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14 T. BANICA, J. BICHON AND B. COLLINSan de�ne then the universal algebra generated by abstrat variables uij , subjet to therelations R. The spetrum of this algebra is an abstrat objet, alled nonommutativeversion of G. The nonommutative version is not unique, beause it depends on R.A detailed study of Brown's algebras, from a K-theoreti point of view, is due toMClanahan [42℄. Unfortunately, the whole subjet is a bit limited, beause Brown'shoie for the relations R is somehow minimal, and this makes the orresponding algebratoo big. This algebra has a omultipliation and a ounit, but no antipode. In otherwords, the orresponding nonommutative version is a quantum semigroup.The ontinuation of story makes use of Woronowiz's axiomatization of ompat quan-tum groups [58℄, [59℄. The algebras Ao(n) and Au(n), orresponding to the orthogonaland unitary groups, appeared in Wang's thesis [55℄. Then Connes suggested use of sym-metri groups, and the algebra As(n) was onstruted in [56℄. In all three ases the ideais the same as Brown's. The point is to arefully hoose the relations R, in order to geta ompat quantum group in the sense of Woronowiz.The spetrum of As(n) is alled free version of Sn. This a ompat quantum group,bigger than Sn. Its subgroups are alled quantum permutation groups.In this paper we present a number of known fats about suh quantum groups. Wefous on ombinatorial aspets, and their algebrai or probabilisti interpretation.Aknowledgements. This work was started at B�dlewo in Otober 2006 at the workshop�Nonommutative harmoni analysis with appliations to probability�. We would like tothank Marek Bo»ejko for the invitation, and for several stimulating disussions.2. Operator algebras. The operator algebra bakground needed in order to onstrutquantum permutation groups redues to the de�nition of C∗-algebras, and to some earlywork on the subjet. We thought it useful to inlude a short presentation of this material.Atually the present text is written as to be at the same time an introdution and surveypaper.Definition 2.1. A C∗-algebra is a omplex algebra with unit, having a norm and aninvolution, suh that Cauhy sequenes onverge, and suh that ||aa∗|| = ||a||2.The basi example is B(H), the algebra of bounded operators on a Hilbert spae H.The GNS theorem states that any C∗-algebra appears as subalgebra of some B(H).The key example is C(X), the algebra of ontinuous funtions on a ompat spae X.The Gelfand theorem below states that any ommutative C∗-algebra is of this form.We need some basi spetral theory. The spetrum of an element a ∈ A is the set σ(a)onsisting of omplex numbers λ suh that a − λ is not invertible. The spetral radius
ρ(a) is the radius of the smallest disk entered at 0 ontaining σ(a).Theorem 2.1. Let A be a C∗-algebra.1. The spetrum of a norm one element is in the unit disk.2. The spetrum of a unitary element (a∗ = a−1) is on the unit irle.3. The spetrum of a self-adjoint element (a = a∗) onsists of real numbers.4. The spetral radius of a normal element (aa∗ = a∗a) is equal to its norm.



QUANTUM PERMUTATION GROUPS: A SURVEY 15The �rst assertion follows from the formula 1/(1− x) = 1 + x + x2 + . . .If f is a rational funtion having poles outside σ(a), we have σ(f(a)) = f(σ(a)). Byusing the funtions z−1 and (z + it)/(z − it) we get the middle assertions.Finally, the inequality ρ(a) ≤ ||a|| is lear from the �rst assertion. For the onversewe �x ρ > ρ(a), and we integrate over the irle of radius ρ:
∫

zn

z − a
dz =

∞∑

k=0

(∫
zn−k−1dz

)
ak = an.By applying the norm and taking n-th roots we get ρ ≥ lim ||an||1/n.In the ase a = a∗ we have ||an|| = ||a||n for any exponent of the form n = 2k, andby taking n-th roots we get ρ ≥ ||a||. This gives the missing inequality ρ(a) ≥ ||a||.In the general ase aa∗ = a∗a we have an(an)∗ = (aa∗)n, and we get ρ(a)2 = ρ(aa∗).Now sine aa∗ is self-adjoint, we get ρ(aa∗) = ||a||2, and we are done.Theorem 2.2. The ommutative C∗-algebras are those of form C(X).The proof is as follows. Given a ommutative C∗-algebra A, we an de�ne X to bethe set of haraters χ : A→ C, with topology making ontinuous all evaluation maps ea.Then X is a ompat spae, and a 7→ ea is a morphism of algebras e : A → C(X). Weprove �rst that e is involutive. We use the following formula:

a =
a + a∗

2
− i ·

i(a− a∗)

2
.Thus it is enough to prove the equality ea∗ = e∗a for self-adjoint elements a. But thisis the same as proving that a = a∗ implies that ea is a real funtion, whih is in turntrue, beause ea(χ) = χ(a) is an element of σ(a), ontained in the reals.Sine A is ommutative, eah element is normal, so e is isometri: ||ea|| = ρ(a) = ||a||.It remains to prove that e is surjetive. But this follows from the Stone-Weierstrasstheorem, beause e(A) is a losed subalgebra of C(X), whih separates points.3. Hopf algebras. This is a short introdution to Hopf algebra philosophy.In order to simplify presentation, we all omultipliation, ounit and antipode anymorphisms of C∗-algebras of the following type:

∆ : A→ A⊗A,

ε : A→ C,

S : A→ Aop.The terminology omes from the fat that in the ommutative ase A = C(X), themorphism ∆ is transpose to a binary operation, or multipliation, X ×X → X.Definition 3.1. A �nite Hopf algebra is a �nite dimensional C∗-algebra, endowed witha omultipliation, ounit and antipode, satisfying the following onditions:
(∆⊗ id)∆ = (id⊗∆)∆,

(ε⊗ id)∆ = id,

(id⊗ ε)∆ = id,

m(S ⊗ id)∆ = ε(.)1,



16 T. BANICA, J. BICHON AND B. COLLINS

m(id⊗ S)∆ = ε(.)1.The group algebra C∗(G) is the omplex vetor spae spanned by G, with produt
g · h = gh, involution g∗ = g−1, and norm oming from the regular representation.We say that A is oommutative if Σ∆ = ∆, where Σ(a⊗ b) = b⊗ a.Theorem 3.1. Let G be a �nite group.1. C(G) is a ommutative �nite Hopf algebra, with

∆(ϕ) = (g, h) 7→ ϕ(gh),

ε(ϕ) = ϕ(1),

S(ϕ) = g 7→ ϕ(g−1)as strutural maps. Any ommutative �nite Hopf algebra is of this form.2. C∗(G) is a oommutative �nite Hopf algebra, with
∆(g) = g ⊗ g,

ε(g) = 1,

S(g) = g−1as strutural maps. Any oommutative �nite Hopf algebra is of this form.In this statement the fat that ∆, ε, S satisfy the axioms is lear from de�nitions.The assertion about ommutative Hopf algebras follows from the Gelfand theorem. Forthe remaining assertion, let A be a �nite Hopf algebra, and onsider its omultipliation,ounit, multipliation, unit and antipode. By taking duals, we get linear maps as follows:
∆∗ : A∗ ⊗A∗ → A∗,

ε∗ : C→ A∗,

m∗ : A∗ → A∗ ⊗A∗,

u∗ : A∗ → C,

S∗ : A∗ → A∗.It is routine to hek that these maps make A∗ into a �nite Hopf algebra. Moreover,if A is oommutative then A∗ is ommutative, so we an apply the �rst result. We get
A∗ = C(G) for a ertain �nite group G, whih in turn gives A = C∗(G).4. Compat quantum groups. There are several types of ompat quantum groups.The formalism that we need is that of ompat quantum groups whose square of theantipode is the identity. A �rst study here is due to Enok and Shwartz [37℄. We use inthis paper an adaptation of Woronowiz's axioms in [58℄.Definition 4.1. A �nitely generated Hopf algebra is a C∗-algebra A, together with aunitary matrix u ∈Mn(A) whose oe�ients generate A, suh that the formulae

∆(uij) =
∑

uik ⊗ ukj ,

ε(uij) = δij ,

S(uij) = u∗
jide�ne a omultipliation, a ounit and an antipode.



QUANTUM PERMUTATION GROUPS: A SURVEY 17The maps ∆ and ε satisfy the usual axioms for a omultipliation and a ounit. Themap S satis�es the usual axioms for an antipode, on the dense ∗-algebra generated byentries of u. Observe that the square of the antipode is the identity: S2 = id.One the pair (A, u) is given, the maps ∆, ε, S an exist or not. If they exist, they areuniquely determined, and we have a Hopf algebra. This point of view, somehow oppositeto the spirit of abstrat group theory, was invented by Woronowiz [58℄.The terminology and axioms are motivated by the following result.Theorem 4.1. The following are �nitely generated Hopf algebras.1. C(G), with G ⊂ Un ompat Lie group.2. C∗(G), with Fn → G �nitely generated group.In both ases, we have to exhibit a ertain matrix u. For the �rst assertion, we anuse the matrix u = (uij) formed by matrix oordinates of G, given by:
g =




u11(g) u1n(g). . .
un1(g) unn(g)



 .

The seond assertion is lear by using the diagonal matrix formed by generators:
u =




g1 0. . .
0 gn



 .

The algebras in the above statement an be haraterized as being the ommutativeor oommutative �nitely generated Hopf algebras. See Woronowiz [58℄.In the general ase we have the following heuristi formulae.1. A = C(G), with G ompat quantum group.2. A = C∗(G′), with G′ disrete quantum group.Needless to say, the quantum groups G, G′ don't exist as onrete objets. This is infat the ase with all kinds of quantum groups. See Drinfeld [35℄.5. Free quantum groups. We onstrut now the orthogonal, unitary and symmetriquantum groups, following Wang's papers [55℄, [56℄. Let u ∈ Mn(A) be a square matrixover a C∗-algebra.1. u is alled orthogonal if u = ū and ut = u−1.2. u is alled biunitary if u∗ = u−1 and ut = ū−1.For the algebras C(On) and C(Un), the orresponding matrix u is orthogonal, respe-tively biunitary. In the symmetri group ase the situation is less obvious. When usingthe embedding Sn ⊂ Un given by permutation matries, the funtions uij are:
uij = χ{σ ∈ Sn | σ(j) = i}.These harateristi funtions satisfy a ondition whih reminds magi squares.



18 T. BANICA, J. BICHON AND B. COLLINSDefinition 5.1. u ∈Mn(A) is alled magi unitary if all entries uij are projetions, andon eah row and olumn of u these projetions are orthogonal, and sum up to 1.With these de�nitions in hand, it is routine to hek that we have the followingequalities, where C∗
com means universal ommutative C∗-algebra:

C(On) = C∗
com(uij | u = n× n orthogonal),

C(Un) = C∗
com(uij | u = n× n biunitary),

C(Sn) = C∗
com(uij | u = n× n magi unitary).In other words, orthogonality, biunitarity and magi unitarity are the relevant ondi-tions about matrix oordinates of On, Un, Sn. We an proeed now with liberation.Theorem 5.1. The universal algebras

Ao(n) = C∗(uij | u = n× n orthogonal),
Au(n) = C∗(uij | u = n× n biunitary),
As(n) = C∗(uij | u = n× n magi unitary)are �nitely generated Hopf algebras.The proof is as follows. Let us use the generi term �speial� for the three unitarity no-tions in the above theorem. Consider now the following three matries, having oe�ientsin the target algebras of the maps ∆, ε, S to be onstruted:

(∆u)ij =
∑

uik ⊗ ukj ,

(εu)ij = δij ,

(Su)ij = u∗
ji.The matrix εu = 1 is speial, and it is routine to hek that ∆u and Su are speialas well. Thus the maps ϕ = ∆, ε, S an be de�ned by ϕ(uij) = (ϕu)ij .Summarizing, we have now free analogues of On, Un, Sn. Their onstrution mightseem quite mysterious, and indeed so it is: free quantum groups are not axiomatized.The orthogonal and unitary algebras have the following properties.1. Ao(2) orresponds to the quantum group SU−1

2 .2. Ao(n) orresponds to an R-matrix quantization of SU2.3. Au(n) embeds into the free produt C(T ) ∗Ao(n).We refer to [10℄, [49℄ for an updated disussion of these results.6. Quantum permutation groups. The algebra As(n) is a free analogue of C(Sn). Weshow now that the orresponding ompat quantum group onsists indeed of �quantumpermutations�.The permutations of Sn at on points of X = {1, . . . , n}. The orresponding ationmap (i, σ) 7→ σ(i) gives by transposition a ertain morphism αcom, alled oation. Thisoation an be expressed in terms of the magi unitary assoiated to C(Sn):
αcom(δi) =

∑
δj ⊗ uji.Now let u be the magi unitary assoiated to As(n), and onsider the linear map αgiven by the above formula. Then α is a oation, and we have the following result.



QUANTUM PERMUTATION GROUPS: A SURVEY 19Theorem 6.1. We have the following ommutative diagram:
C(X)

α
−→ C(X)⊗As(n)

↓ ↓

C(X)
αcom−→ C(X)⊗ C(Sn)Moreover, α is the universal Hopf algebra oation on X.This result appeared in Wang's paper [56℄, in a slightly di�erent form. We refer to [2℄for a detailed disussion, by using the magi unitarity ondition.At this point of writing, it is not lear whether quantum permutations do exist. Thequestion is whether the anonial map As(n)→ C(Sn) is an isomorphism or not.Theorem 6.2. Quantum permutations exist starting from n = 4. More preisely:1. For n = 1, 2, 3 we have As(n) = C(Sn).2. For n ≥ 4 the algebra As(n) is not ommutative, and in�nite dimensional.The �rst assertion follows from the fat that for n = 1, 2, 3, the entries of a n × nmagi unitary matrix have to ommute with eah other. This is lear for n = 1, and alsofor n = 2, where the magi unitary must be of the following speial form:

up =

(
p 1− p

1− p p

)
.At n = 3 the proof is quite triky. The idea is to use the Fourier transform over Z3.In terms of the vetor ξ formed by third roots of unity, we an write α as follows:

α(ξi) =
∑

ξj ⊗ vji.Now the magi unitarity ondition on u translates into a ertain ondition on v, andthe point is that with this new ondition, ommutativity is lear. See [2℄.At n = 4 we use the following matrix, where p, q are projetions:
upq =





p 1− p 0 0

1− p p 0 0

0 0 q 1− q

0 0 1− q q



 .

This shows that the algebra < p, q >, whih an be hosen to be not ommutativeand in�nite dimensional, is a quotient of As(4). This gives the last assertion.The reasons why we have As(4) 6= C(S4) might remain quite mysterious. In whatfollows we propose several explanations for this fat.7. The Temperley-Lieb algebra. We present here a �rst oneptual explanation forthe main result in previous setion. The idea is that n = 4 is the ritial value of theJones index [40℄.Consider the algebra As(n). Its generators uij are oe�ients of the oation α, sothe matrix u is a orepresentation. The tensor powers of u are de�ned as follows:
(u⊗k)i1...ik,j1...jk

= ui1j1 . . . uikjk
.



20 T. BANICA, J. BICHON AND B. COLLINSThe problem is to ompute the Hom spaes between these orepresentations.Definition 7.1. The Temperley-Lieb algebra is given by
TLn(k, l) = span






· · · ← 2k points
W ← k + l strings
· · · · · ← 2l points




where strings join pairs of points, do not ross, and are taken up to isotopy.
TLn is a tensor ategory: the omposition is by vertial onatenation, with the rulethat losed irles are deleted and replaed by the number n, the tensor produt is byhorizontal onatenation, and the involution is by upside-down turning of diagrams.Temperley-Lieb diagrams at on tensors aording to the following formula, wherethe middle symbol is 1 if all strings of p join pairs of equal indies, and is 0 if not:

p(ei1 ⊗ . . .⊗ eik
) =

n∑

j1...jl=1




i1 i1 . . . ik ik

p

j1 j1 . . . jl jl



 ej1 ⊗ . . .⊗ ejl
.

In ase the index satis�es n ≥ 4, di�erent diagrams produe di�erent linear maps,and this ation makes TLn a subategory of the ategory of Hilbert spaes.Theorem 7.1. We have the equality of tensor ategories
Hom(u⊗k, u⊗l) = TLn(k, l)where u is the fundamental orepresentation of As(n), with n ≥ 4.The proof uses Woronowiz's duality in [59℄. The idea is that the de�nition of As(n)translates into a presentation result for the orresponding tensor ategory.1. The fat that a unitary matrix u is magi is equivalent to M ∈ Hom(u⊗2, u) and

U ∈ Hom(1, u), where M, U are the multipliation and unit of Cn.2. The relations satis�ed by M, U in a ategorial sense are those satis�ed by thediagrams m = | ∪ | and u = ∩, whih in turn generate TLn.We reall now that the tensor powers of the fundamental representation of PU2 ≃ SO3form a ategory whih is isomorphi to TL4. This shows that the irreduible representa-tions of As(4), with fusion rules and dimensions, are the same as irreduible representa-tions of SO3. Moreover, the fusion rule statement must hold for any n ≥ 4.Theorem 7.2. For any n ≥ 4, the irreduible orepresentations of As(n) satisfy theClebsh-Gordan rules for irreduible representations of SO3.In other words, the irreduible orepresentations are as follows.1. They are given by r0 = 1, r1 = u− 1, r2 = u⊗2 − 3u + 1 and so on.2. They satisfy ra ⊗ rb = r|a−b| + r|a−b|+1 + . . . + ra+b−1 + ra+b.These onsiderations have several extensions. We would like to mention here thefollowing statement, whih trivializes the whole thing: the quotients of As(n) are infuntorial orrespondene with subalgebras of the n-th spin planar algebra. See [3℄.



QUANTUM PERMUTATION GROUPS: A SURVEY 218. The Weingarten formula. By general results of Woronowiz in [58℄, the Hopf al-gebra As(n) has a unique unital bi-invariant state, alled Haar integration, and denotedhere as an integral: ∫
: As(n)→ C.The various integrals an be omputed by using the representation theory diagramsfound in previous setion. The idea here, going bak to Weingarten's paper [57℄, wasdeveloped in [16℄, [27℄, [28℄, [29℄, and was applied to quantum groups in [10℄, [11℄, [12℄.Definition 8.1. Consider the set NC(k) of non-rossing partitions of {1, . . . , k}.1. We plug multi-indies i = (i1, . . . , ik) into partitions p ∈ NC(k), and we set δpi = 1if all bloks of p ontain equal indies of i, and δpi = 0 if not.2. The Gram matrix of partitions (of index n ≥ 4) is given by Gkn(p, q) = n|p∨q|,where ∨ is the set-theoreti sup, and |.| is the number of bloks.3. The Weingarten matrix Wkn is the inverse of Gkn.The non-rossing partitions are in orrespondene with Temperley-Lieb diagrams hav-ing no upper points: these an be indeed obtained by fattening the partitions.Now by using the Temperley-Lieb ation desribed in the previous setion, we seethat the elements of NC(k) reate a basis of �xed vetors of u⊗k. The Gram matrix ofthis basis is nothing but Gkn, as shown by the following omputation:

〈p, q〉 =
∑

i

δpiδqi =
∑

i

δp∨q,i = n|p∨q|.Observe also that Gkn is by de�nition a kind of version of Di Franeso's meandermatrix in [33℄. With these notations, we have the following result.Theorem 8.1. The Haar funtional of As(n) is given by
∫

ui1j1 . . . uikjk
=

∑

pq

δpiδqjWkn(p, q)where the sum is over all pairs of diagrams p, q ∈ NC(k).The proof is based on the following fat: the numbers on the left are the matrixoe�ients of the orthogonal projetion onto the spae of �xed points of u⊗k.As a �rst onsequene, we have the following moment formula:
∫

(u11 + . . . + uss)
k = Tr(G−1

knGks).The free Poisson law of parameter t ∈ (0, 1] is the following probability measure:
πt = (1− t) δ0 +

1

2πx

√
4t− (x− 1− t)2 dx.This measure is also alled Marhenko-Pastur law. The terminology here omes fromthe fat that πt is the free analogue of the Poisson law of parameter t. See [53℄, [54℄.Theorem 8.2. With n→∞ the law of u11 + . . . + uss with s = [tn] onverges to πt.



22 T. BANICA, J. BICHON AND B. COLLINSThis follows from the moment formula, by using the fat that with n → ∞, boththe Gram and Weingarten matries are onentrated on the diagonal. The trae to beomputed redues to a sum of powers of t, known to give the k-th moment of πt.In the lassial ase a similar result is available, in terms of Poisson laws. As a on-lusion, C(Sn)→ As(n) transforms asymptoti independene into freeness. See [11℄.9. The Pauli quantum group. The entral objet of the theory is the algebra As(4).In this setion we present an expliit matrix model for this algebra, oming from thePauli matries:
c1 =

(
1 0

0 1

)
c2 =

(
i 0

0 −i

)
c3 =

(
0 1

−1 0

)
c4 =

(
0 i

i 0

)
.These matries multiply aording to the formulae for quaternions:

c2
2 = c2

3 = c2
4 = −1,

c2c3 = −c3c2 = c4,

c3c4 = −c4c3 = c2,

c4c2 = −c2c4 = c3.The Pauli matries form an orthonormal basis of M2(C), and the same is true if wemultiply them to the left or to the right by an element of SU2. This shows that for any
x ∈ SU2, the elements ξij = cixcj form a magi basis of M2(C), in the sense that theorresponding orthogonal projetions Pij form a magi unitary over M4(C).Definition 9.1. The Pauli representation is the map

π : As(4)→ C(SU2, M4(C))given by π(uij) = (x 7→ rank one projetion on cixcj).This representation is introdued in [13℄. In [12℄ we use integration tehniques forproving that π is faithful. The idea is to hek ommutativity of the following diagram:
As(4) → C(SU2, M4(C))

↓ ↓

C ← M4(C)A key problem is to work out the integral geometri analogy between C(S4) and
As(4), at level of laws of averages of diagonal oordinates uii. For C(S4) we have:

law(t1u11 + . . . + t4u44) =
1

24

(
9δ0 + δ1 + 2

∑

i

δti
+

∑

i 6=j

δti+tj

)
.For the algebra As(4) we an use the Pauli representation, whih makes integrationproblems orrespond to omputations on the real sphere S3.Theorem 9.1. For s = 1, 2, 4 we have the formula

law(s−1(u11 + . . . + uss)) =

(
1−

s

4

)
δ0 +

s

4
µswhere µ1, µ2, µ4 are a Dira mass, a Lebesgue measure, and a free Poisson law.



QUANTUM PERMUTATION GROUPS: A SURVEY 23This result doesn't quite larify the relation with C(S4). In fat, what is missing isthe s = 3 law. This is the law of the following matrix, depending on (a, b, c, d) ∈ S3:
M3 =

1

3





3a2 −ab −ac −ad

−ab 3b2 −bc −bd

−ac −bc 3c2 −cd

−ad −bd −cd 3d2



 .

We don't know how to ompute this measure. The problem is explained in [12℄.10. The hyperotahedral quantum group. In this setion we present a few knownfats, along with some reent work [8℄. The quantum symmetry algebra of a �nite graph
X is de�ned as follows.1. In ase X has no edges, we set A(X) = As(n). The fat that this is indeed aquantum symmetry algebra follows from onsiderations in previous setions.2. In the general ase, we set A(X) = As(n)/R, where R are the relations omingfrom du = ud, where d ∈Mn(0, 1) is the adjaeny matrix of X.The quotients of A(X) are alled Hopf algebras oating on X. See [2℄, [4℄, [18℄.Let us go bak to the magi unitary matrix upq in setion 6. This matrix ommuteswith the adjaeny matrix of the square. Moreover, by hoosing the projetions p, qto be free, the algebra < p, q > they generate is isomorphi to the group algebra of
Z2 ∗ Z2 = D∞, and we get the following result.Theorem 10.1. The dual of D∞ ats on the square.In other words, for the square we have an arrow A(X)→ C∗(D∞). The algebra A(X)an be atually omputed expliitly, and is isomorphi to C(O−1

2 ). See [20℄.This result has the following generalization. Consider the Hopf algebra C(O−1
n ), whihis the quotient of Ao(n) by the skew-ommutation relations for GL−1

n , namely:1. uijuik = −uikuij , ujiuki = −ukiuji, for i 6= j,2. uijukl = ukluij for i 6= k, j 6= l.These relations de�ne a Hopf ideal, so we have indeed a Hopf algebra.Theorem 10.2. C(O−1
n ) is the quantum symmetry algebra of the hyperube in R

n.This leads to the quite surprising onlusion that O−1
n is a quantum analogue of thehyperotahedral group Hn. On the other hand, O−1

n annot be a free version of Hn, saybeause the fusion semi-ring depends on n, whih avoids probabilisti freeness.In order to solve this problem, the idea is as follows. The group Hn appears also assymmetry group of the spae formed by the [−1, 1] segments on eah oordinate axis. Inother words, Hn is the symmetry group of In, the graph formed by n segments.Definition 10.1. Ah(n) is the quantum symmetry algebra of In.This algebra is the quotient of As(2n) by the relations oming from ommutation of
u with the adjaeny matrix of In. Now writing down the ommutation relations leads



24 T. BANICA, J. BICHON AND B. COLLINSto the onlusion that u must be a magi unitary of the following speial form:
u =

(
a b

b a

)
.We all suh a matrix a 2n× 2n sudoku unitary. With this notion in hand, Ah(n) isthe universal algebra generated by entries of a 2n× 2n sudoku unitary.As a �rst onsequene, we have the following ommutative diagram:

Au(n) → Ao(n) → Ah(n) → As(n)

↓ ↓ ↓ ↓

C(Un) → C(On)→ C(Hn)→ C(Sn)A Tannakian translation gives the representation theory of Ah(n): the relevant algebrais the Fuss-Catalan algebra of Bish and Jones [22℄, and the Weingarten mahinery leadsto a free analogue of the Bessel funtion ombinatoris for Hn.11. Free wreath produts. The simplest example of a wreath produt is the hypero-tahedral group Hn. Consider the graph In formed by n segments, and for eah segment
Ii onsider the element τi ∈ Hn whih returns Ii, and keeps the other segments �xed.The elements τ1 . . . τn have order two and ommute with eah other, so they generate aprodut Ln = Z2× . . .×Z2. Now the symmetri group Sn ats as well on In by permutingthe segments, and it is routine to hek that we have Hn = Ln ⋊Sn. But this latter groupis a wreath produt.Theorem 11.1. We have Hn = Z2 ≀ Sn.At level of algebras of funtions, this gives a formula of the following type, where ×wis some funtional analyti implementation of the ≀ operation:

C(Hn) = C(Z2)×w C(Sn).The operation ×w is not the good one for quantum groups. This is beause the naturalquantum formula involving it would imply Ah(2) = C(H2), whih is wrong. The point isthat in the quantum world, wreath produts are replaed by free wreath produts.Definition 11.1. The free wreath produt of (A, u) and (B, v) is given by
A ∗w B = (A∗n ∗B)/ < [u

(a)
ij , vab] = 0 >where n is the size of v, and has magi unitary matrix wia,jb = u

(a)
ij vab.This notion, introdued in [20℄, is justi�ed by formulae of the following type, where

G, A denote lassial symmetry groups, respetively quantum symmetry algebras:
G(X ∗ Y ) = G(X) ≀ G(Y ), A(X ∗ Y ) = A(X) ∗w A(Y ).There are several suh formulae, and the one we are interested in is:

G(I . . . I) = G(I) ≀ G(◦ . . . ◦),

A(I . . . I) = A(I) ∗w A(◦ . . . ◦).



QUANTUM PERMUTATION GROUPS: A SURVEY 25Here I is a segment, ◦ is a point, and the dots mean n-fold disjoint union. The �rstformula is Hn = Z2 ≀ Sn. As for the seond formula, this is what we need.Theorem 11.2. We have Ah(n) = C(Z2) ∗w As(n).Now getting bak to general free wreath produts, a �rst thing to be notied is thefollowing diagram, where maps on the left are de�ned by formulae on the right:
A∗n ∗B → A ∗w B

↓ ↓

A ∗B → A⊗B

∑
u

(a)
ii vaa →

∑
u

(a)
ii vaa

↓ ↓

∑
uiivaa →

∑
uii ⊗ vaaThe spetral measures of the north-east and south-west elements an be omputedin several ases of interest, and turn out to be equal. The onjeture is that equalityholds, under general assumptions. This is the same as saying that the spetral measureof A ∗w B appears as free multipliative onvolution of the spetral measures of A, B:

µ(A ∗w B) = µ(A) ⊠ µ(B).This is related to work in preparation of Bish and Jones, see [4℄. The whole thingwould be a �rst step towards establishing an analogy with results of �niady [45℄.12. Quantum automorphisms of �nite graphs. The free wreath produt results inprevious setion are part of a lassi�ation projet for �nite graphs [2℄, [3℄, [4℄, [5℄. Thisis in turn part of the Bish-Jones lassi�ation projet for planar algebras generated bya 2-box [23℄, [24℄. Indeed, it follows from the general Tannaka-Galois duality in [3℄ thatthe algebras of form A(X) with X olored oriented graph are those orresponding tosubalgebras of the spin planar algebra, generated by a 2-box.The onlusion in [5℄ is the following table, ontaining all vertex-transitive graphs oforder n ≤ 11 modulo omplementation, exept for the Petersen graph.Order Graph Classial group Quantum group2 K2 (simplex) Z2 Z23 K3 S3 S34 2K2 (dupliation) H2 H+

2 (hyper. quant. group)4 K4 S4 S+

4 (symm. quant. group)5 C5 (yle) D5 D55 K5 S5 S+

56 C6 D6 D66 2K3 S3 ≀ Z2 S3 ≀∗ Z2 (free wreath prod.)6 3K2 H3 H+

36 K6 S6 S+

67 C7 D7 D77 K7 S7 S+

7
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Order Graph Classial group Quantum group8 C8, C+

8 (yle with diags.) D8 D88 P (C4) (prism) H3 S+

4 × Z28 2K4 S4 ≀ Z2 S+

4 ≀∗ Z28 2C4 H2 ≀ Z2 H+

2 ≀∗ Z28 4K2 H4 H+

48 K8 S8 S+

89 C9, C3
9 (yle with hords) D9 D99 K3 × K3 (disrete torus) S3 ≀ Z2 S3 ≀ Z29 3K3 S3 ≀ S3 S3 ≀∗ S39 K9 S9 S+

910 C10, C2
10, C+

10, P (C5) D10 D1010 P (K5) S5 × Z2 S+

5 × Z210 C4
10 Z2 ≀ D5 Z2 ≀∗ D510 2C5 D5 ≀ Z2 D5 ≀∗ Z210 2K5 S5 ≀ Z2 S+

5 ≀∗ Z210 5K2 H5 H+

510 K10 S10 S+

1011 C11, C2
11, C3

11 D11 D1111 K11 S11 S+

1113. Graphs having no quantum symmetry. The lassi�ation projet for �nitegraphs is there for various reasons, one of them being to help in lassi�ation of er-tain subfators and planar algebras, of integer index. In other words, the whole thingshould be regarded as belonging to a speialized area of von Neumann algebras, andmathematial physis in general.As explained to us by Jones, the end of the game would be to investigate some speialgraphs, suh as the Clebsh graph, or the Higman-Sims graph.We are quite far away from this kind of appliation. The big list in previous setiononsists of simplexes, yles, and their produts. That is, our main realization so far isto have reasonably strong results about produt operations.The next step would be to develop some new tehniques, for graphs whih do notdeompose as produts. The �rst suh graph is the Petersen one, at n = 10. As alreadymentioned, we have no results about it. But work here is in progress, and we hope toome up soon with an answer, along with a study for higher n, say between 12-15.We would like to present now a �rst oneptual result emerging from our small nstudy. This onerns graphs having no quantum symmetry.Definition 13.1. A �nite graph X has no quantum symmetry if it satis�es one of thefollowing equivalent onditions, where d is its adjaeny matrix.1. The quantum symmetry algebra A(X) is ommutative.2. We have A(X) = C(GX), where GX is the symmetry group of X.3. For a magi unitary u, du = ud implies that uij ommute with eah other.



QUANTUM PERMUTATION GROUPS: A SURVEY 27The problem of haraterizing suh graphs goes bak to Wang's paper [56℄, with theresults A(C3) = C(S3) and A(C4) 6= C(H2), showing that C3 has no quantum symmetry,but C4 does. A topologial formulation of the problem is found by Curtin in [32℄.There are several graphs in the above table whih satisfy this ondition: the yles
Cn with n 6= 4, a number of prisms and of yles with hords, and the disrete torus
K3 × K3. Moreover, we have found some more graphs by working on the subjet, andthis led us to take a detailed look at the ase of irulant graphs.A graph X having n verties is alled irulant if its automorphism group ontainsopy of Zn. This is the same as saying that verties of X are elements of Zn, and that
i ∼ j (onnetion by an edge) implies i + k ∼ j + k for any k.Assoiated to a irulant graph are the following algebrai invariants.1. The set S ⊂ Zn is given by i ∼ j ⇐⇒ j − i ∈ S.2. The group E ⊂ Z∗

n onsists of elements a suh that aS = S.3. The order of E is denoted k, and is alled type of X.With these notations, we have the following result:Theorem 13.1. A type k irulant graph having p ≫ k verties, with p prime, has noquantum symmetry.This result is proved in [7℄, with the lower bound p > 6ϕ(k), where ϕ is the Eulerfuntion. Most of the proof there doesn't really use the fat that p is prime, and we hopeto ome up soon with more general results in this sense.The whole subjet is somehow opposite to the freeness onsiderations in previoussetions: �no quantum symmetry� means �too many onstrains, hene independene�.14. Hadamard matries. A omplex Hadamard matrix is a matrix h ∈Mn(C) havingthe following properties: entries are on the unit irle, and rows are mutually orthogonal.The rows of h, denoted h1, . . . , hn, an be regarded as elements of the algebra Cn.Sine eah hi is formed by omplex numbers of modulus 1, this element is invertible. Wean therefore onsider the elements ξij = hj/hi, and we have:
〈ξij , ξik〉 = 〈hj/hi, hk/hi〉 = n〈hj , hk〉 = n · δjk.A similar omputation works for olumns, so ξ is a magi basis of Cn, in the sensethat the orresponding orthogonal projetions P (ξij) form a magi unitary matrix.Definition 14.1. Let h ∈Mn(C) be an Hadamard matrix.1. ξ is the magi basis of C

n given by ξij = hj/hi.2. P is the magi unitary over Mn(C) given by Pij = P (ξij).3. π is the representation of As(n) given by π(uij) = Pij .4. A is the quantum permutation algebra assoiated to π.In other words, we say that the representation π : As(n) → Mn(C) omes from arepresentation ν : Gn → Un of the dual of the n-th quantum permutation group, thenwe onsider the quantum group G = ν(Gn), and the algebra A = C∗(G). See [14℄.Theorem 14.1. The onstrution h→ A has the following properties.



28 T. BANICA, J. BICHON AND B. COLLINS1. The Fourier matrix hij = wij with w = e2πi/n gives A = C(Zn).2. For a tensor produt h = h′ ⊗ h′′ we have A = A′ ⊗A′′.3. A is ommutative if and only if h is a tensor produt of Fourier matries.For n = 1, 2, 3, 5 any Hadamard matrix is equivalent to the Fourier one. At n = 4 wehave the following example, depending on q on the unit irle:
hq =





1 1 1 1

1 q −1 −q

1 −1 1 −1

1 −q −1 q



 .

These are, up to equivalene, all 4×4 Hadamard matries. As an example, the Fouriermatrix orresponds to the value q = ±i. See Haagerup [39℄.Theorem 14.2. Let n be the order of q2, and for n < ∞ write n = 2sm, with m odd.The matrix hq produes the algebra C∗(G), where G is as follows.1. For s = 0 we have G = Z2n ⋊ Z2.2. For s = 1 we have G = Zn/2 ⋊ Z4.3. For s ≥ 2 we have G = Zn ⋊ Z4.4. For n =∞ we have G = Z ⋊ Z2.This result provides the �rst example of a deformation situation for quantum permu-tation groups. Observe that the parameter spae is the unit irle, with roots of unityhighlighted. We should mention that this spae, while being fundamental in most theoriesemerging from Drinfeld's original work [35℄, is quite new in the ompat quantum grouparea, where the deformation parameter is traditionally real. See [14℄.There are many di�ult problems regarding Hadamard matries, and we don't knowyet if quantum permutation groups an help. See Jones [41℄.15. Coyle twists of the symmetri group. The examples of quantum permutationgroups disussed so far in this paper are either lassial or in�nite-dimensional. A naturalquestion is whether there exist non-lassial �nite quantum permutation groups. Theonstrution of suh objets was done in [17℄, using the 2-oyle twisting proedure.The idea of twisting, originally due to Drinfeld [36℄, and developed by Doi [34℄ in thedual framework, is the following one. Starting with a Hopf algebra A, we onsider linearmaps σ : A⊗A→ C satisfying ertain onditions and alled (Hopf) 2-oyles. We thendeform the produt of A by σ to get a new Hopf algebra Aσ, alled a twist of A, andhaving the same tensor ategory of orepresentations as A. See Shauenburg [44℄.The theory of twisting is developed at di�erent levels of generality and studied innumerous papers that we shall not list here. Amongst these, the paper of Enok andVainerman [38℄ was in�uential: they realized that 2-oyles ould be easily onstrutedfrom abelian subgroups, over whih Hopf 2-oyles orrespond to ordinary group 2-oyles. This idea was used in [17℄ to onstrut twists of C(S2n) indued by the abeliansubgroup Zn
2 , leading to the following onstrution.



QUANTUM PERMUTATION GROUPS: A SURVEY 29Let i ∈ {1, . . . , 2n}. For i even we put i′ = i − 1 and i∗ = i/2. For i odd we put
i′ = i + 1 and i∗ = i′/2. We onsider a matrix p = (pij) ∈ Mn(C) with pii = 1 and
pij = pji = ±1 for all i and j.Definition 15.1. The Hopf algebra Cp(S2n) is de�ned to be the quotient of As(2n) bythe following relations:
(3 + pi∗j∗)ukjuli + (1− pi∗j∗)ukjuli′ + (1− pi∗j∗)ukj′uli + (pi∗j∗ − 1)ukj′uli′

= (3 + pl∗k∗)uliukj + (1− pl∗k∗)ul′iukj + (1− pl∗k∗)uliuk′j + (pl∗k∗ − 1)ul′iuk′j .The oneptual meaning of these relations is that they are FRT-relations [43℄ assoi-ated with a Yang-Baxter operator C2n ⊗ C2n → C2n ⊗ C2n attahed to p.One shows that Cp(S2n) is a twist of C(S2n) and here is the onlusion in [17℄.Theorem 15.1. There exist at least n �nite quantum permutation groups ating on 2npoints, and having the same tensor ategory of representations as S2n.It is also possible to onstrut twists of C(S2n+1) in the same manner. More generaltwistings of Sn are onstruted in [19℄, using arbitrary roots of unity.We have the following natural questions.1. Does there exist a �nite graph having a non-lassial �nite quantum symmetrygroup, for example one of the above ones onstruted by twisting?2. Consider a �nite quantum group G obtained as a twisting of Sn. Is it true that Gis a quantum permutation group?The twisting onstrution is also available for any �nite group. This leads to somesurprises: although the alternating group A5 does not at faithfully on 4 points, it has a�nite quantum analogue that does. This plays an important role in the lassi�ation ofthe quantum groups ating on 4 points in the next setion.Finally we should mention that the twisting proedure is also a useful tool to un-derstand the in�nite-dimensional situation: for example the Hopf algebras C(O−1
n ) aretwists of C(On). As explained in the next setion, in the ase n = 4, twisting tehniquesessentially enable us to lassify the quantum groups ating on 4 points.16. Quantum groups ating on 4 points. A natural problem in the area of quantumpermutation groups is the lassi�ation problem, at least for small n. This is the sameas the lassi�ation of Hopf algebra quotients of As(n). In the dual language, we haveto lassify the quantum subgroups of S+

n , the ompat quantum group dual to As(n),de�ned by As(n) = C(S+
n ).At n = 4 we have the following result [6℄.Theorem 16.1. The ompat quantum subgroups of S+

4 are as follows:1. S+
4 ≃ SO−1

3 .2. The quantum orthogonal group O−1
2 .3. The quantum group D̂∞, the quantum dual of the in�nite dihedral group.4. The symmetri group S4 and its subgroups.5. The quantum group Sτ

4 , the unique non-trivial twist of S4.



30 T. BANICA, J. BICHON AND B. COLLINS6. The quantum group Aτ
5 , the unique non-trivial twist of the alternating group A5.7. The quantum group Dτ
n, n even and n ≥ 6, the unique non-trivial twist of thedihedral group of order 2n.8. The quantum group DCτ

n of order 4n, n ≥ 2, a pseudo-twist of the diyli groupof order 4n.9. The quantum group D̂n, n ≥ 3, the quantum dual of the dihedral group of order
2n.The �rst step in the proof is to show that As(4) is in fat isomorphi with C(SO−1

3 ),the latter being the quotient of C(SU−1
3 ) by the relations making the fundamental matrixorthogonal. Then one shows that C(SO−1

3 ) is a twist of C(SO3) (reall that, in ontrast,
C(SU−1

2 ) is not a twist of C(SU2)). Then one uses twisting tehniques to show that thequantum subgroups diagonally ontaining the Klein subgroup of SO−1
3 orrespond totwists of subgroups of SO3 ontaining the diagonal subgroup. The remaining ases areexamined by using ase-by-ase arguments.The existene and uniqueness of various quantum groups in the theorem follow fromwork of several authors, inluding Davydov, Etingof and Gelaki, Ka and Paljutkin,Masuoka, Nikshyh, Vainerman.We note that all the quantum groups ourring in the theorem were already known,and that the lassi�ation has lots of similarities with the one for the ompat subgroupsof SO3, whih is explained by the twisting result.A diret onsequene of the lassi�ation theorem is the following result.Theorem 16.2. The lassial symmetri group S4 is maximal as a ompat quantumsubgroup of the quantum permutation group S+

4 .We onjeture that for any n, the lassial symmetri group Sn is maximal in thequantum permutation group S+
n .The next step is to ontinue the lassi�ation for the next values of n, say n = 5, 6, 7.At this stage we are very far from having omplete results, or even from having a strategy.We expet that several additional tehnial di�ulties will arise. The �rst one is thenon-amenability of the disrete quantum group dual to S+

n if n ≥ 5, shown in [1℄.As a last remark, the results presented here are in onnetion with the various n = 4results from previous setions. A �rst problem here would be to �nd expliit matrixmodels for all quantum groups in the above theorem. Another problem is to understandthe relation with integration results, say via a systemati study of twisted integration.17. Conlusion. In this paper we have presented several known fats about quantumpermutation groups, most of them being published, or available at arxiv.org. The theoryis quite reent: it originates from Wang's 1998 paper [56℄, and was basially developed inthe last few years.The meaning of these investigations might remain quite unlear. This is indeed thease: the whole subjet, with all its possible interpretations, belongs to area of mathe-matial physis, where everything is by de�nition quite unlear.



QUANTUM PERMUTATION GROUPS: A SURVEY 31The problem is that the theory is not mature enough for a serious omparison withresults in traditional theoretial physis. It is most likely that many years will pass beforereahing to the orret tehnial level.It is probably instrutive here to reall the story of nonommutative geometry, whihis illustrating for the di�ulty of applying mathematial ideas. The theory was initiatedby Connes in the early eighties, with ideas oming from foliations, groupoids, and theAtiyah-Singer theorem. The high energy physis motivation was revealed 10 years later,in the Connes-Lott paper [31℄. This was still quite away from reasonable numeri results,and the 170 GeV predition for the mass of the Higgs boson was obtained 15 more yearslater, in the Chamseddine-Connes-Marolli paper [26℄.Bak to quantum permutation groups, what we an say for the moment is that theseenode, via a very simple formalism, a few reent results.1. Relation with Jones theory. The idea here is to develop a double approah to theproblem, in terms of subfators and planar algebras, by using tools from funtionalanalysis and low-dimensional topology. The �rst thing to be said is that the mainproblems onern the ase of non-integer index, and that our study is quite faraway from that (see [9℄). However, in the simplest ase, namely when the index isinteger, quantum groups turn to appear, and we have reasons to believe that quan-tum permutation groups have to be investigated �rst. Among others, the resultspresented in this paper are in tune with the reent work of Bish and Jones, in thease where the index is integer or generi.2. Relation with Voiulesu theory. The idea here is to develop a systemati approahto freeness. Among several aspets of the theory we have Speiher's approah, in thespirit of Rota's treatment of lassial probability [46℄, and Biane's representationtheory approah [16℄. Our results make appear a number of key notions of thetheory, in the ombinatorial framework. It is our hope that some further randommatrix investigations will lead as well to analyti results.3. Among other results, we have the pleasing appearane of the Pauli matries inonnetion with the entral objet of the theory, namely the algebra As(4). Anotherimportant fat is the appearane of Di Franeso's meander determinants in theontext of integration problems. However, regarding both subjets, there is still alot of work to be done before understanding why these objets appear as they do,in the ontext of quantum permutation groups.On the mathematial side, there are a few diretions to explore as well. A numberof tehniques oming from disrete groups are developed by Vaes, Vergnioux and theirollaborators in [15℄, [21℄, [47℄, [48℄, [49℄, [50℄, [51℄, [52℄, for various types of disretequantum groups. Some of these tehniques are expeted to apply to duals of quantumpermutation groups, as a omplement to the above-mentioned onsiderations.Referenes[1℄ T. Bania, Symmetries of a generi oation, Math. Ann. 314 (1999), 763�780.[2℄ T. Bania, Quantum automorphism groups of small metri spaes, Pai� J. Math. 219(2005), 27�51.
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