AN EXISTENCE THEOREM FOR SYSTEMS OF IMPLICIT DIFFERENTIAL EQUATIONS

THOMAS GRILL, MANFRED KNEBUSCH and MARCUS TRESSL

NWF-I Mathematik, Universität Regensburg, 93040 Regensburg, Germany E-mail: manfred.knebusch@mathematik.uni-regensburg.de marcus.tressl@mathematik.uni-regensburg.de

This note is based on the thesis [1] of the first author written under the guidance of the second author. The main technical input is Theorem 6 below. It will be proved in more generality in the subsequent paper [4].

Let f_1, \ldots, f_l be differential polynomials in one derivative and N variables with coefficients in \mathbb{R} . Suppose $I \subseteq \mathbb{R}$ is an open interval and $c: I \to \mathbb{R}^N$ is a C^{∞} -map with $f_1(c(t)) = \ldots = f_l(c(t)) = 0$ $(t \in I)$. Let \mathfrak{a} be the differential ideal generated by f_1, \ldots, f_l in the differential polynomial ring $\mathbb{R}\{X_1, \ldots, X_N\}$. Then \mathfrak{a} is certainly a semireal ideal, i.e. for all $g_1, \ldots, g_m \in \mathbb{R}\{X_1, \ldots, X_N\}$ we have $1 + \sum_{j=1}^m g_j^2 \notin \mathfrak{a}$. This follows immediately from our assumption that c is a differential solution of the generators f_1, \ldots, f_l of \mathfrak{a} . We'll prove here the converse of this observation, in other words we'll prove

THEOREM 1. If \mathfrak{a} is a differential ideal of $\mathbb{R}\{X_1, \ldots, X_N\}$ and \mathfrak{a} is semireal, then there is some nonempty open interval $I \subseteq \mathbb{R}$ and an analytic map $c : I \to \mathbb{R}^N$ with f(c(t)) = 0 $(f \in \mathfrak{a}, t \in I)$.

In order to find an analytic map $c = (c_1, \ldots, c_N) : I \to \mathbb{R}^N$ solving each relation f = 0 with $f \in \mathfrak{a}$ it is enough to find a nonempty open interval I of \mathbb{R} together with a differential homomorphism $\mathbb{R}\{X_1, \ldots, X_N\}/\mathfrak{a} \to C^{\omega}(I)$ and then take $c_i :=$ the image of $X_i \mod \mathfrak{a}$ under this map. We divide this problem into an algebraic part (Theorem 2) and an analytic part (Proposition 3).

THEOREM 2. Let F be a differential field and let A be a differentially finitely generated F-algebra. Suppose A is semireal, i.e. -1 is not a sum of squares in A. There is a real, differential F-algebra C, which is an integral domain and finitely generated as an F-algebra together with a differential F-algebra homomorphism $A \to C$.

²⁰⁰⁰ Mathematics Subject Classification: Primary 12H05; Secondary 12D.

The paper is in final form and no version of it will be published elsewhere.

PROPOSITION 3. Let C be a real, differential \mathbb{R} -algebra, which is an integral domain and finitely generated as an \mathbb{R} -algebra. Then there is a differential \mathbb{R} -algebra homomorphism $C \to C^{\omega}(I)$ for some open interval $I \subseteq \mathbb{R}$.

Clearly 1 follows from 2 and 3 applied to $A = \mathbb{R}\{X_1, \ldots, X_N\}/\mathfrak{a}$. Before we prove Theorem 2 and Proposition 3 we need some real algebraic preparations.

DEFINITION 1. A ring A is called *semireal* if -1 is not a sum of squares in A. A is called *real* if $a_1^2 + \ldots + a_n^2 = 0$ implies $a_1 = \ldots = a_n = 0$ for all $n \in \mathbb{N}$ and all $a_1, \ldots, a_n \in A$. An ideal **a** of A is called *(semi) real* if the ring A/\mathfrak{a} is (semi) real.

DEFINITION 2. Let A be a differential ring in K derivatives and let \mathfrak{a} be an ideal of A. We define $\mathfrak{a}^{\#} := \{a \in \mathfrak{a} \mid \text{ every derivative of } a \text{ is in } \mathfrak{a}\}.$

The useful construction $\mathfrak{a}^{\#}$ was first introduced by Keigher in [2]. Clearly $\mathfrak{a}^{\#}$ is the largest differential ideal of A contained in \mathfrak{a} . Let $\sigma : A \to B$ a ring homomorphism into a ring B. Let B[[T]] be the power series ring over B in one variable T. B[[T]] is a differential ring with the standard derivative $\frac{d}{dT}$. We define the Taylor morphism $T_{\sigma} : A \to B[[T]]$ by

$$T_{\sigma}(a) := \sum_{n \ge 0} \frac{\sigma(d^n a)}{n!} T^n.$$

Here $d^n a$ denotes the *n*-th derivative of $a \in A$.

The Leibniz rule implies that T_{σ} is a differential homomorphism. If $\sigma : A \to A/\mathfrak{a}$ is the residue map corresponding to an ideal \mathfrak{a} of A, then clearly $\mathfrak{a}^{\#}$ is the kernel of T_{σ} .

PROPOSITION 4. Let \mathfrak{a} be an ideal in the differential ring A. If \mathfrak{a} is prime, semireal, real respectively, then $\mathfrak{a}^{\#}$ is prime, semireal, real respectively.

Proof. If \mathfrak{a} is prime, semireal, real respectively, then A/\mathfrak{a} is a domain, semireal, real respectively. Hence the power series ring $A/\mathfrak{a}[[T]]$ is a domain, semireal, real respectively, and so $\mathfrak{a}^{\#} = \operatorname{Ker}(T_{A \to A/\mathfrak{a}})$ is prime, semireal, real respectively.

PROPOSITION 5. Let A be a differential ring and let $\mathfrak{p} \subseteq A$ be a differential ideal. Then \mathfrak{p} is maximal among the proper, semireal and differential ideals of A if and only if \mathfrak{p} is maximal among the proper, real and differential ideals of A. In this case \mathfrak{p} is prime.

Proof. Let \mathfrak{p} be maximal among all proper, semireal and differential ideals of A. The Proposition is proved if we can show that \mathfrak{p} is real and prime. By classical real algebra (cf. [3], III, §3, Satz 2), there is a real prime ideal \mathfrak{q} of A containing \mathfrak{p} . By Proposition 4, $\mathfrak{q}^{\#}$ is a real, differential prime ideal of A. Since $\mathfrak{q}^{\#}$ contains \mathfrak{p} , the maximality of \mathfrak{p} implies $\mathfrak{p} = \mathfrak{q}^{\#}$, thus \mathfrak{p} is real and prime. \blacksquare

Finally we use a structure theorem for differential algebras (in one derivative), as explained in [4].

THEOREM 6. Let S = (S, d) be a differential domain in one derivative, containing \mathbb{Z} , and let $R = (R, d) \subseteq (S, d)$ be a differential subring such that S is differentially finitely generated over R. Then there are R-subalgebras B and U of S and an element $h \in B$, $h \neq 0$ such that:

- (a) B is a finitely generated R-algebra and B_h is a finitely presented R-algebra.
- (b) $S_h = (B \cdot U)_h$ is a differentially finitely presented R-algebra.
- (c) The homomorphism $B \otimes_R U \to B \cdot U$ induced by multiplication is an isomorphism of *R*-algebras.
- (d) U is a differential polynomial ring over R in finitely many variables.

Proof. This is Theorem 1 in [4] for the case of one derivative. Take $U := P_{\{d\}}$ and replace B by $B \cdot P_{\emptyset}$ in [4], Theorem 1.

Proof of Theorem 2. Since A is semireal, A contains an ideal \mathfrak{p} , which is maximal among all proper, semireal and differential ideals of A. By Proposition 5, \mathfrak{p} is a real, differential prime ideal. Let S be the differential F-algebra $S := A/\mathfrak{p}$. Take F-subalgebras B, U of S and an element $h \in B, h \neq 0$ as in Theorem 6. Since S is real, B and B_h are real, too. It is enough to show that U = F, then the differential map $A \to A/\mathfrak{p} =$ $S \hookrightarrow S_h = B_h =: C$ has the required properties. Suppose $U \neq F$. Since B_h is a finitely generated, real F-algebra, Tarski's principle gives a homomorphism $\varphi : B_h \to \overline{F}$ into a real closed field \overline{F} containing F. Since $U \neq F$ is a differential polynomial ring, there is a differential F-algebra homomorphism $\tau : U \to F$ with nontrivial kernel. By Theorem 6, there is an F-algebra homomorphism $\sigma : S \to \overline{F}$, extending $\varphi|_B$ and τ . Thus $\mathfrak{q} := \operatorname{Ker} \sigma$ is a real ideal of S containing Ker τ . By Proposition 4, $\mathfrak{q}^{\#}$ is a real, differential ideal of S. Since τ is a differential homomorphism, $\mathfrak{q}^{\#}$ contains Ker τ , hence $\mathfrak{q}^{\#}$ is a nontrivial, real, differential ideal of S, which contradicts the maximality of \mathfrak{p} .

Proof of Proposition 3. Let $C = \mathbb{R}[a_1, \ldots, a_n]$ and let $g_i \in \mathbb{R}[X_1, \ldots, X_n]$ such that $g_i(a)$ is the derivative of a_i in C. We consider the ring $\mathbb{R}[X_1, \ldots, X_n]$ as a differential ring with derivation $d : \mathbb{R}[X_1, \ldots, X_n] \to \mathbb{R}[X_1, \ldots, X_n]$ defined by $dX_i = g_i$. Then the homomorphism $\lambda : \mathbb{R}[X_1, \ldots, X_n] \to C$ sending X_i to a_i is differential. Since C is a real, finitely generated \mathbb{R} -algebra, there is an \mathbb{R} -algebra homomorphism $\varepsilon : C \to \mathbb{R}$. The fundamental theorem on ordinary differential equations gives an open interval I of \mathbb{R} containing 0 and analytic maps $c_i : I \to \mathbb{R}$ $(1 \le i \le n)$ such that $c_i(0) = \varepsilon(a_i)$ and

$$c'_{i}(t) = g_{i}(c_{1}(t), \dots, c_{n}(t)) \ (1 \le i \le n).$$

Now a straightforward computation shows that the Taylor morphism T_{ε} of $\varepsilon : C \to \mathbb{R}$ maps a_i to the Taylor expansion of c_i at 0. By shrinking I if necessary, we get that T_{ε} has values in $C^{\omega}(I)$, which proves Proposition 3.

References

- [1] T. Grill, Contributions to differential, real algebra and its connection to differential equations, Dissertation, Regensburg, 1997.
- W. F. Keigher, *Prime differential ideals in differential rings*, in: Contributions to Algebra, H. Bass, P. J. Cassidy and J. Kovacic (eds.), Academic Press, New York, 1977, 239–249.
- [3] M. Knebusch and C. Scheiderer, *Einführung in die reelle Algebra*, Vieweg, 1989.
- [4] M. Tressl, A structure theorem for differential algebras, this volume.