Parametric Solutions of the Diophantine Equation $A^{2}+n B^{4}=C^{3}$

by
Susil Kumar JENA

Presented by Jerzy KACZOROWSKI

Summary. The Diophantine equation $A^{2}+n B^{4}=C^{3}$ has infinitely many integral solutions A, B, C for any fixed integer n. The case $n=0$ is trivial. By using a new polynomial identity we generate these solutions, and then give conditions when the solutions are pairwise co-prime.

1. Introduction. In a series of papers [2]-[9], we studied different Diophantine equations, and have shown how to generate infinitely many coprime integral solutions for each of them. In this paper, we want to study the Diophantine equation

$$
\begin{equation*}
A^{2}+n B^{4}=C^{3} \tag{1.1}
\end{equation*}
$$

where $n \in \mathbb{Z}$ is fixed, and A, B, C are integer variables. In (1.1), the case $n=0$ is trivial. We use a new polynomial identity to generate infinitely many co-prime integral solutions A, B, C.
2. Diophantine equation $A^{2}+n B^{4}=C^{3}$. The Diophantine equation

$$
\begin{equation*}
A^{2}+n B^{4}=C^{3} \tag{2.1}
\end{equation*}
$$

where $n \in \mathbb{Z}$ is fixed, has not been studied fully. Beukers [1 has given solutions for (2.1) when $n= \pm 1$, but when $|n| \geq 2$, there are no publications. In an earlier paper [3], we studied the Diophantine equation

$$
\begin{equation*}
A^{4}+n B^{2}=C^{3} \tag{2.2}
\end{equation*}
$$

where $n \in \mathbb{Z}$ is fixed. Now, we want to establish the following theorem.

[^0]Theorem 2.1. For any given $n \in \mathbb{Z}$, the Diophantine equation $A^{2}+$ $n B^{4}=C^{3}$ has infinitely many integer solutions A, B, C satisfying the conditions $A B C \neq 0$ and $\operatorname{gcd}(A, B, C)=1$.

We observe that in (2.1), 2.2), and Theorem 2.1 the case $n=0$ is trivial.
3. Proof of Theorem 2.1. To prove Theorem 2.1, we need the following lemma.

Lemma 3.1. For all $a, b \in \mathbb{Z}$,

$$
\begin{equation*}
\left((a+b)\left(a^{2}-34 a b+b^{2}\right)\right)^{2}+108 a b(a-b)^{4}=\left(a^{2}+14 a b+b^{2}\right)^{3} \tag{3.1}
\end{equation*}
$$

Proof. Take $c=(a+b)^{2}$ and $d=12 a b$ in the easily provable identity

$$
c(c-3 d)^{2}+d(3 c-d)^{2}=(c+d)^{3}
$$

After simplification we get (3.1).
Proof of Theorem 2.1. In order to apply identity (3.1) to 2.1), we only need to find a, b such that $108 a b=n v^{4}$ for some v. The full characterization of the integer solutions a, b, v of the equation $108 a b=n v^{4}$ with $\operatorname{gcd}(a, b)=1$ depends on the divisibility properties of n. The set of solutions needed for our purposes are of the form $a=u_{1} d_{1} p^{4}, b=u_{2} d_{2} q^{4}$, where $u_{1} u_{2}=12$, $d_{1} d_{2}=n$ and $\operatorname{gcd}\left(u_{1} d_{1} p, u_{2} d_{2} q\right)=1$.

In principle, we need not assume that $\operatorname{gcd}\left(u_{1} d_{1}, q\right)=\operatorname{gcd}\left(u_{2} d_{2}, p\right)=1$ in order to have co-prime solutions of $108 a b=n v^{4}$. However, because we put these expressions into the identity (3.1) the conditions are important in order to get co-prime solutions of 2.1. Now, we can take four pair of values for (a, b) to get the corresponding polynomials A_{i}, B_{i}, C_{i} where $i \in\{1,2,3,4\}$, as solutions A, B, C in 2.1. With some additional conditions, in each case, we make the solutions co-prime.
(i) $(a, b)=\left(4 d_{1} p^{4}, 3 d_{2} q^{4}\right)$ gives

$$
\begin{align*}
& A_{1}=\left(4 d_{1} p^{4}+3 d_{2} q^{4}\right)\left(16 d_{1}^{2} p^{8}-408 d_{1} d_{2} p^{4} q^{4}+9 d_{2}^{2} q^{8}\right) \\
& B_{1}=6 p q\left(4 d_{1} p^{4}-3 d_{2} q^{4}\right) \tag{3.2}\\
& C_{1}=16 d_{1}^{2} p^{8}+168 d_{1} d_{2} p^{4} q^{4}+9 d_{2}^{2} q^{8}
\end{align*}
$$

To obtain co-prime solutions of 2.1 take $\operatorname{gcd}\left(4 d_{1} p, 3 d_{2} q\right)=1$ in (3.2).
(ii) $(a, b)=\left(3 d_{1} p^{4}, 4 d_{2} q^{4}\right)$ gives

$$
\begin{align*}
& A_{2}=\left(3 d_{1} p^{4}+4 d_{2} q^{4}\right)\left(9 d_{1}^{2} p^{8}-408 d_{1} d_{2} p^{4} q^{4}+16 d_{2}^{2} q^{8}\right) \\
& B_{2}=6 p q\left(3 d_{1} p^{4}-4 d_{2} q^{4}\right) \tag{3.3}\\
& C_{2}=9 d_{1}^{2} p^{8}+168 d_{1} d_{2} p^{4} q^{4}+16 d_{2}^{2} q^{8}
\end{align*}
$$

To obtain co-prime solutions of (2.1) take $\operatorname{gcd}\left(3 d_{1} p, 4 d_{2} q\right)=1$ in (3.3).
(iii) $(a, b)=\left(12 d_{1} p^{4}, d_{2} q^{4}\right)$ gives

$$
\begin{align*}
& A_{3}=\left(12 d_{1} p^{4}+d_{2} q^{4}\right)\left(144 d_{1}^{2} p^{8}-408 d_{1} d_{2} p^{4} q^{4}+d_{2}^{2} q^{8}\right) \\
& B_{3}=6 p q\left(12 d_{1} p^{4}-d_{2} q^{4}\right) \tag{3.4}\\
& C_{3}=144 d_{1}^{2} p^{8}+168 d_{1} d_{2} p^{4} q^{4}+d_{2}^{2} q^{8}
\end{align*}
$$

Take $\operatorname{gcd}\left(12 d_{1} p, d_{2} q\right)=1$ in 3.4 to get co-prime solutions of 2.1).
(iv) $(a, b)=\left(d_{1} p^{4}, 12 d_{2} q^{4}\right)$ gives

$$
\begin{align*}
& A_{4}=\left(d_{1} p^{4}+12 d_{2} q^{4}\right)\left(d_{1}^{2} p^{8}-408 d_{1} d_{2} p^{4} q^{4}+144 d_{2}^{2} q^{8}\right) \\
& B_{4}=6 p q\left(d_{1} p^{4}-12 d_{2} q^{4}\right) \tag{3.5}\\
& C_{4}=d_{1}^{2} p^{8}+168 d_{1} d_{2} p^{4} q^{4}+144 d_{2}^{2} q^{8}
\end{align*}
$$

Take $\operatorname{gcd}\left(d_{1} p, 12 d_{2} q\right)=1$ in 3.5 to get co-prime solutions of 2.1).
Thus, we have found homogeneous polynomials $A, B, C \in \mathbb{Z}[p, q]$ of degrees $12,6,8$ respectively such that $A(p, q)^{2}+n B(p, q)^{4}=C(p, q)^{3}$, and we have found conditions under which the solutions of 2.1) are co-prime.

Acknowledgements. I express my thanks to the referee for the critical comments which helped to reach optimal presentation of the paper. I am grateful to my family for supporting me in pursuing my dream.

References

[1] F. Beukers, The Diophantine equation $A x^{p}+B y^{q}=C z^{r}$, Duke Math. J. 91 (1998), 61-88.
[2] S. K. Jena, Method of infinite ascent applied on $m A^{6}+n B^{3}=C^{2}$, Math. Student 77 (2008), 239-246.
[3] S. K. Jena, Method of infinite ascent applied on $A^{4} \pm n B^{2}=C^{3}$, Math. Student 78 (2009), 233-238.
[4] S. K. Jena, Method of infinite ascent applied on $m A^{3}+n B^{3}=C^{2}$, Math. Student 79 (2010), 187-192.
[5] S. K. Jena, Beyond the method of infinite descent, J. Combin. Inform. System Sci. 35 (2010), 501-511.
[6] S. K. Jena, Method of infinite ascent applied on $m A^{3}+n B^{3}=3 C^{2}$, Math. Student 81 (2012), 151-160.
[7] S. K. Jena, The method of infinite ascent applied on $A^{4} \pm n B^{3}=C^{2}$, Czechoslovak Math. J. 63 (138) (2013), 369-374.
[8] S. K. Jena, Method of infinite ascent applied on $A^{3} \pm n B^{2}=C^{3}$, Notes Number Theory Discrete Math. 19 (2013), no. 2, 10-14.
[9] S. K. Jena, Method of infinite ascent applied on $-\left(2^{p} \cdot A^{6}\right)+B^{3}=C^{2}$, Comm. Math. 21 (2013), 173-178.

Susil Kumar Jena
Department of Electronics \& Telecommunication Engineering KIIT University, Bhubaneswar 751024
Odisha, India
E-mail: susil_kumar@yahoo.co.uk

Received May 9, 2014;
received in final form October 13, 2014

[^0]: 2010 Mathematics Subject Classification: Primary 11D41; Secondary 11D72.
 Key words and phrases: parametric solution, Diophantine equation, Diophantine equation $A^{2}+n B^{4}=C^{3}$.

