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Summary. The Diophantine equation A2 + nB4 = C3 has infinitely many integral solu-
tions A,B,C for any fixed integer n. The case n = 0 is trivial. By using a new polynomial
identity we generate these solutions, and then give conditions when the solutions are
pairwise co-prime.

1. Introduction. In a series of papers [2]–[9], we studied different Dio-
phantine equations, and have shown how to generate infinitely many co-
prime integral solutions for each of them. In this paper, we want to study
the Diophantine equation

A2 + nB4 = C3,(1.1)

where n ∈ Z is fixed, and A,B,C are integer variables. In (1.1), the case
n = 0 is trivial. We use a new polynomial identity to generate infinitely
many co-prime integral solutions A,B,C.

2. Diophantine equation A2 + nB4 = C3. The Diophantine equation

A2 + nB4 = C3,(2.1)

where n ∈ Z is fixed, has not been studied fully. Beukers [1] has given
solutions for (2.1) when n = ±1, but when |n| ≥ 2, there are no publications.
In an earlier paper [3], we studied the Diophantine equation

A4 + nB2 = C3,(2.2)

where n ∈ Z is fixed. Now, we want to establish the following theorem.
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Theorem 2.1. For any given n ∈ Z, the Diophantine equation A2 +
nB4 = C3 has infinitely many integer solutions A,B,C satisfying the con-
ditions ABC 6= 0 and gcd(A,B,C) = 1.

We observe that in (2.1), (2.2), and Theorem 2.1 the case n = 0 is trivial.

3. Proof of Theorem 2.1. To prove Theorem 2.1, we need the following
lemma.

Lemma 3.1. For all a, b ∈ Z,

(3.1) ((a+ b)(a2 − 34ab+ b2))2 + 108ab(a− b)4 = (a2 + 14ab+ b2)3.

Proof. Take c = (a+ b)2 and d = 12ab in the easily provable identity

c(c− 3d)2 + d(3c− d)2 = (c+ d)3.

After simplification we get (3.1).

Proof of Theorem 2.1. In order to apply identity (3.1) to (2.1), we only
need to find a, b such that 108ab = nv4 for some v. The full characterization
of the integer solutions a, b, v of the equation 108ab = nv4 with gcd(a, b) = 1
depends on the divisibility properties of n. The set of solutions needed for
our purposes are of the form a = u1d1p

4, b = u2d2q
4, where u1u2 = 12,

d1d2 = n and gcd(u1d1p, u2d2q) = 1.
In principle, we need not assume that gcd(u1d1, q) = gcd(u2d2, p) = 1 in

order to have co-prime solutions of 108ab = nv4. However, because we put
these expressions into the identity (3.1) the conditions are important in order
to get co-prime solutions of (2.1). Now, we can take four pair of values for
(a, b) to get the corresponding polynomials Ai, Bi, Ci where i ∈ {1, 2, 3, 4},
as solutions A,B,C in (2.1). With some additional conditions, in each case,
we make the solutions co-prime.

(i) (a, b) = (4d1p
4, 3d2q

4) gives

A1 = (4d1p
4 + 3d2q

4)(16d21p
8 − 408d1d2p

4q4 + 9d22q
8),

B1 = 6pq(4d1p
4 − 3d2q

4),(3.2)

C1 = 16d21p
8 + 168d1d2p

4q4 + 9d22q
8.

To obtain co-prime solutions of (2.1) take gcd(4d1p, 3d2q) = 1 in (3.2).
(ii) (a, b) = (3d1p

4, 4d2q
4) gives

A2 = (3d1p
4 + 4d2q

4)(9d21p
8 − 408d1d2p

4q4 + 16d22q
8),

B2 = 6pq(3d1p
4 − 4d2q

4),(3.3)

C2 = 9d21p
8 + 168d1d2p

4q4 + 16d22q
8.

To obtain co-prime solutions of (2.1) take gcd(3d1p, 4d2q) = 1 in (3.3).
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(iii) (a, b) = (12d1p
4, d2q

4) gives

A3 = (12d1p
4 + d2q

4)(144d21p
8 − 408d1d2p

4q4 + d22q
8),

B3 = 6pq(12d1p
4 − d2q

4),(3.4)

C3 = 144d21p
8 + 168d1d2p

4q4 + d22q
8.

Take gcd(12d1p, d2q) = 1 in (3.4) to get co-prime solutions of (2.1).
(iv) (a, b) = (d1p

4, 12d2q
4) gives

A4 = (d1p
4 + 12d2q

4)(d21p
8 − 408d1d2p

4q4 + 144d22q
8),

B4 = 6pq(d1p
4 − 12d2q

4),(3.5)

C4 = d21p
8 + 168d1d2p

4q4 + 144d22q
8.

Take gcd(d1p, 12d2q) = 1 in (3.5) to get co-prime solutions of (2.1).

Thus, we have found homogeneous polynomials A,B,C ∈ Z[p, q] of de-
grees 12, 6, 8 respectively such that A(p, q)2 + nB(p, q)4 = C(p, q)3, and we
have found conditions under which the solutions of (2.1) are co-prime.
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