MEASURE AND INTEGRATION

Relations between Shy Sets and Sets of ν_p -Measure Zero in Solovay's Model

by

G. PANTSULAIA

Presented by Andrzej LASOTA

Summary. An example of a non-zero non-atomic translation-invariant Borel measure ν_p on the Banach space ℓ_p $(1 \le p \le \infty)$ is constructed in Solovay's model. It is established that, for $1 \le p < \infty$, the condition " ν_p -almost every element of ℓ_p has a property P" implies that "almost every" element of ℓ_p (in the sense of [4]) has the property P. It is also shown that the converse is not valid.

The problem of the existence of an analogue of Lebesgue measure on infinite-dimensional topological vector spaces is interesting in itself and it has been studied for more than half a century by many people (cf. e.g. [2], [8], [9]). Among others, the result of I. V. Girsanov and B. S. Mityagin [2] deserves a special mention. It asserts that a σ -finite quasi-invariant Borel measure defined on an infinite-dimensional locally convex topological vector space is identically zero. Using this result, we deduce that the properties of σ -finiteness and translation-invariance are not consistent for non-zero Borel measures in infinite-dimensional topological vector spaces. A. B. Kharazishvili [5], ignoring the property of translation-invariance, constructed an example of a non-zero σ -finite Borel measure in the Hilbert space ℓ_2 which is invariant with respect to an everywhere dense (in ℓ_2) linear manifold. In the present article we ignore the property of σ -finiteness and give a construction of a non-zero non-atomic translation-invariant Borel measure ν_p on the Banach space ℓ_p $(1 \le p \le \infty)$ in the well-known Solovay model (cf. [7]), which is the following system of axioms:

(ZF) & (DC) & (every subset of \mathbb{R} is measurable in the Lebesgue sense),

²⁰⁰⁰ Mathematics Subject Classification: 28A05, 03C50, 28C20, 28D05.

Key words and phrases: Solovay's model, translation-invariant Borel measures, shy set, prevalent set.

where (ZF) denotes the Zermelo–Fraenkel set theory and (DC) denotes the axiom of Dependent Choices (cf. [1], [7]). Finally, we study relations between shy sets (cf. [4]) and sets of ν_p -measure zero in the above-mentioned model.

In what follows, we need some standard notions and auxiliary propositions. Let (E, S, μ) be a measure space. Following [1, p. 88], the measure μ is called *diffused* (or *continuous*) if

$$(\forall x \in E)(\{x\} \in S \& \mu(\{x\}) = 0).$$

LEMMA 1 ([1, Theorem 4.12, p. 106]). Let E_1 and E_2 be any two Polish topological spaces. Let μ_1 and μ_2 be diffused Borel probability measures on E_1 and E_2 respectively. Then there exists a Borel isomorphism

 $\varphi: (E_1, B(E_1)) \to (E_2, B(E_2))$

such that

$$(\forall X \in B(E_1))(\mu_1(X) = \mu_2(\varphi(X))).$$

LEMMA 2. Let E be a Polish topological space and let μ be a diffused Borel probability measure on E. Then in Solovay's model the completion $\overline{\mu}$ of μ is defined on the power set of E.

Proof. Let b_1 be a probability Borel measure defined on [0, 1] whose completion coincides with the standard Lebesgue measure on [0, 1]. According to Lemma 1, the measure b_1 is Borel isomorphic to the probability measure μ . Denote this isomorphism by φ and consider an arbitrary set $W \subset E$. It is clear that $\varphi^{-1}(W) = X \cup Y$, where

$$X \in B([0,1]), \quad (\exists Z)(Y \subset Z \in B([0,1]) \& b_1(Z) = 0)$$

The isomorphism between the measures b_1 and μ implies

$$\mu(\varphi(Z \setminus X)) = 0.$$

On the one hand, we can write

$$W = \varphi(X) \cup \varphi(Y).$$

On the other hand, we have $\varphi(Y) \subset \varphi(Z)$. Clearly, $\overline{\mu}(\varphi(Y)) = 0$ since $\mu(\varphi(Z)) = 0$.

COROLLARY 1. Let \mathbb{N} be the set of all natural numbers. For $k \in \mathbb{N}$, let S_k be the unit circle in the Euclidean plane \mathbb{R}^2 . We may identify S_k with the compact group of all rotations of \mathbb{R}^2 about the origin. Let λ be the Haar probability measure on the compact group $\prod_{k \in \mathbb{N}} S_k$. Then in Solovay's model the completion $\overline{\lambda}$ of λ is defined on the power set of $\prod_{k \in \mathbb{N}} S_k$.

REMARK 1. For $k \in \mathbb{N}$, define the function $f_k : \mathbb{R} \to S_k$ by

$$f_k(x) = \exp\{\pi x i\}$$
 for $x \in \mathbb{R}$.

Then clearly

$$\left(\prod_{k\in\mathbb{N}}f_k\right)(z+w) = \left(\prod_{k\in\mathbb{N}}f_k\right)(z)\circ\left(\prod_{k\in\mathbb{N}}f_k\right)(w)$$

for all $z, w \in \mathbb{R}^{\mathbb{N}}$, where $\mathbb{R}^{\mathbb{N}}$ denotes the vector space of all real-valued sequences, $\prod_{k \in \mathbb{N}} f_k$ denotes the direct product of the family of functions $(f_k)_{k \in \mathbb{N}}$, and "o" denotes the group operation in the product group $\prod_{k \in \mathbb{N}} S_k$.

REMARK 2. For $E \subset \mathbb{R}^{\mathbb{N}}$ and $g \in \prod_{k \in \mathbb{N}} S_k$, put

$$f_E(g) = \begin{cases} \operatorname{card}((\prod_{k \in \mathbb{N}} f_k)^{-1}(g) \cap E) & \text{if this is finite,} \\ +\infty & \text{in all other cases.} \end{cases}$$

Then

$$f_{E+h}(g) = f_E(g \circ g_h)$$
 for all $h = (h_k)_{k \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$,

where

$$g_h = \left(\prod_{k \in \mathbb{N}} f_k\right)(-h) = (\exp\{-\pi h_k i\})_{k \in \mathbb{N}}.$$

LEMMA 3 (see [6]). In Solovay's model there exists a translation-invariant measure μ on $\mathbb{R}^{\mathbb{N}}$ such that:

(1) $X \in \operatorname{dom}(\mu)$ for all $X \subset \mathbb{R}^{\mathbb{N}}$; (2) $\mu([-1,1]^{\mathbb{N}}) = 1$.

Proof. Define

$$\mu(E) = \int_{\substack{\prod \\ k \in \mathbb{N}}} f_E(g) \, d\overline{\lambda}(g) \quad \text{for } E \subset \mathbb{R}^{\mathbb{N}}.$$

The functional μ is a measure since $f_{\emptyset}(g) = 0$ and $f_{\bigcup_{k \in \mathbb{N}} E_k}(g) = \sum_{k \in \mathbb{N}} f_{E_k}(g)$ for any family $(E_k)_{k \in \mathbb{N}}$ of disjoint subsets of $\mathbb{R}^{\mathbb{N}}$.

The measure μ is translation-invariant. Indeed, for every $h \in \mathbb{R}^{\mathbb{N}}$, by the invariance of the measure $\overline{\lambda}$ and by Remark 2, we have

$$\begin{split} \mu(E+h) &= \int_{\prod_{k\in\mathbb{N}}S_k} f_{E+h}(g) \, d\overline{\lambda}(g) \\ &= \int_{\prod_{k\in\mathbb{N}}S_k} f_E(\Phi(g)) \, d\overline{\lambda}(g) = \int_{\Phi^{-1}(\prod_{k\in\mathbb{N}}S_k)} f_E(\Phi(g)) \, d\overline{\lambda}(g) \\ &= \int_{\prod_{k\in\mathbb{N}}S_k} f_E(g) \, d\overline{\lambda}_{\Phi}(g) = \int_{\prod_{k\in\mathbb{N}}S_k} f_E(g) \, d\overline{\lambda}(g) = \mu(E), \end{split}$$

where we use the transformation rule for the image $\overline{\lambda}_{\Phi}$ of $\overline{\lambda}$ with respect to the transformation $\Phi: x \mapsto x \circ \overline{h}$.

Note that

$$f_{[-1,1[\mathbb{N}]}(g) = 1$$
 for all $g \in \prod_{k \in \mathbb{N}} S_k$.

This implies that $\mu([-1, 1]^{\mathbb{N}}) = 1$. It is clear that

$$[-1,1]^{\mathbb{N}} \setminus [-1,1[^{\mathbb{N}}] = \bigcup_{k \in \mathbb{N}} X_k,$$

where $X_k = \{1\}_k \times [-1, 1]^{\mathbb{N} \setminus \{k\}}$ and $\mu(X_k) = 0$.

COROLLARY 2. In Solovay's model, for $1 \leq p < \infty$, there exists a translation-invariant measure ν_p in $(\ell_p, \|\cdot\|_p)$ which gets the value 1 on the set $\prod_{k\in\mathbb{N}}[-1/2^{k+1}, 1/2^{k+1}]$, where

$$\ell_p = \Big\{ (x_k)_{k \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : \sum_{k \in \mathbb{N}} |x_k|^p < \infty \Big\},\$$

and the norm $\|\cdot\|_p$ is defined by

$$\|(x_k)_{k\in\mathbb{N}}\|_p = \left(\sum_{k\in\mathbb{N}} |x_k|^p\right)^{1/p}$$

Proof. We define

$$\nu_p(X) = \mu(A^{-1}(X)) \quad \text{for } X \in B(\ell_p),$$

where $B(\ell_p)$ denotes the Borel σ -algebra of subsets of ℓ^p and the operator $A: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$ is given by

$$A((x_k)_{k\in\mathbb{N}}) = \left(\frac{1}{2^{k+1}}x_k\right)_{k\in\mathbb{N}} \quad \text{for } (x_k)_{k\in\mathbb{N}} \in \mathbb{R}^{\mathbb{N}}. \blacksquare$$

COROLLARY 3. Let ℓ_{∞} be the space of all bounded real-valued sequences $(x_k)_{k\in\mathbb{N}}$ with the standard norm $\|\cdot\|_{\infty}$ defined by

$$\|(x_k)_{k\in\mathbb{N}}\|_{\infty} = \sup_{k\in\mathbb{N}} |x_k|.$$

Then, in Solovay's model, there exists a translation-invariant Borel measure ν_{∞} such that the closed unit ball has ν_{∞} -measure 1.

Proof. Put

$$\nu_{\infty}(X) = \mu(X) \quad \text{for } X \in B(\ell_{\infty}).$$

Let us recall some notions due to Brian R. Hurt, Tim Sauer and James A. Yorke (cf. [4]). Let V be a complete metric linear space, by which we mean a vector space with a complete metric for which addition and scalar multiplication are continuous. Let μ be a Borel measure defined on V. A measure μ is said to be *transverse* to a Borel set $S \subset V$ (cf. [4, Definition 1, p. 221]) if:

- (i) there exists a compact set $U \subset V$ for which $0 < \mu(U) < \infty$;
- (ii) $\mu(S+v) = 0$ for every $v \in V$.

A Borel set $S \subset V$ is called *shy* (cf. [4, Definition 2, p. 222]) if there exists a measure transverse to S. More generally, a subset of V is called *shy* if it is contained in a shy Borel set. The complement of a shy set is called a *prevalent* set. We say that "almost every" element of V satisfies a given property (cf. [4, p. 226]) if the subset of V on which the property holds is prevalent.

Note that if V is infinite-dimensional, then all compact subsets of V are shy sets (cf. [4, Fact 8, p. 215]).

Let P be any sentence formulated for elements in ℓ_p .

THEOREM 1. In Solovay's model, for $1 \le p < \infty$, the condition

(j) ν_p -almost every element of ℓ_p has the property P

implies that

(jj) "almost every" element of ℓ_p has the property P.

Proof. Assume that ν_p -almost every element of ℓ_p has the property P. This means that $\nu_p(S) = 0$, where

$$S = \{ x \in \ell_p : P(x) \text{ is false} \}$$

To show that S is shy, i.e., the measure ν_p is transverse to S, note that $\prod_{k\in\mathbb{N}}[-1/2^{k+1}, 1/2^{k+1}]$ is a compact set in ℓ_p and

(i*)
$$0 < \nu_p(\prod_{k \in \mathbb{N}} [-1/2^{k+1}, 1/2^{k+1}]) = 1 < \infty;$$

(ii*) $\nu_p(S+h) = \nu_p(S)$ for all $h \in \ell_p$.

REMARK 3. An analogue of Theorem 1 is also valid for an arbitrary translation-invariant Borel measure ν on $\mathbb{R}^{\mathbb{N}}$ for which there exists a compact set $F \subset \mathbb{R}^{\mathbb{N}}$ with $0 < \nu(F) < \infty$.

REMARK 4. We do not know whether the assertion of the theorem above remains true for ν_{∞} because the problem of the existence of a compact subset with a non-zero finite ν_{∞} -measure in ℓ_{∞} remains open in Solovay's model.

REMARK 5. A converse to Theorem 1 is not valid in Solovay's model. Indeed, denote by $P_p((a_i)_{i \in \mathbb{N}})$ $(1 the following sentence: "<math>(a_i)_{i \in \mathbb{N}} \in \ell_p$ has the property that $\sum_{i \in \mathbb{N}} a_i$ diverges".

By [4, Proposition 2, p. 226], for $1 "almost every" sequence <math>(a_i)_{i \in \mathbb{N}}$ in ℓ_p has the property that $\sum_{i \in \mathbb{N}} a_i$ diverges. Since $\nu_p(\prod_{k \in \mathbb{N}} [-1/2^{k+1}, 1/2^{k+1}]) = 1 > 0$, an analogous result formulated in terms of the measure ν_p is not valid for 1 .

THEOREM 2. In Solovay's model μ -almost every sequence $(a_i)_{i \in \mathbb{N}}$ in $\mathbb{R}^{\mathbb{N}}$ has the property that $\sum_{i \in \mathbb{N}} a_i$ diverges.

Proof. We set

$$T = \Big\{ (a_i)_{i \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : \sum_{i \in \mathbb{N}} a_i \text{ converges} \Big\}.$$

Note that $T = \bigcup_{n \in \mathbb{N}} T_n$, where

$$T_n = \Big\{ (a_i)_{i \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : \sum_{i \in \mathbb{N}} a_i \text{ converges \& } |a_i| \le 1/2 \text{ for } i \ge n \Big\}.$$

Hence, we must show that $\mu(T_n) = 0$ for $n \in \mathbb{N}$. Clearly, for $n \in \mathbb{N}$, we have

$$T_n = \bigcup_{g \in \{2\mathbb{Z}\}^{n-1}} ((([-1,1[^{n-1}+g) \times [-1/2,1/2]^{\mathbb{N} \setminus \{1,\dots,n-1\}}) \cap T_n).$$

As

$$\mu(([-1,1[^{n-1}+g)\times[-1/2,1/2]^{\mathbb{N}\setminus\{1,\dots,n-1\}})=0,$$

we conclude that $\mu(T_n) = 0$.

According to Remark 3, we deduce that

COROLLARY 4. In Solovay's model "almost every" sequence $(a_i)_{i \in \mathbb{N}}$ in $\mathbb{R}^{\mathbb{N}}$ has the property that $\sum_{i \in \mathbb{N}} a_i$ diverges.

Note that this result can be obtained by the scheme presented in [4, Proposition 2, p. 226].

Finally, let \mathcal{K} be the class of all translation-invariant Borel measures ν in ℓ_p $(1 \leq p \leq \infty)$ such that there exists a compact set $X_{\nu} \subset \ell_p$ with $0 < \nu(X_{\mu}) < \infty$. Let \mathcal{L}_{μ} be the σ -ideal of subsets of ℓ_p generated by the class of ν -measure zero Borel subsets in ℓ_p . Then

$$\bigcup_{\nu \in \mathcal{K}} \mathcal{L}_{\mu} \subseteq \mathrm{S.S.}(\ell_p),$$

where S.S.(ℓ_p) denotes the class of all shy sets in ℓ_p . In this context, we state the following

PROBLEM. Is S.S. $(\ell_p) \setminus \bigcup_{\nu \in \mathcal{K}} \mathcal{L}_{\mu}$ non-empty in Solovay's model?

References

- J. Cichoń, A. Kharazishvili and B. Węglorz, Subsets of the Real Line, Wyd. Uniw. Łódzkiego, Łódź, 1995.
- I. V. Girsanov and B. S. Mityagin, Quasi-invariant measures in linear topological spaces, Nauchn. Dokl. Vyssh. Shkoly Fiz.-Mat. Nauki 1959, no. 2, 5–9 (in Russian).
 D. B. B. Halman, Maximum Theorem Van Nastana d. Nam York, 1959.
- [3] P. R. Halmos, *Measure Theory*, Van Nostrand, New York, 1950.
- [4] B. R. Hunt, T. Sauer and J. A. Yorke, Prevalence: a translation-invariant "almost every" on infinite-dimensional spaces, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 217– 238.
- [5] A. B. Kharazishvili, *Invariant measures in Hilbert space*, Soobshch. Akad. Nauk Gruzin. SSR 114 (1984), 45–48 (in Russian).
- [6] G. R. Pantsulaia, On translation-invariant measures in the non-separable Banach space l[∞], Georgian Technical University Press 430 (2000), no. 2, 18–20.
- [7] R. M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math. 92 (1970), 1–56.

- [8] V. N. Sudakov, *Linear sets with quasi-invariant measure*, Dokl. Akad. Nauk SSSR 127 (1959), 524–525 (in Russian).
- [9] A. M. Vershik, Duality in the theory of measure in linear spaces, ibid. 170 (1966), 497–500 (in Russian).

Department of Mathematics Georgian Technical University Kostava Street 77 01075 Tbilisi 75, Georgia E-mail: gogi_pantsulaia@hotmail.com

> Received January 20, 2003; received in final form June 6, 2003 (7324)