NUMBER THEORY

Parametric Solutions of the Diophantine Equation $\label{eq:A2} A^2 + nB^4 = C^3$

by

Susil Kumar JENA

Presented by Jerzy KACZOROWSKI

Summary. The Diophantine equation $A^2 + nB^4 = C^3$ has infinitely many integral solutions A, B, C for any fixed integer n. The case n = 0 is trivial. By using a new polynomial identity we generate these solutions, and then give conditions when the solutions are pairwise co-prime.

1. Introduction. In a series of papers [2]–[9], we studied different Diophantine equations, and have shown how to generate infinitely many coprime integral solutions for each of them. In this paper, we want to study the Diophantine equation

(1.1) $A^2 + nB^4 = C^3,$

where $n \in \mathbb{Z}$ is fixed, and A, B, C are integer variables. In (1.1), the case n = 0 is trivial. We use a new polynomial identity to generate infinitely many co-prime integral solutions A, B, C.

2. Diophantine equation $A^2 + nB^4 = C^3$. The Diophantine equation (2.1) $A^2 + nB^4 = C^3$,

where $n \in \mathbb{Z}$ is fixed, has not been studied fully. Beukers [1] has given solutions for (2.1) when $n = \pm 1$, but when $|n| \ge 2$, there are no publications. In an earlier paper [3], we studied the Diophantine equation

(2.2)
$$A^4 + nB^2 = C^3$$

where $n \in \mathbb{Z}$ is fixed. Now, we want to establish the following theorem.

²⁰¹⁰ Mathematics Subject Classification: Primary 11D41; Secondary 11D72.

Key words and phrases: parametric solution, Diophantine equation, Diophantine equation $A^2 + nB^4 = C^3$.

THEOREM 2.1. For any given $n \in \mathbb{Z}$, the Diophantine equation $A^2 + nB^4 = C^3$ has infinitely many integer solutions A, B, C satisfying the conditions $ABC \neq 0$ and gcd(A, B, C) = 1.

We observe that in (2.1), (2.2), and Theorem 2.1 the case n = 0 is trivial.

3. Proof of Theorem 2.1. To prove Theorem 2.1, we need the following lemma.

LEMMA 3.1. For all $a, b \in \mathbb{Z}$,

$$(3.1) \qquad ((a+b)(a^2-34ab+b^2))^2+108ab(a-b)^4=(a^2+14ab+b^2)^3.$$

Proof. Take $c = (a + b)^2$ and d = 12ab in the easily provable identity

$$c(c-3d)^{2} + d(3c-d)^{2} = (c+d)^{3}.$$

After simplification we get (3.1).

Proof of Theorem 2.1. In order to apply identity (3.1) to (2.1), we only need to find a, b such that $108ab = nv^4$ for some v. The full characterization of the integer solutions a, b, v of the equation $108ab = nv^4$ with gcd(a, b) = 1depends on the divisibility properties of n. The set of solutions needed for our purposes are of the form $a = u_1d_1p^4$, $b = u_2d_2q^4$, where $u_1u_2 = 12$, $d_1d_2 = n$ and $gcd(u_1d_1p, u_2d_2q) = 1$.

In principle, we need not assume that $gcd(u_1d_1, q) = gcd(u_2d_2, p) = 1$ in order to have co-prime solutions of $108ab = nv^4$. However, because we put these expressions into the identity (3.1) the conditions are important in order to get co-prime solutions of (2.1). Now, we can take four pair of values for (a, b) to get the corresponding polynomials A_i, B_i, C_i where $i \in \{1, 2, 3, 4\}$, as solutions A, B, C in (2.1). With some additional conditions, in each case, we make the solutions co-prime.

(i)
$$(a,b) = (4d_1p^4, 3d_2q^4)$$
 gives
 $A_1 = (4d_1p^4 + 3d_2q^4)(16d_1^2p^8 - 408d_1d_2p^4q^4 + 9d_2^2q^8)$
(3.2) $B_1 = 6pq(4d_1p^4 - 3d_2q^4),$
 $C_1 = 16d_1^2p^8 + 168d_1d_2p^4q^4 + 9d_2^2q^8.$

To obtain co-prime solutions of (2.1) take $gcd(4d_1p, 3d_2q) = 1$ in (3.2).

(ii)
$$(a, b) = (3d_1p^4, 4d_2q^4)$$
 gives
 $A_2 = (3d_1p^4 + 4d_2q^4)(9d_1^2p^8 - 408d_1d_2p^4q^4 + 16d_2^2q^8),$
(3.3) $B_2 = 6pq(3d_1p^4 - 4d_2q^4),$
 $C_2 = 9d_1^2p^8 + 168d_1d_2p^4q^4 + 16d_2^2q^8.$

To obtain co-prime solutions of (2.1) take $gcd(3d_1p, 4d_2q) = 1$ in (3.3).

(iii) $(a,b) = (12d_1p^4, d_2q^4)$ gives

(3.4)
$$A_{3} = (12d_{1}p^{4} + d_{2}q^{4})(144d_{1}^{2}p^{8} - 408d_{1}d_{2}p^{4}q^{4} + d_{2}^{2}q^{8}),$$
$$B_{3} = 6pq(12d_{1}p^{4} - d_{2}q^{4}),$$
$$C_{3} = 144d_{1}^{2}p^{8} + 168d_{1}d_{2}p^{4}q^{4} + d_{2}^{2}q^{8}.$$

Take $gcd(12d_1p, d_2q) = 1$ in (3.4) to get co-prime solutions of (2.1). (iv) $(a, b) = (d_1p^4, 12d_2q^4)$ gives

(3.5)
$$A_{4} = (d_{1}p^{4} + 12d_{2}q^{4})(d_{1}^{2}p^{8} - 408d_{1}d_{2}p^{4}q^{4} + 144d_{2}^{2}q^{8}),$$
$$B_{4} = 6pq(d_{1}p^{4} - 12d_{2}q^{4}),$$
$$C_{4} = d_{1}^{2}p^{8} + 168d_{1}d_{2}p^{4}q^{4} + 144d_{2}^{2}q^{8}.$$

Take $gcd(d_1p, 12d_2q) = 1$ in (3.5) to get co-prime solutions of (2.1).

Thus, we have found homogeneous polynomials $A, B, C \in \mathbb{Z}[p,q]$ of degrees 12, 6, 8 respectively such that $A(p,q)^2 + nB(p,q)^4 = C(p,q)^3$, and we have found conditions under which the solutions of (2.1) are co-prime.

Acknowledgements. I express my thanks to the referee for the critical comments which helped to reach optimal presentation of the paper. I am grateful to my family for supporting me in pursuing my dream.

References

- [1] F. Beukers, The Diophantine equation $Ax^p + By^q = Cz^r$, Duke Math. J. 91 (1998), 61–88.
- [2] S. K. Jena, Method of infinite ascent applied on $mA^6 + nB^3 = C^2$, Math. Student 77 (2008), 239–246.
- [3] S. K. Jena, Method of infinite ascent applied on $A^4 \pm nB^2 = C^3$, Math. Student 78 (2009), 233–238.
- [4] S. K. Jena, Method of infinite ascent applied on $mA^3 + nB^3 = C^2$, Math. Student 79 (2010), 187–192.
- [5] S. K. Jena, Beyond the method of infinite descent, J. Combin. Inform. System Sci. 35 (2010), 501–511.
- [6] S. K. Jena, Method of infinite ascent applied on $mA^3 + nB^3 = 3C^2$, Math. Student 81 (2012), 151–160.
- [7] S. K. Jena, The method of infinite ascent applied on $A^4 \pm nB^3 = C^2$, Czechoslovak Math. J. 63 (138) (2013), 369–374.
- [8] S. K. Jena, Method of infinite ascent applied on $A^3 \pm nB^2 = C^3$, Notes Number Theory Discrete Math. 19 (2013), no. 2, 10–14.
- [9] S. K. Jena, Method of infinite ascent applied on $-(2^p \cdot A^6) + B^3 = C^2$, Comm. Math. 21 (2013), 173–178.

Susil Kumar Jena Department of Electronics & Telecommunication Engineering KIIT University, Bhubaneswar 751024 Odisha, India E-mail: susil_kumar@yahoo.co.uk

> Received May 9, 2014; received in final form October 13, 2014

(7968)