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Summary. We consider some variational principles in the spaces C∗(X) of bounded
continuous functions on metrizable spacesX, introduced by M. M. Choban, P. S. Kenderov
and J. P. Revalski. In particular we give an answer (consistent with ZFC) to a question
stated by these authors.

1. Introduction. We denote by C∗(X) the Banach algebra of bounded
continuous real-valued functions on a completely regular space X, equipped
with the norm ‖f‖ = sup{|f(x)| : x ∈ X}.

Choban, Kenderov and Revalski [CKR] considered a game G(X) on X,
a variation of the Banach–Mazur game, played by two players Σ and Ω, and
showed (cf. [CKR, Theorem 3.1]) that if Ω has a winning strategy then for
any lower-semicontinuous function f : X → R∪{+∞}, bounded from below
and not everywhere equal to +∞, the set

(1) S(f) = {g ∈ C∗(X) : f + g attains its infimum on X}

is residual in C∗(X).
These authors asked ([CKR, Question 5.4]) if this “generic variational

principle” for X implies that Ω has a winning strategy in the game G(X).
The following result contains some observations concerning this question,

and in particular, its second part shows that a negative answer is consistent
with the ZFC-axioms of set theory.

2010 Mathematics Subject Classification: 54E52, 49J27, 49J53.
Key words and phrases: topological game, variational principle.

This note is part of the author’s Master Thesis written at the University of Warsaw
under the supervision of Roman Pol.

DOI: 10.4064/ba61-3-7 [257] c© Instytut Matematyczny PAN, 2013



258 A. Królak

Theorem 1.1. There exists a subset X of the real line for which Ω has
no winning strategy in the game G(X), but for every lsc function f :

(i) any separable subset of C∗(X) is contained in a separable Banach
subalgebra Z of C∗(X) such that S(f) ∩ Z is residual in Z,

(ii) it is consistent with ZFC that S(f) is residual in C∗(X).

Remark 1.2. More specifically, the set X in Theorem 1.1 has the fol-
lowing property. Let Z be the collection of all separable uniformly closed
subalgebras of C∗(X) containing the constants and separating points from
closed sets in X (each separable subset of C∗(X) is contained in some mem-
ber of Z). Then, for any Z ∈ Z, S(f) ∩ Z is residual in Z. We do not know
if, in the realm of the usual set theory, one can define a non-residual set C
in C∗(X) such that each intersection C ∩ Z with Z ∈ Z is residual in Z.

2. Some background. Let f : X → R ∪ {+∞} be a lower-semi-
continuous function on a completely regular space X, which is bounded from
below and takes some real values. By [CKR, Proposition 2.4(a)], the set

(2) Gr(Mf ) = {(g, x) ∈ C∗(X)×X : (f + g)(x) = inf(f + g)}
is closed in the product C∗(X)×X.

Let us notice that for S(f) defined in (1), we have

(3) S(f) = projGr(Mf ),

where proj is the projection from C∗(X)×X onto the first factor.
Given a compactification αX of X,

(4) C∗
α(X) = {g ∈ C∗(X) : g extends continuously over αX}

is a Banach subalgebra of C∗(X) containing the constants and separating
points from closed sets in X, and each subalgebra of C∗(X) with these
properties is of the form (4) (cf. [En, 3.12.22(e)].

If X is separable metrizable, then for each separable A ⊂ C∗(X) there is
a metrizable compactification αX of X such that A ⊂ C∗

α(X); since C∗
α(X)

can be identified with C∗(αX), C∗
α(X) is separable (cf. [En, 3.12.22]).

Let X be a subset of the unit interval whose complement contains no
Cantor sets. Then Theorem 4.1 and Proposition 5.1 in [CKR] show that
S(f) is everywhere of second category in C∗(X). The reasoning of Choban,
Kenderov and Revalski can be repeated to deduce that for any compactifi-
cation αX of X, S(f) ∩ C∗

α(X) is everywhere of second category in C∗
α(X).

Now let E ⊂ [0, 1] be a λ-set of cardinality ℵ1, i.e. each countable set
in E is a relative Gδ-set in E (cf. [Ku, §40, III]). The set X in Theorem 1.1
is X = [0, 1] \ E. Assuming p > ℵ1, X is an analytic set (cf. [Fr, 23.J]).

For this set X (and in fact, for any metrizable space), the game G(X)
considered by Choban, Kenderov and Revalski is equivalent to the game
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G∗(X) introduced by Michael [Mi, p. 520], and since X is not completely
metrizable, Corollary 7.5 in [Mi] shows that Ω has no winning strategy in
the game G(X).

We close this section by recalling that a Suslin set in a completely metriz-
able (but not necessarily separable) space H is a set obtained by the Suslin
operation on closed subsets ofH (separable Suslin sets coincide with analytic
ones). The Suslin sets are open modulo first category sets, the projection on
H of a Suslin set in the product of H with a compact metrizable space is a
Suslin set, and in particular, if f : H → T is a Borel map into a compact
metrizable space and L ⊂ T is analytic then f−1(L) is Suslin (cf. [Ku, §11,
VII], [JR, 2.3, 2.6.6, 2.9.4], [Ke]).

3. Proof of Theorem 1.1(i). Let X = [0, 1]\E be the complement of a
λ-set E of cardinality ℵ1 in [0, 1] (cf. Section 2). As was noticed in Section 2,
Ω has no winning strategy in the game G(X).

Let (cf. (2))

(5) Gr(Mf ) = the closure of Gr(Mf ) in C∗(X)× [0, 1],

and, for g ∈ C∗(X),

(6) K(g) = {x ∈ [0, 1] : (g, x) ∈ Gr(Mf )}.

Since Gr(Mf ) is closed in C∗(X)×X (cf. Section 2), we have, by (1),

(7) C∗(X) \ S(f) = {g ∈ C∗(X) : K(g) ⊂ E}.

The map g 7→ K(g) is upper-semicontinuous, and hence it is a Borel map
from C∗(X) to the space K[0, 1] of compact subsets of [0, 1], equipped with
the Vietoris topology (cf. [Ke, 12.C]; recall that K[0, 1] is a compact metriz-
able space).

Let αX be any compact metrizable extension of X. By comments in
Section 2, it is enough to make sure that the C∗

α(X)\S(f) is of first category
in C∗

α(X) (cf. (4)).
To that end, let us consider g1, g2, . . . dense in C∗

α(X) \S(f). Since com-
pact subsets of E are countable, we infer from (7) that the set

(8) A =
⋃
i

K(gi) ⊂ E is countable.

Therefore, since {L ∈ K[0, 1] : L \ A 6= ∅} is an analytic set, we conclude
that

(9) A∗ = {g ∈ C∗
α(X) : K(g) ⊂ A}

is the complement of a Suslin set in C∗
α(X), hence open modulo first category

sets in C∗
α(X).
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Moreover, as was explained in Section 2, S(f) ∩ C∗
α(X) is everywhere of

second category in C∗
α(X), and in effect, we conclude that

(10) A∗ is of first category in C∗
α(X).

Because E is a λ-set, (8) yields an existence of open sets V1 ⊃ V2 ⊃ · · ·
in [0, 1] such that A = E ∩

⋂
n Vn. Since the map g 7→ K(g) is upper-

semicontinuous, each set

V ∗
n = {g ∈ C∗

α(X) : K(g) ⊂ E ∩ Vn}
is an open set in C∗

α(X) \ S(f) (cf. (7)) and

A∗ =
⋂
n

V ∗
n

(cf. (9)). By (8), (9), gi ∈ A∗, so A∗ is a dense Gδ-set in C∗
α(X) \ S(f) and

hence (C∗
α(X)\S(f))\A∗ is of first category in C∗

α(X)\S(f). This, combined
with (10), implies that S(f) ∩ C∗

α(X) is residual in C∗
α(X).

4. Proof of Theorem 1.1(ii). Let E and X be as in Section 3. As
was recalled in Section 2, under p > ℵ1, X is an analytic set and hence
Gr(Mf ) ⊂ C∗(X) × [0, 1] is Suslin in C∗(X) × X. Therefore, by (1), S(f)
is Suslin in C∗(X), hence open modulo first category sets. Since, as was
established in [CKR], S(f) is everywhere of second category in C∗(X), we
conclude that S(f) is residual in C∗(X).

Basing on the idea of this paper, it is possible to give another negative
answer to a question from [CKR]. If the mapping Mf is non-empty-valued
for a residual part of the space C∗(X), then it is also single-valued and
continuous for residually many g. This follows from quasicontinuity of Mf

and metrizability of X. Therefore it settles the similar question related to
strong minima as well.
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