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Abstract. In this paper, we study a representation of the quantum Itô algebra in Fock space and

then by using a noncommutative Radon-Nikodym type theorem we study the density operators

of output states as quantum martingales, where the output states are absolutely continuous with

respect to an input (vacuum) state. Then by applying quantum martingale representation we

prove that the density operators of regular, absolutely continuous output states belong to the

commutant of the ⋆-algebra parameterizing the quantum Itô algebra.

1. Introduction. Since the quantum stochastic calculus was introduced by Hudson and

Parthasarathy in [10], stochastic integral representations of quantum martingales have

been studied by many authors (see [11], [12], [17], [18] and the references cited therein)

with applications to study of Markovian cocycles. In fact, the existence of a stochastic

generator for a Markovian cocycle is verified by applying the integral representation

of quantum martingale and then the cocycle is realized as the solution of a quantum

stochastic differential equation (see [10], [16]).
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On the other hand, a quantum Itô algebra generalizing Itô algebra on the axiomatic

level was defined in [2] by a family {dΛ(t, a) : a ∈ a} of stochastic differentials dΛ(t, a)

with respect to t ∈ R+ with a indexing ⋆-semigroup a. Here a is extended to a complex,

in general infinite dimensional space, parameterizing ⋆-algebra with an involution, death

d ∈ a (a self-adjoint annihilator) and a positive linear ∗-functional l normalized as l(d) =

1, see Section 2. In fact, the quantum Itô algebra and the parameterizing ⋆-algebra can be

identified. The classification of the general (noncommutative) quantum Itô algebra, and

the representation theorem are established in [5] and [7]. The quantum Levy-Chinchin

type decomposition theorem has been proved in [5] for finite-dimensional quantum Itô

algebra, and in [6] for the infinite-dimensional case. Also, it was proved in [2, 3] that any

(classical or quantum) stochastic noise described by a process R+ ∋ t 7→ Λ(t, a) with

independent increments, forming an Itô ⋆-algebra, can be represented in the (symmetric)

Fock space F0 = Γ(K) over the Hilbert space K = L2
E(R+) of E-valued square-integrable

functions on R+.

In this paper, we study a representation of the quantum Itô algebra in Fock space

and families of output states defined on ∗-algebras of operators acting on a Fock scale

of the representing Fock space of the quantum Itô algebra. By using a noncommutative

Radon-Nikodym type theorem we study the density operators of output states as quantum

martingales, where the output states are absolutely continuous with respect to a input

(vacuum) state. Then by applying quantum martingale representation we prove that the

density operators of regular, absolutely continuous output states belong to the commutant

of the quantum Itô algebra.

The paper is organized as follows. In Section 2 we remind the definition of the general

quantum Itô algebra given in [2], and their GNS-representation and Fock representation.

In Section 3 we recall a rigging of Fock space which is necessary for our study. In Sec-

tion 4 we recall quantum stochastic processes, specially quantum martingales, and Wick

exponential of basic quantum stochastic processes. In Section 5 we study quantum input

and output states, and their density operators as quantum martingales.

2. Quantum Itô algebra. Let a be a noncommutative ⋆-algebra with a self-adjoint

annihilator (death) d ∈ a, i.e., d = d⋆ and ad = 0. Let l be a normalized (as l(d) = 1)

positive linear functional on a, i.e.,

l : a → C; l(a⋆a) ≥ 0, l(a⋆) = l(a), a ∈ a.

Let (E , k) be a minimal Kolmogorov decomposition of l, i.e., E is a Hilbert space and k

is a map from a into E such that l(a⋆b) = k(a)∗k(b) for any a, b ∈ a. We denote j the

operator representation of a on the Hilbert space E defined by

j : a ∋ a 7→ j(a) ∈ L(E), j(a)k(b) = k(ab), a, b ∈ a,

where L(E) is the algebra of all continuous linear operators on E . It is directly seen that

j(a⋆b) = j(a⋆)j(b) = j(a)∗j(b) for any a, b ∈ a. Therefore, the functional l defines the

GNS representation a 7→ a = (aµ
ν )µ=−,•

ν=+,• of a in terms of the quadruples:

a•• = j(a), a•+ = k(a), a−• = k∗(a), a−+ = l(a),

where k∗(a) = k(a⋆)∗.
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Remark. Since (E , k) is a minimal Kolmogorov decomposition of l, E can be considered

as the completion of a0 = LS{a ∈ a : l(a⋆a) 6= 0} with respect to the norm | · |E induced

by the inner product 〈a, b〉E = l(a⋆b) for a, b ∈ a0 and then k is given by

k(a) =

{

a, l(a⋆a) 6= 0;

0, l(a⋆a) = 0, a ∈ a.

The operator representation j of a is the left multiplication, i.e., j(a)k(b) = j(a)b = ab

for any a, b ∈ a.

The quantum Itô algebra defined in [2] is the linear span of differentials:

dΛ(t, a) = Λ(t+ dt, a) − Λ(t, a), a ∈ a, t ∈ R+ = [0,∞)

for a family {Λ(a) : a ∈ a} of operator-valued integrators Λ(t, a) on a pre-Hilbert space

satisfying the ⋆-semigroup conditions: Λ(t, a⋆) = Λ(t, a)† and

dΛ(t, ab) = dΛ(t, a)dΛ(t, b),
∑

λidΛ(t, ai) = dΛ
(

t,
∑

λiai

)

with mean values 〈dΛ(t, a)〉 = l(a)dt in a given vector state 〈·〉, where for each t ∈ R+,

Λ(t, a)† is the Hermitian conjugate of the (unbounded) operator Λ(t, a) which is defined

on the pre-Hilbert space as the operator Λ(t, a⋆), and

dΛ(t, a)dΛ(t, b) = d (Λ(t, a)Λ(t, b)) − dΛ(t, a)Λ(t, b) − Λ(t, a)dΛ(t, b).

Since l is normalized as l(d) = 1, dtI can be understood as dΛ(t, d). By assuming that

the parameterisation is exact such that dΛ(t, a) = 0 ⇒ a = 0, we can identify the Itô

algebra (dΛ(a), ldt) and the parameterising ⋆-algebra (a, l).

As was proved in [2], a quantum stochastic stationary processes R+ ∋ t 7→ Λ(t, a),

a ∈ a with Λ(0, a) = 0 and independent increment dΛ(t, a) = Λ(t+dt, a)−Λ(t, a), forming

a quantum Itô ⋆-algebra, can be represented in the Fock space F0 ≡ Γ(L2
E(R+)) over the

E-valued square integrable functions on R+ as Λν
µ(t, aµ

ν ) = aµ
νΛν

µ(t), where

Λ(t, a) =
•

∑

µ=−

+
∑

ν=•

aµ
νΛν

µ(t) = a••Λ
•
•(t) + a•+Λ+

• (t) + a−• Λ•
−(t) + a−+Λ+

−(t),

is the canonical decomposition of Λ into the conservation Λ•
•, creation Λ+

• , annihilation

Λ•
− and time Λ+

− = tI processes of quantum stochastic calculus having the mean values

< Λν
µ(t) >= tδν

+δ
−
µ with respect to the vacuum state in F0. Thus the parameterising

algebra a can be always identified with ⋆-subalgebra of the Hudson-Parthasarathy (HP)

algebra Q(E) of all quadruples a = (aµ
ν )µ=−,•

ν=+,• , where aµ
ν : Eν → Eµ are bounded operators

on E• = E , E+ = E− = C with the Hudson-Parthasarathy (HP) multiplication table [10]:

a • b = (aµ
•b

•
ν)µ=−,•

v=+,• ,

the unique death d = (δµ
−δ

+
ν )µ=−,•

ν=+,• , and the involution (a⋆)µ
−ν = (aν

µ)∗, where −(−) = +,

−• = • and −(+) = −.

3. Rigging of fock space. Let H be a (initial) complex Hilbert space with inner prod-

uct 〈·| ·〉 which is conjugate linear and linear in the first variable and second variable,

respectively. Let D be a reflexive Fréchet subspace of H which can be considered as a pro-

jective limit with respect to an increasing sequence of Hilbertian norms | · |p ≥ |· |0 = | · |H
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for p ≥ 0, see [15]. In fact, D = ∩p≥0Dp, where Dp is the completion of D with respect to

the norm | · |p. Let D′ denote the dual space of continuous antilinear (conjugate linear)

functionals:

ζ ′ : D ∋ η 7→ 〈η| ζ ′〉 ∈ C

with respect to the canonical pairing 〈η| ζ ′〉 for η, ζ ′ ∈ H. The space D′ will be equipped

with the weak topology induced by its predual(=dual) D. Let B(D) denote the linear space

of all continuous sesquilinear forms 〈ζ|Bη〉 on D which is identified with the continuous

linear operator (kernel) B : D → D′. The space B(D) will be equipped with w∗-topology

(induced by the predual B∗(D) = D ⊗ D) which coincides with the weak topology on

each bounded subset with respect to the norm | · |p. Let L(D) denote the algebra of all

continuous linear operators B : D → D and then L(D) ⊂ B(D).

For each B ∈ B(D), B† ∈ B(D) is the Hermite conjugated form (kernel) defined by
〈

ζ|B†η
〉

= 〈η|Bζ〉, η, ζ ∈ D.

Any operator A ∈ L(D) with A† ∈ L(D) can be uniquely extended to a weakly continuous

operator onto D′ as (A†)∗ which is denoted again by A, where A∗ is the dual (adjoint)

operator of A, i.e.,

A∗ : D′ → D′; 〈η|A∗ζ〉 = 〈Aη| ζ〉 , η ∈ D, ζ ∈ D′.

In fact, for any η, ζ ∈ D we have
〈

η| (A†)∗ζ
〉

=
〈

A†η| ζ
〉

= 〈ζ|A†η〉 = 〈η|Aζ〉 .

We say that the operator A ∈ L(D) with A† ∈ L(D) commutes with a sesquilinear

form B ∈ B(D), i.e., BA = AB if 〈ζ|BAη〉 =
〈

A†ζ|Bη
〉

for all η, ζ ∈ D. Note that for

an operator ∗-algebra A ⊂ L(D), the commutant

Ac = {B ∈ B(D) : [A,B] = 0 for all A ∈ A}

is weakly closed in B(D).

Put K = L2
E(R+) with norm | · |K and F0 = F0(K) = Γ(K) the Fock space over K.

Then the Fock space F0 can be represented as the Hilbert integral

F0 = F0(K) = Γ(K) :=

∫ ⊕

Ω(R+)

E⊗|τ |dτ

of the functions ϕ : Ω(R+) ∋ τ 7→ ϕ(τ ) ∈ E⊗|τ |, where for U ⊂ R+, Ω(U) is the set of

all finite subsets of U and |τ | = #(τ ) is the number of elements in τ . For more study we

refer to [1].

For each p ∈ R we denote Fp = Fp(K) a (weighted) Fock space over K defined by

Fp = Fp(K) :=

∫ ⊕

Ω(R+)

ep|τ |E⊗|τ |dτ.

Then for any p, q ∈ R with p ≤ q we have Fq ⊂ Fp. The projective limit of {Fp}p≥0 is

denoted by F and then we have a triplet:

F = proj lim
p→∞

Fp ⊂ F0 ⊂ F∗ ∼= ind lim
p→∞

F−p.
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Then F becomes a reflexive Fréchet space. In fact, for each p ≥ 0 the strong dual space

F∗
p of Fp with respect to F0 is identified with F−p and the strong dual space F∗ of F

is identified with the inductive limit of {F−p}p≥0. For each p ∈ R, the norm on Fp is

denoted by ‖ · ‖p and then

‖f⊗‖2
p =

∫

Ω(R+)

ep|τ |‖f⊗(τ )‖2
E⊗|τ|dτ :=

∞
∑

n=0

epn

n!

(
∫ ∞

0

|f(t)|2Edt

)n

= eep|f |2K ,

where for each f ∈ K, f⊗ ∈ Fp and f⊗(τ ) = ⊗t∈τf(t), τ ∈ Ω(R+).

For each p ≥ 0, put Gp = Dp ⊗ Fp and let G−p is the strong dual space of Gp with

respect to H⊗F0. Then we have a triplet:

G = proj lim
p→∞

Gp ⊂ G0 ⊂ G∗ ∼= ind lim
p→∞

G−p.

The norm on Gp is denoted by ‖ · ‖p again.

4. Quantum stochastic processes. For two locally convex spaces X, Y, we denote

L(X,Y) the space of all continuous linear operators from X into Y which is equipped

with the bounded convergence topology. Note that G∗ and G′ can be identified, where G′

is the dual space of continuous antilinear functionals on G. A family {Ξt}t≥0 of operators

in L(G,G′) is called a quantum stochastic process.

From the following natural decomposition: for any p ≥ 0

(1) Gp = Gp;t) ⊗Fp;[t, Gp;t) = Dp ⊗Fp;t),

where

Fp;t) :=

∫ ⊕

Ω([0,t))

ep|τ |E⊗|τ |dτ, Fp;[t :=

∫ ⊕

Ω([t,∞))

ep|τ |E⊗|τ |dτ,

for each ψ ∈ Gp we have

ψ = ψt) ⊗ ψ[t, ψt) ∈ Dp ⊗Fp;t), ψ[t ∈ Fp;[t.

Therefore, we define the maps

Et) : Gp ∋ ψ 7→ ψt) ∈ Dp ⊗ Fp;t), E[t : Gp ∋ ψ 7→ ψ[t ∈ Fp;[t,

and, put Gt) = Et)(G). The space Gt) is embedded into G by the isometry:

E
†
t) : Gt) ∋ ψt) 7→ ψ ∈ G as ψ(τ ) = ψt)(τt))δ∅(τ[t),

where

τt) = τ ∩ [0, t), τ[t = τ ∩ [t,∞), τ ∈ Ω(R+)

and

δ∅(τ ) =

{

1, τ = ∅;

0, otherwise.

The projectors Et) onto Gt) can be extended to G′ as the adjoint of E†
t).

Let D be the linear (dense) subspace of G such that for each t ≥ 0, Et)(D) ⊂ D.

A quantum stochastic process {Zt}t≥0 of sesquilinear forms 〈ψ|Ztψ〉 given by linear

operators Zt : D → G′ is called adapted if

Zt(ψ) = Zt(ψt)) ⊗ ψ[t, ψ ∈ D.
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For each linear operator Z : D → G′, the (vacuum) conditional expectation Et)(Z) of Z

with respect to the past up to a time t ∈ R+ is defined by

Et)(Z)(ψ) = Et)(Z)(ψt) ⊗ ψ[t) =
(

Et)Z(ψt))
)

⊗ ψ[t

for any ψ ∈ D. A sesquilinear form Z : D → G′ is said to be positive if 〈ψ|Zψ〉 ≥ 0 for

all ψ ∈ D, and Hermitian if Z† = Z. Then for each t ∈ R+, Et) is a positive projector,

i.e., Et)(Z) ≥ 0 if Z ≥ 0 and

Es) ◦ Et) = Es), s < t.

Note that for each linear operator Z : D → G′, {Et)(Z)}t≥0 is an adapted sesquilinear

form. From (1), we can easily prove that for each t ∈ R+, the conditional expectation Et)

can be extended to B(Gp) for any p ∈ R.

An adapted process {Mt}t≥0 of sesquilinear forms Mt : D → G′ is called a quantum

martingale if Es)(Mt) = Ms for any 0 ≤ s ≤ t, i.e.,
〈〈

ψs), Mt(ϕs))
〉〉

=
〈〈

ψs), Ms(ϕs))
〉〉

for any ψ, ϕ ∈ D, where 〈〈·, ·〉〉 denotes the canonical bilinear form on G × G′. For more

study we refer to [11], [12], [17] and [18].

From now on, we assume that the Itô ⋆-algebra a is realized as a ⋆-subalgebra of

Hudson-Parthasarathy algebra Q(E) (see [7]) of all quadruples a = (aµ
ν )µ=−,•

ν=+,• , a ∈ a.

Proposition 4.1. For each a ∈ a, the Wick exponential operator

W (t, a) =:exp{Λ(t, a)} : ∈ L(F)

is well-defined as the solution to the quantum stochastic differential equation:

(2) dW (t, a) = W (t, a)dΛ(t, a), W (0, a) = I.

They give an analytic representation of the unital ⋆-semigroup 1 + a for the Itô ⋆-algebra

with respect to the ⋆-product a ⋆ b = a⋆ + a⋆b+ b, where 1 is a formal identity. Moreover,

we have

W (t, a)†W (t, a) = W (t, a ⋆ a), W (t, 0) = I, W (t, d) = etI.

For the proof we refer to [4] and [8]. More generally, for any function g : R+ → a such

that the integral
∫ t

0
Λ(dr, g(r)) exists as an operator in L(F), the unique solution of the

normal ordered differential equation:

dW (t, g) = W (t, g)Λ(dt, g(t)), W (0, g) = I

defines the Wick exponential:

(3) W (t, g) =: exp

∫ t

0

Λ(dr, g(r)) : .

5. States and quantum martingales. We start with the following *-representation

theorem for a unital *-algebra A with respect to a state ϕ on A.

Theorem 5.1 ([19]). Let A be a unital *-algebra and ϕ a state on A. Then there exist

a Hilbert space Hϕ and a *-representation πϕ of A, and a (strong) cyclic vector hϕ ∈
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D(πϕ) ⊂ Hϕ such that

ϕ(a) = 〈hϕ|πϕ(a)hϕ〉 , a ∈ A,

where D(πϕ) is a common dense domain of πϕ(a) for all a ∈ A.

Remark. In Theorem 5.1, {πϕ(a)hϕ | a ∈ A} is dense in D(πϕ) in the induced topology

on D(πϕ). For each finite subset S of A, the semi-norm ‖ · ‖S on D(πϕ) is defined by

‖f‖S =
∑

a∈S

|πϕ(a)f |Hϕ
.

The induced topology on D(πϕ) is defined as the topology generated by the neighbor-

hoods:

N(f ;S, ǫ) = {g ∈ D(πϕ) | ‖f − g‖S < ǫ}.

Moreover, D(πϕ) is complete in the induced topology.

Let B be the linear space of all sesquilinear forms in B(G) corresponding to operators

Z ∈ L(G) with Z∗ ∈ L(G) and then B becomes a unital ∗-algebra with the conjugate

linear involution ∗ which is considered as the Hermite conjugated form. The quantum

filtration {Bt}t>0 is defined as the increasing family of unital *-subalgebras Bt of the

adapted sesquilinear forms Zt ∈ B. Let p ∈ R and ωp : B → C an input state defined by

ωp(Z) = 〈〈ψ0|Zψ0〉〉p, Y ∈ B,

where 〈〈·| ·〉〉p is the inner product on Gp and ψ0 = η0 ⊗ δ∅ for some η0 ∈ D with |η0| = 1.

We always assume that for each t ∈ R+, η0 ⊗ δ∅ is a cyclic vector of Bt, i.e., Bt(η0 ⊗ δ∅)

is dense in Gt) = Et)(G).

Definition 5.2. Let ρ and σ be states on a unital *-algebra A. Then we say that σ

is ρ-absolutely continuous if for any family {{ain}
nm

i=1}
∞
n=1 of finite sequences in A with

limn→∞

∑nm

i,k=1 ρ(a
∗
inakn) = 0,

lim
n→∞

nm
∑

i,k=1

σ(a∗inakn) = 0.

For another definition of absolutely continuous of state with respect to another state,

we refer to [9].

The following theorem shows that a quantum martingale plays an important role as

the density operators of output states with respect to an input state which is a vector

state given by the vacuum vector.

Theorem 5.3. Let p ∈ R and {Bt}t∈R+
a quantum filtration and ςt an output state on

Bt for each t ∈ R+ such that

(4) ςt(Z) = ςs(Z), Z ∈ Bs, s ≤ t.

If for each t ∈ R+, ςt is ωp|Bt
-absolutely continuous, then there exists a (positive) kernel

Pςt
∈ L(Gp) commuting with Bt, i.e., Pςt

Z = ZPςt
, Z ∈ Bt, in the right hand side, Z is

extended onto G∗ such that

(5) ςt(Z) = 〈〈ψ0|Pςt
Z (ψ0)〉〉p = ωp(Pςt

Z), Z ∈ Bt.
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Moreover, {Pςt
}t≥0 is a quantum L1-martingale, where L1 means that

Pςt
(ψ0, ψ0) := 〈〈ψ0|Pςt

(ψ0)〉〉 = 1.

In this case, Pςt
is unique.

Proof. From Theorem 5.1, for each t ∈ R+, there exists a *-representation πt of Bt with

respect to the state ςt on a Hilbert space Hςt
and a cyclic vector υt ∈ D(πt) ⊂ Hςt

, i.e.,

πt(Y Z)f = πt(Y )πt(Z)f, 〈f, πt(Y )g〉 = 〈πt(Y
∗)f, g〉 , f, g ∈ D(πt)

and

ςt(Z) = 〈υt, πt(Z)υt〉Hςt

, Z ∈ Bt.

Put G◦
t) = Bt(η0 ⊗ δ∅) and then G◦

t) is a dense subspace of Gt) since η0 ⊗ δ∅ is a cyclic

vector of Bt. Define a linear operator Rt by

Rt : G◦
t) → D(πt); Z(η0 ⊗ δ∅) 7→ πt(Z)υt, Z ∈ Bt.

Then for any Y, Z ∈ Bt we have

Rt (Z(Y (η0 ⊗ δ∅))) = Rt (ZY (η0 ⊗ δ∅)) = πt(Z)πt(Y )υt = πt(Z)Rt(Y (η0 ⊗ δ∅))

which implies that for any Z ∈ Bt

(6) RtZ = πt(Z)Rt on G◦
t)

and Rt is continuous with respect to the Hilbert space norm in Hςt
. In fact, since ςt is

ωp|Bt
-absolutely continuous, if limn→∞

∑mn

i=1 Zin(η0 ⊗ δ∅) = 0 in Gp;t), then

lim
n→∞

mn
∑

i,k=1

ωp|Bt
(Z∗

inZkn) = lim
n→∞

∥

∥

∥

mn
∑

i=1

Zin(η0 ⊗ δ∅)
∥

∥

∥

2

p
= 0

and

lim
n→∞

∥

∥

∥
Rt

(

mn
∑

i=1

Zin(η0 ⊗ δ∅)
)∥

∥

∥

2

Hςt

= lim
n→∞

∥

∥

∥

mn
∑

i=1

πt(Zin)υt

∥

∥

∥

2

Hςt

= lim
n→∞

mn
∑

i,k=1

ςt(Z
∗
inZkn) = 0.

Since G◦
t) is dense in Gt) and so in Gp;t), Rt can be extended to Gp;t) as a continuous

operator into Hςt
. The extension is denoted by the same symbol. On the other hand,

the adjoint R∗
t : Hςt

→ Gp;t) of Rt satisfying that R∗
tπt(Z) = ZR∗

t (on D(πt)) by (6).

Now, for each t ∈ R+ we put Pςt
= R∗

tRt : Gp;t) → Gp;t). Then, by ampliation, Pςt
can

be extended to Gp as a continuous linear operator which is denoted by the same symbol.

Furthermore, Pςt
commutes with all Z ∈ Bt and

〈〈η0 ⊗ δ∅|Pςt
Z(η0 ⊗ δ∅)〉〉p = 〈Rt(η0 ⊗ δ∅), πt(Z)Rt(η0 ⊗ δ∅)〉 = 〈υt, πt(Z)υt〉 = ςt(Z)

which proves (5). Moreover, {Pςt
}t≥0 becomes a quantum martingale due to the property

that ςs = ςt|Bs
for all s ≤ t. In fact, for any s ≤ t and Y, Z ∈ Bs, we have



QUANTUM ITÔ ALGEBRA 55

〈〈Y (η0 ⊗ δ∅)|Pςt
Z(η0 ⊗ δ∅)〉〉p = 〈〈η0 ⊗ δ∅|Pςt

Y ∗Z(η0 ⊗ δ∅)〉〉p

= ςt(Y
∗Z) = ςs(Y

∗Z)

= 〈〈η0 ⊗ δ∅|Pςs
Y ∗Z(η0 ⊗ δ∅)〉〉p

= 〈〈Y (η0 ⊗ δ∅)|Pςs
Z(η0 ⊗ δ∅)〉〉p.

Moreover, we have

Pςt
(ψ0, ψ0) = 〈〈η0 ⊗ δ∅|Pςt

(η0 ⊗ δ∅)〉〉p = ςt(1) = 1.

The uniqueness of Pςt
is immediate by the density of G◦

t).

Let {gt}t≥0 be the increasing family of ⋆-semigroups gt of all step functions g : R+

→ a, g(s) = 0 for all s ≥ t under the ⋆-product

(g ⋆ h) (s) = g(s)⋆ + g(s)⋆h(s) + h(s), g, h ∈ gt, s ≥ 0.

Remark. If for each t ∈ R+, Bt contains all |ζ >< η0| ⊗ W (t, g) with ζ in a dense

subset of D and g ∈ gt, then η0 ⊗ δ∅ is a cyclic vector of Bt from the minimality of the

Kolmogorov decomposition k of l.

Let G be the unital ∗-algebra consisting of all operators W (t, g) for t ∈ R+ and g ∈ gt.

For each t ∈ R+, let Gt be the unital ∗-algebra consisting of all operators W (s, g) ∈ L(F)

for s ≤ t and g ∈ gs. Then {Gt}t≥0 is an increasing family of unital ∗-subalgebras of G.

Let p ∈ R and ̺p : G → C a state defined by

̺p(W (t, g)) = 〈〈δ∅|W (t, g)δ∅〉〉p, W (t, g) ∈ G.

Then as a simple application of Theorem 5.3 we have the following corollary.

Corollary 5.4. If {σt}t∈R+
is a family of states σt : Gt → C such that

σt(Z) = σs(Z), Z ∈ Gs, s ≤ t

and, for each t ≥ 0, σt is ̺p|Gt-absolutely continuous, then there exists a unique L1-

martingale {Pσt
}t≥0 of operators Pσt

∈ L(Fp) commuting with Gt such that

σt(Z) = 〈〈δ∅|Pσt
Zδ∅〉〉p = ̺p(Pσt

Z), Z ∈ Gt.

Let p ∈ R and λp : g = ∪t≥0gt → C be a state defined by

λp(g) = 〈〈δ∅|W (t, g)δ∅〉〉p, g ∈ gt ⊂ g.

Theorem 5.5. If {ρt}t∈R+
is a family of states ρt : gt → C such that

(7) ρt(g) = ρs(g), g ∈ gs, s ≤ t

and, for each t ≥ 0, ρt is λp|gt
-absolutely continuous, then there exists a unique L1-

martingale {Kρt
}t≥0 of operators Kρt

∈ L(Fp) commuting with {W (t, g) : g ∈ gt}, i.e.,

Kρt
W (t, g) = W (t, g)Kρt

, g ∈ gt

such that

ρt(g) = 〈〈δ∅|Kρt
W (t, g)δ∅〉〉p = λp(Kρt

W (t, g)), g ∈ gt.

Proof. Since for s ≤ t and g ∈ gs ⊂ gt, by applying (3) we have

W (t, g) =: exp

∫ t

0

Λ(dr, g(r)) :=: exp

∫ s

0

Λ(dr, g(r)) := W (s, g),
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where g(r) = 0 for all r ≥ s. Therefore, for each t ≥ 0, Gt = {W (t, g) : g ∈ gt} and so

consider the family of states {σt}t∈R+
defined by

σt(Z) = ρt(g), Z = W (t, g) ∈ Gt, g ∈ gt.

Then from (7), we have

σt(Z) = σs(Z), Z ∈ Gs, s ≤ t

and, for each t ≥ 0, σt is ̺p|Gt-absolutely continuous since ρt is λp|gt
-absolutely contin-

uous. Therefore, by Corollary 5.4, the proof is immediate.

Let p ≥ q. A quantum martingale {Mt}t≥0 in L(Gp,Gq) is said to be regular with

respect to a Radon measure m on R+, or simply regular if for all 0 ≤ v < u and φ ∈ Gp;v],

ψ ∈ G−q;v]

‖(Mu −Mv)φ‖2
q ≤ ‖φ‖2

p m([v, u]), ‖(M∗
u −M∗

v )ψ‖2
−p ≤ ‖ψ‖2

−q m([v, u]).

If {Mt}t≥0 in L(Gp,Gq) is a regular quantum martingale, then Mt admits the following

integral representation:

(8) Mt = αI +

•
∑

µ=−

+
∑

ν=•

Λν
µ(t,Mµ

ν )
(

equivalently, dMt =

•
∑

µ=−

+
∑

ν=•

Mµ
ν dΛ

ν
µ(t)

)

for some complex number α, where M−
+ = 0. For the proof, we refer to [12] and [18].

Proposition 5.6. Let p ≥ q and let {Mt}t>0 a regular martingale in L(Gp,Gq) such that

for each t ∈ R+, Mt admits the integral representation (8) and commuting with Gt, i.e.,

[W (t, g),Mt] = W (t, g)Mt −MtW (t, g) = 0, gt ∈ gt.

Then the coefficient M = (Mµ
ν )µ=−,•

ν=+,• commutes with a = (aµ
ν )µ=−,•

ν=+,• for all a ∈ a in the

sense of HP-product, i.e.,

[a,M] = (aµ
•M

•
ν −Mµ

• a
•
ν)µ=−,•

ν=+,• = 0.

Proof. Since Mt commutes with Gt, Mt commutes with W (s, a) for any 0 ≤ s ≤ t and

a ∈ a. Therefore, W (t, a) commutes with dMt for any a ∈ a. On the other hand, for any

a ∈ a by (2) we have

MtdW (t, a) = W (t, a)MtdΛ(t, a) = W (t, a)dΛ(t, a)Mt

for the last identity we use the adaptedness of Mt. Hence Mt commutes with dW (t, a)

for any a ∈ a. Therefore, by applying the quantum Itô formula (see [1], [10]), we have

d[Mt,W (t, a)] = [dMt,W (t, a)] + [Mt, dW (t, a)] + [dMt, dW (t, a)] = 0

which implies that

d[Mt,W (t, a)] =

•
∑

µ=−

+
∑

ν=•

(Mµ
•W (t, a)a•ν −W (t, a)aµ

•M
•
ν ) dΛν

µ(t)

= W (t, a)

•
∑

µ=−

+
∑

ν=•

(Mµ
• a

•
ν − aµ

•M
•
ν ) dΛν

µ(t) = 0.

Therefore, by the independence of the integrators dΛν
µ (see [13], [14]), we have M • a =

a • M.
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Let p ∈ R and let Ap the quantum Itô algebra consisting of all (Mµ
ν )µ=−,•

ν=+,• for a

regular martingale M = {Mt}t≥0 ⊂ L(Fp) and (aµ
ν )µ=−,•

ν=+,• for all a ∈ a. If {Mt}t>0 is a

regular martingale in L(Fp) such that Mt commutes with Gt for each t ∈ R+, then by

Proposition 5.6, (Mt
µ
ν )µ=−,•

ν=+,• ∈ ac, where ac is the commutant of a.

Let {Bt}t∈R+
be a quantum filtration satisfying that for any 0 ≤ s ≤ t, Es)Z ∈ Bs

for any Z ∈ Bt, where [Es)Z]Y (η0 ⊗ δ∅) = Es)(ZY (η0 ⊗ δ∅))) for any Y ∈ B.

A family {ςt}t≥0 of output state ςt on Bt for each t ∈ R+ is said to be regular with

respect to a Radon measure m on R+, or simply regular if for any 0 ≤ s < t and Z ∈ Bs,

Y ∈ Bt

(9) |ςt(Z
∗Y ) − ςs(Z

∗Es)Y )|2 ≤ m([s, t])ωp(Z
∗Z)ωp(Y

∗Y ).

Theorem 5.7. Let {Bt}t∈R+
be a quantum filtration and ςt an output state on Bt for

each t ∈ R+ such that (4) holds. If for each t ∈ R+, ςt is ωp|Bt
-absolutely continuous

and regular, then the martingale {Pζt
}t≥0 given as in Theorem 5.3 is regular.

Proof. Let 0 ≤ s ≤ t. Then by (9) for any Z ∈ Bs and Z ∈ Bt

|〈〈(Pςt
− Pςs

)Z(η ⊗ δ∅)|Y (η ⊗ δ∅)〉〉p|
2

= |ςt(Z
∗Y ) − ςs(Z

∗Es)Y )|2

≤ m([s, t])ωp(Z
∗Z)ωp(Y

∗Y )

= m([s, t]) ‖Z(η0 ⊗ δ∅) ‖
2
p ‖Y (η0 ⊗ δ∅) ‖

2
p

which implies that for any Z ∈ Bs

‖ (Pςt
− Pςs

)Z(η ⊗ δ∅) ‖
2
p ≤ m([s, t]) ‖Z(η0 ⊗ δ∅) ‖

2
p .

Since η0 ⊗ δ∅ is a cyclic vector of Bt, {Pζt
}t≥0 is regular.

Theorem 5.8. If {σt}t∈R+
is a family of states σt : Gt → C such that

σt(Z) = σs(Z), Z ∈ Gs, s ≤ t

and, for each t ≥ 0, σt is ̺p|Gt-absolutely continuous and regular, then there exists a

unique L1-martingale {Pσt
}t≥0 of operators Pσt

∈ L(Fp) with (Pσt

µ
ν )µ=−,•

ν=+,• ∈ ac such

that

σt(Z) = 〈〈δ∅|Pσt
Zδ∅〉〉p, Z ∈ Gt.

Proof. Since σt is ̺p|Gt-absolutely continuous, by Corollary 5.4 Pσt
∈ L(Fp). On the

other hand, Pσt
commutes with Gt and hence (Pσt

µ
ν )µ=−,•

ν=+,• ∈ ac.

Theorem 5.9. Let {ρt}t∈R+
be a family of states ρt : gt → C such that

ρt(g) = ρs(g), g ∈ gs, s ≤ t

and, for each t ≥ 0, ρt is λp|gt
-absolutely continuous. If {σt}t∈R+

is regular, where σt is

defined by

σt(Z) = ρt(g), Z = W (t, g) ∈ Gt, g ∈ gt,

then there exists a unique L1-martingale {Kρt
}t≥0 ⊂ Kρt

∈ L(Fp) with (Kρt

µ
ν
)µ=−,•
ν=+,• ∈ ac

such that

ρt(g) = 〈〈δ∅|Kρt
W (t, g)δ∅〉〉p, g ∈ gt.

Proof. The proof is similar to the proof of Theorem 5.8 as an application of Theo-

rem 5.5.
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