ y \ {x} implies x ⊔ y = x ⊔ z (ex
hange 
ondition),(P1) given any line L and any point x there exists exa
tly one line x⊔ yparallel to L (Eu
lid's axiom),(P2) ∀x, x′, y, y′ : (x 6= y, x′ 6= y′ ∧ x ⊔ y ‖ x′ ⊔ y′) → y ⊔ x ‖ y′ ⊔ x′(symmetry 
ondition),(T) if x, y, z are pairwise di�erent points su
h that x⊔ y ‖ x′ ⊔ y′, thenthere exists a point z′ su
h that x ⊔ z ‖ x′ ⊔ z′ and y ⊔ z ‖ y′ ⊔ z′(Tamas
hke's 
ondition).If we assume x = x′ in axiom (T), then the axiom is 
alled the a�neVeblen 
ondition (V).We will 
onsider additional 
onditions for a skewa�ne spa
e:(Pgm) ∀x, y, z ∈ X, {x, y, x} 6= ∃w ∈ X with x⊔y ‖ z⊔w and x⊔z ‖ y⊔w,(Des) ∀u, x, y, z, x′ ∈ X, {u, x, y, z} 6= x′ ∈ u⊔x\{u} → ∃y′ ∈ u⊔y\{u},
z′ ∈ u⊔ z \ {u} with x⊔ y ‖ x′ ⊔ y′, x⊔ z ‖ x′ ⊔ z′, y ⊔ z ‖ y′ ⊔ z′,(Pap) ∀u, x, y, z, x′ ∈ X, {u, x, x′} 6= with u ⊔ x = u ⊔ y = u ⊔ z →
∃y′, z′ ∈ X with u⊔x′ = u⊔y′ = u⊔z′ and x⊔x′ ‖ z⊔z′, x⊔y′ ‖
y ⊔ z′, y ⊔ x′ ‖ z ⊔ y′.A skewa�ne plane satisfying (Des) resp. (Pap) is 
alled desarguesianresp. pappian.If a line L has the form x⊔y then x is 
alled a basepoint of L. It is a simple
onsequen
e of the axioms that any line has either exa
tly one basepoint orall its points are basepoints (
f. [10℄). A line su
h that all of its points arebasepoints is 
alled a straight line. A line whi
h is not straight (and hen
ehas exa
tly one basepoint) is 
alled a proper line.
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A group G a
ting on a setX is 
alled normally transitive if G is transitiveand Gx \ Gy 6= ∅ for any x, y ∈ X with x 6= y (Gx denotes the stabilizerof the point x with respe
t to G). For any group a
ting on a set X one 
an
onstru
t a group spa
e V(G) = (X,⊔, ‖) with
• x ⊔ y = Gx{x, y} = {x} ∪ Gxy,
• L ‖ L′ if there exists g ∈ G su
h that gL = L′ for any lines L,L′.The following theorem will be the basis of our 
onstru
tion ([1, p. 5℄, 
f.also [10, Proposition 6.5, p. 94℄).Theorem 1.1. The group spa
e V(G) with respe
t to a normally tran-sitive group G is a desarguesian skewa�ne spa
e.A more detailed dis
ussion of the properties of the group spa
e V(G)
an be found in [10℄.
Example 1.1. Let AF = (P,L,∈) be an a�ne plane over a Eu
lidean�eld F, and L0 := {L0,m | m ∈ F}, where L0,m := F ×m = {(x, y) ∈ F

2 |
y = m}. The set of a�ne transformations

G := {ϕk,a,b | k, a, b ∈ F, k 6= 0},where
ϕk,a,b : P → P, ϕk,a,b(x, y) := (kx+ a, k2y + b),is a subgroup of Aut AF and G(L0) = L0. A transformation ϕk,a,b is atranslation for k = 1 and a strain for k 6= 1.For any point (a, b) the stabilizer G(a,b) equals {ϕk,a−ka,b−k2b | k ∈ F

∗}.For the group spa
e V(G) = (P,⊔, ‖) we have
(a, b) ⊔ (x0, y0) := {(a, b)} ∪ {(x, y) | y = r(x− a)2 + b},(1.1)where r = (y0 − b)/(x0 − a)2 for x0 6= a and

(a, b) ⊔ (x0, y0) := {(a, b)} ∪ {(x, y) | x = x0, y = b+ k2(y0 − b)}(1.2)for x0 = a. The 
lass of parallel parabolas of equation (1.1) is determined bythe 
oe�
ient r. The 
lass of parallel half-lines of equation (1.2) is determinedby the sign of y0 − b. The set of straight lines is L0.The 
onstru
tion 
an be generalized for any a�ne plane over a �eld of
hara
teristi
 di�erent from 2. The parallel 
lasses of the sets of equation(1.2) are asso
iated with the 
lasses of squares of the �eld.If the a�ne plane AF is the derived plane at a point p of a miquelianLaguerre plane of 
hara
teristi
 di�erent from 2, the lines of V(G) are asso-
iated with the 
ir
les of the Laguerre plane and subsets of the generators.The straight lines are asso
iated with the line of one pen
il of 
ir
les withvertex p.
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2. Residual skewa�ne plane. Let 〈p,K〉 be a �xed pen
il of 
ir
lesof a Laguerre plane L = (P, C,∼) and ∆(p,K) the group of automorphismsof L whi
h �x the pen
il 〈p,K〉 (not pointwise) and all points parallel to p.We assume that ∆(p,K) satis�es the following 
onditions:(A1) ∆(p,K) is transitive on the set P \ p.(A2) For any x, y ∈ K \ {p, r} there exists σ ∈ ∆(p,K)r with σ(x) = y.From (A1), (A2) we obtain a generalization of (A2).Corollary 2.1. For any x, y ∈ M \ {p, r} where M ∈ 〈p,K〉 thereexists σ ∈ ∆(p,K)r su
h that σ(x) = y.Definition 2.1. The residual skewa�ne plane with respe
t to 〈p,K〉(written SA(p,K)) is the group spa
e V(∆(p,K)) = (P \ p,⊔, ‖).By the de�nition ∆(p,K) is normally transitive and a

ording to Theo-rem 2.1 we getTheorem 2.1. Suppose 〈p,K〉 is a �xed pen
il of a Laguerre plane L =

(P, C,∼) and 
onditions (A1), (A2) are satis�ed. Then the residual skewa�neplane SA(p,K) is a skewa�ne desarguesian spa
e.In the following let 〈p,K〉 be a �xed pen
il su
h that the 
orrespondinggroup ∆(p,K) satis�es axioms (A1), (A2).Proposition 2.1.(a) If r ∼ x, then r ⊔ x = M \ p, where M is a 
ir
le of 〈p,K〉 or a
ir
le tangent at r to some 
ir
le of 〈p,K〉.(b) If r − x, then r ⊔ x ⊆ r.Proof. (a) If r /∈ K, then 
onsider the 
ir
le L = (p,K, r)◦. For x ∈ L,by Corollary 2.1, L \ {p} = ∆(p,K)rx. In the 
ase x /∈ L we de�ne M =
(r, L, x)◦, x′ = xL and y ∈ M \ p, y 6= r. The 
ir
le M is invariant withrespe
t to the group ∆(p,K)r sin
e it is tangent to L at r and has a �xedpoint at p. By Corollary 2.1 there exists β ∈ ∆(p,K)r su
h that β(x′) = yL.Hen
e β(x) = y.(b) This follows dire
tly from the de�nition.Definition 2.2. The line x ⊔ y of SA(p,K) is 
alled spe
ial if x ∼ y.From the proof of Proposition 2.1 we get a further generalization of ax-iom (A2).Corollary 2.2. Let r /∈ p and suppose M is invariant with respe
t to
∆(p,K)r. Then for any x, y ∈M with x, y 6= pM, r there exists σ ∈ ∆(p,K)rsu
h that σ(x) = y (i.e. ∆(p,K)r is 
ir
ular transitive for any r /∈ p).Proposition 2.2. The lines determined by the 
ir
les of the pen
il
〈p,K〉 are straight lines.
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Proof. If x, y are distin
t points of a 
ir
le L ∈ 〈p,K〉, then ∆(p,K)x(y)

= L \ {p} by Corollary 2.2.The group ∆(p,K) �xes the generator p pointwise. Hen
e by the de�ni-tion of parallelity we get:Proposition 2.3. For any M,N ∈ C if M \ p ‖ N \ p, then pM = pN .Propositions 2.1�2.3 provide a representation of the basi
 notions of aresidual skewa�ne plane of a Laguerre plane. However, this representationis not 
omplete. The 
onstru
tion does not assume that any 
ir
le of theLaguerre plane 
orresponds to some line of the skewa�ne plane. Similarly,the statements 
onverse to Propositions 2.2 and 2.3 do not hold (as an ex-ample, take any miquelian Laguerre plane of 
hara
teristi
 2). To make therepresentation more 
omplete the following axiom will be needed throughoutthe rest of the paper.(A3) For any 
ir
le M su
h that p /∈ M there exists exa
tly one 
ir
le
L ∈ 〈p,K〉 tangent to M .Proposition 2.4. If M is a 
ir
le su
h that p /∈M , then M \p = x⊔y,where x is the point of tangen
y of M with the unique 
ir
le of the pen
il

〈p,K〉 and y is any point of M di�erent from x and pM .Proof. A

ording to (A3) there exists exa
tly one 
ir
le L ∈ 〈p,K〉 tan-gent to M . Let x be the point of tangen
y. The 
ir
le L is invariant withrespe
t to ∆(p,K)x, sin
e L ∈ 〈p,K〉 and x 6= p is �xed. Hen
eM , as a 
ir
letangent to an invariant 
ir
le and 
ontaining a �xed point pM , is invariantwith respe
t to ∆(p,K)x. The assertion follows from Corollary 2.2.A

ording to Proposition 2.4 in the 
ase x ⊔ y = M \ p the basepoint xof the line x ⊔ y will also be 
alled the basepoint of the 
ir
le M .Proposition 2.5. If M \ p is a straight line, then M ∈ 〈p,K〉.Proof. Assume that M \ p = x ⊔ y = y ⊔ x for some distin
t points
x, y ∈M \p and M /∈ 〈p,K〉. Then the subgroup of ∆(p,K) �xing the 
ir
le
M is transitive on its points, 
ontrary to (A3).Proposition 2.6. If pM = pL with p /∈M,L, then M \ p ‖ L \ p.Proof. From Proposition 2.4, M \ p = x ⊔ y where x is the point oftangen
y of M with some M ′ ∈ 〈p,K〉 and L \ p = z ⊔ t where z is the pointof tangen
y of L with some L′ ∈ 〈p,K〉. By (A1) there exists σ ∈ ∆(p,K)su
h that σ(x) = z. We obtain σ(M ′) = L′ and hen
e σ(M) = L by thetou
hing axiom.Remark 2.1. In the 
ase of miquelian planes of 
hara
teristi
 di�erentfrom 2 any pen
il 〈p,K〉 satis�es (A3) and the group ∆(p,K) has properties(A1) and (A2). Additionally, V(∆(p,K)) satis�es (Papp) and (Pgm).
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Remark 2.2. Examples of nonmiquelian (even nonovoidal) planes sat-isfying (A1)�(A3) may be obtained if in the 
onstru
tion in [2℄ we put

f(x) = |x|r (r > 1) and p = (∞, 0), K = {(x, 0) | x ∈ K} ∪ {(∞, 0)}.The transformations of the form x′ = kx, y′ = |k|ry (identity for points
(∞, a)) form the stabilizer of the point (0, 0).Remark 2.3. Axiom (A3) is satis�ed for any pen
il 〈p,K〉 of a topologi-
al Laguerre plane of dimension 2 and 4 (this is a spe
ial 
ase of the solutionof the Apollonius problem for su
h planes, 
f. [11℄).3. A 
hara
terization of the group ∆(p,K)Theorem 3.1. For any point r /∈ p the stabilizer ∆(p,K)r is a
(p, 〈r, L〉)-transitive group of L-strains ∆(p, r, L) 
ontaining Sr,p;K , where
L = (p,K, r)◦.Proof. As in the proof of Proposition 2.4, for any φ ∈ ∆(p,K)r and
M ∈ 〈r, L〉 we have φ(M) = M . The (p, 〈r, L〉)-transitivity of the group
∆(p,K) follows from Corollary 2.2. To obtain Sr,p;K 
onsider an arbitrary
x /∈ L ∪ r ∪ p and the 
ir
les M = (r, L, x)◦, N = (p, L, x)◦. A

ordingto (A3) these 
ir
les are not tangent, so there exists a point y with y 6= x,
y ∈ M ∩ N . By (p, 〈r, L〉)-transitivity there exists ψ ∈ ∆(p,K)r su
h that
ψ(x) = y. Hen
e ψ(N) = N and ψ(y) = x. This shows that ψ = Sr,p;K .Proposition 3.1. The group ∆(p,K) is 〈p,K〉-transitive.Proof. Let x, y ∈ K be su
h that #{x, y, p} = 3. Consider an arbitrary
ir
leM su
h thatM∩K = {x, y} and let r be the basepoint ofM . A

ordingto Theorem 3.1 the symmetries Sr,p;K and Sx,p;K exist and the superposition
Sr,p;K ◦ Sx,p;K is a translation whi
h maps x to y.From the proof of Proposition 3.1 we obtain:Corollary 3.1. For any distin
t points x, y su
h that x, y 6= p, x, y ∈
R ∈ 〈p,K〉 there exists r ∈ R su
h that Sr,p;K(x) = y.Lemma 3.1. Any �xed point free (outside p) automorphism from ∆(p,K)is a translation.Proof. Suppose there exists x su
h that x ≁ φ(x) for some φ satisfyingthe assumptions of the lemma. Then φ(x) ≁ φ2(x). If x 6= φ2(x), then theautomorphism φ �xes the 
ir
le M = (x, φ(x), φ2(x))◦. If x = φ2(x), then φ�xes any 
ir
leM ∈ 〈x, φ(x)〉. Hen
e p ∈M , be
ause otherwise the basepointof the 
ir
leM is �xed. This means that φ is a translation with the invariantpen
il 〈p,M〉. In the 
ase x ∼ φ(x) the assumption that there exists y su
h
y ≁ φ(y) implies that the 
ir
le N = (y, φ(y), φ2(y))◦ is invariant and xNis �xed, a 
ontradi
tion. Thus in this 
ase φ is a translation whi
h �xes allgenerators.
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Proposition 3.2. The group ∆(p,K) is p-transitive.Proof. Let x ∼ y, x 6= y and r ≁ x. Suppose φ ∈ ∆(p,K)r, z = φ(x),

z′ = Sp,r;K(z) and M = (y, z, z′)◦. Be
ause Sp,r;K(M) = M the basepoint sof the 
ir
le M is parallel to r. By Theorem 3.1 there exists ψ ∈ ∆(p,K)ssu
h that ψ(z) = y, so that ψ ◦φ(x) = y. The automorphism ψ ◦φ �xes (notpointwise) two generators distin
t from p. Additionally it is not an L-strainso it is �xed point free outside p. By Lemma 3.1, ψ ◦φ is a translation whi
hmaps x to y.The group of translations 
ontained in ∆(p,K) will be denoted by
T(p,∆).Theorem 3.2. Elements of the group ∆(p,K) without �xed points (out-side p) are either translations in the dire
tion of any L (p ∈ L) or transla-tions whi
h �x generators. The group T(p,∆) is transitive on the set P \ pand T(p,∆)E∆(p,K). Elements of ∆(p,K) with �xed points are L-strainsand ∆(p,K) ≃ T(p,∆) ⋊∆(p,K)r for any r /∈ p.Proof. The �rst part of the theorem follows from Proposition 3.1, Propo-sition 3.2, and [7, Theorem 4.19, p. 100℄. For any L-strain φ and a trans-lation ψ the superposition φ ◦ ψ ◦ φ−1 is a translation. Indeed, otherwise
x = φ ◦ ψ ◦ φ−1(x) for some x /∈ p and φ−1(x) is a �xed point of the trans-lation ψ, a 
ontradi
tion.Corollary 3.2. The group ∆(p,K) is of type 1H in the 
lassi�
a-tion [8℄ of Laguerre planes.Corollary 3.3. The group spa
e V(∆(p,K)) satis�es 
ondition (Pgm).Proof. The group T(p,∆) is 
ommutative by [7, Theorem 4.14, p. 97℄and transitive by [7, Theorem 4.19, p. 100℄. Hen
e 
ondition 5 in [10, Propo-sition 6.5, p. 94℄ is satis�ed.Corollary 3.4. Lines A,B of a residual skewa�ne plane are paralleli� there exists a translation φ su
h that φ(A) = B.4. Some properties of residual skewa�ne planes and their ap-pli
ations to Laguerre planesProposition 4.1. There are no three 
ir
les L,M,N that are pairwisetangent at di�erent points with L ∈ (p,K) and M ∩N ⊂ p.Proof. Suppose the 
ir
les M,N are tangent to the 
ir
le L of the pen
il
〈p,K〉 at points x, y respe
tively and M,N have a 
ommon point on thegenerator p. By Corollary 3.1 there exists r ∈ L \ p su
h that Sr,p;K(x) = y.We obtain Sr,p;K(M) = N and hen
e rM = rN is another 
ommon pointof M,N .
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Corollary 4.1. Parallel lines of SA(p,K) determined by 
ir
les withbasepoints on a straight line determined by a 
ir
le have a 
ommon point.Proposition 4.2. Proper parallel lines of SA(p,K) determined by 
ir-
les are disjoint i� their basepoints are distin
t and parallel.Proof. ⇐ Let m,n be distin
t and parallel basepoints of 
ir
les M,Nand suppose M,N have a 
ommon point on the generator p. A translation

α ∈ T(p,G) su
h that α(m) = nmapsM onto N , hen
e (M \p)∩(N \p) = ∅.
⇒ Assume the 
ir
les M,N are tangent at a point q ∈ p and theirbasepoints m,n are not parallel. De�ne L = (p,K,m)◦, z = nL and M ′ =

(z, L, q)◦. By Corollary 4.1, M ′ is not tangent to M . This 
ontradi
ts thepart of the proposition already proved.Proposition 4.3. Suppose that the basepoints of parallel lines A,A′ be-long to a straight line B determined by a 
ir
le. If a straight line C determinedby a 
ir
le interse
ts A then it interse
ts A′.Proof. Let x, x′ be the basepoints of A and A′, respe
tively. Let also ybe one of the 
ommon points of A,C. There exists a translation τ ∈ T(p,K)su
h that τ(x) = x′. We obtain τ(A) = A′ and the point y′ = τ(y) is a
ommon point of A′, C.Lemma 4.1. Let 
ir
les P,Q,R be tangent to a 
ir
le L ∈ 〈p,K〉 atpairwise distin
t points. If Q has 
ommon points with P,R, then P,R havea 
ommon point.Proof. If two of the 
ir
les P,Q,R determine parallel lines, the assertionfollows from Propositions 4.1 and 4.3. Assume x ∈ P ∩ Q, y ∈ Q ∩ Rand x, y /∈ p. If Q ∈ 〈p,K〉, 
onsider a translation τ ∈ T(p,K) su
h that
τ(x) = y, and the 
ir
le P ′ = τ(P ). We obtain y ∈ P ′ ∩R and P ′ is tangentto L. Hen
e, by the Veblen 
ondition (V), the 
ir
les P,R have a 
ommonpoint. In the 
ase Q∩L = {r} 6= {p} instead of the translation τ we use the
L-strain φ ∈ ∆(p,K, r) su
h that φ(x) = y, and the assertion follows by theVeblen 
ondition or Proposition 4.3.Definition 4.1. Let L be a 
ir
le of the pen
il 〈p,K〉. We say thatpoints a, b 6∈ L are equivalent (under L), and write a ≡L b, if |P ∩Q| ≥ 1 forany 
ir
les P,Q tangent to L and passing through a and b, respe
tively.Lemma 4.1 gives the following.Proposition 4.4. For any 
ir
le L ∈ 〈p,K〉 the relation ≡L is an equiv-alen
e relation on the set P \ L.Proposition 4.5. For any points a, b ∈ P \L, a ≡L b i� there exist 
ir-
les P,Q tangent to L at distin
t points and passing through a, b respe
tivelysu
h that |P ∩Q| ≥ 1.
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The set of points of a spe
ial line 
an be des
ribed by the relation ≡ asfollows:Proposition 4.6. Let x ⊔ y be a spe
ial line, and let L = (p,K, x)◦,

z ∼ y, z 6= x. Then z ∈ x ⊔ y i� z ≡L y.Proof. ⇒ Assume y′ ∈ (p,K, y)◦, M = (x, L, y′)◦ for some y′ 6= p, y. Bythe de�nition of x ⊔ y there exists σ ∈ ∆(p,K)x su
h that σ(y) = z. Then
σ(M) = M . If z′ = σ(y′), we obtain y ≡L y

′ ≡L z
′ ≡L z.

⇐ Let y ∈ N ∈ 〈p,K〉 and M be a 
ir
le passing through z tangent to
L at a point di�erent from p. Sin
e z ≡L y, there exists a point r su
h that
r ∈ M ∩ N . De�ne P = (x, L, r)◦ and Q = (p,K, z)◦. Then P and Q havea 
ommon point s be
ause r ≡L z. An L-strain φ ∈ ∆(p,K, x) su
h that
φ(r) = s maps y to z.Proposition 4.7. If x ∼ p, x 6= p, then for any point y /∈ L, x ≡L y i�there exist exa
tly two 
ir
les M,M ′ tangent to L su
h that x, y ∈M,M ′.Proof. It is su�
ient to prove ⇒. Let N be any 
ir
le tangent to Lsu
h that x ∈ N and P = (p, L, y)◦. From x ≡L y it follows that thereexists z ∈ P ∩ N . Then M = τ(N) where τ ∈ T(p,K), τ(z) = y and
M ′ = Sp,y,K(M) 6= M . Suppose, 
ontrary to our 
laim, that there is a 
ir
le
M ′′ through x, y, tangent to L and distin
t from M,M ′. Denote by r, r′, r′′the basepoints of M,M ′,M ′′, respe
tively. There exists φ ∈ ∆(p,K)r′′ with
φ(r) = r′. We have φ(M ′′) = M ′′, φ(M) = M ′ and φ(y) 6= x, y. Hen
e
x, y, φ(y) are three distin
t points of two distin
t 
ir
les M ′,M ′′, a 
ontra-di
tion.Lemma 4.2. For any q parallel to p and di�erent from p there existsexa
tly one q′ parallel to p with the property :
∀x, y ((x ≁ y, p ≁ x, y) ∧ q ∈ (x(p,K, x)◦, y)◦ → q′ ∈ (y, (p,K, y)◦, x)◦).Proof. The assertion is a 
onsequen
e of axiom (P2). If the point q de-termines the 
lass of lines parallel to a line x⊔y, then q′ determines the 
lassof lines parallel to y ⊔ x.Theorem 4.1. Let q 6= p, q ∼ p, x ≁ p. Then the points of tangen
yof 
ir
les of the pen
il 〈p,K〉 with 
ir
les of the pen
il 〈x, q〉 form a 
ir
le(without a point of the generator p).Proof. Let L = (p,K, x)◦ and M = (x, L, q)◦. The point x is the point oftangen
y of the 
ir
les L andM of the pen
ils 〈p,K〉 and 〈q, x〉, respe
tively.Consider an arbitrary 
ir
le N ∈ 〈q, x〉, N 6= M . By axiom (A3), thereexists exa
tly one 
ir
le P ∈ 〈p,K〉 tangent to N at some point y. The 
ir
le

Q = (x, L, y)◦ is �xed by the group ∆(p,K)x. A

ording to Corollary 2.2,any point of Q distin
t from x and pQ is the image of y under some σ ∈
∆(p,K)x. Hen
e it is a point of tangen
y of 
ir
les of the pen
ils 〈p,K〉 and
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〈pQ, x〉, respe
tively. It follows that the 
ir
le Q satis�es the assertion of thetheorem.Corollary 4.2. The 
ir
le Q determined in Theorem 4.1 passes throughthe point q′ from Lemma 4.2.In the 
ase of miquelian Laguerre planes of 
hara
teristi
 di�erent from 2,the point p in Theorem 4.1 
an be 
hosen arbitrarily by Remark 2.1. For su
hplanes we also obtain a 
ondition determining whether a 
ir
le through twopoints tangent to a 
ir
le 
an be 
onstru
ted.Theorem 4.2. Let x, y be points and L a 
ir
le with x ≁ y, x, y /∈ L ofa miquelian Laguerre plane of 
hara
teristi
 distin
t from 2. The following
onditions are equivalent :

(1) There exist exa
tly two 
ir
les through x, y tangent to L.
(2) Any 
ir
le through x tangent to L interse
ts any 
ir
le through ytangent to L.
(3) There exist two interse
ting 
ir
les tangent to L at distin
t points
ontaining x, y, respe
tively.Proof. A

ording to Remark 2.1 the assertion follows by De�nition 4.1,Proposition 4.5 and Proposition 4.7 applied to the pen
il 〈xL,L〉.Remark 4.1. In miquelian Laguerre planes over a �eld F of 
hara
ter-isti
 di�erent from 2 the 
onditions of Theorem 4.2 de�ne the relation �≡L�for any 
ir
le L. In an analyti
 representation of su
h planes given in [9℄, fora 
ir
le K = {(x, 0) | x ∈ F}∪ {(∞)}, points (a1, b1) and (a2, b2) are equiva-lent with respe
t to K i� b2 ∈ b1F

2. In this 
ase the 
lasses of parallelity ofspe
ial lines 
orrespond to the 
lasses of squares of F.Remark 4.2. If F is quadrati
ally 
losed, then any spe
ial line 
oin
ideswith a generator and is a straight line. In this 
ase SA(p,K) 
ontains twofamilies of straight lines like a neara�ne residual plane 
onne
ted with aMinkowski plane (
f. [12℄). But the 
lass of straight lines determined by the
ir
les of the pen
il 〈p,K〉 does not satisfy the 
ondition of having exa
tlyone 
ommon point with other lines.
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