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Abstract. If G is a discrete group, the algebra CD(G) of convolution dominated operators on

l2(G) (see Definition 1 below) is canonically isomorphic to a twisted L1-algebra l1(G, l∞(G), T ).

For amenable and rigidly symmetric G we use this to show that any element of this algebra is

invertible in the algebra itself if and only if it is invertible as a bounded operator on l2(G), i.e.

CD(G) is spectral in the algebra of all bounded operators. For G commutative, this result is

known (see [1], [6]), for G noncommutative discrete it appears to be new. This note is about

work in progress. Complete details and more will be given in [3].

Let G be a discrete group. For x ∈ G we denote by λ(x) the operator of left translation

on l1(G) and on l2(G), i.e. λ(x)f (y) = f(x−1y) for f ∈ l1(G) or f ∈ l2(G), x, y ∈ G. By

B(l2(G)) we denote the algebra of bounded operators on l2(G).

For an operator A : l2(G) → l2(G) let A(x, y) = 〈Aδy, δx〉, x, y ∈ G be its matrix,

where by δz we denote the characteristic function of the one point set {z} ⊂ G, and 〈 , 〉

is the usual scalar product of the Hilbert space l2(G).
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Definition 1. The operator A is called convolution dominated if there exists some a ∈

l1(G) such that

|A(x, y)| ≤ a(xy−1), ∀x, y ∈ G.

We define its norm as

‖A‖1 := inf{‖a‖l1 : a ∈ l1(G), |A(x, y)| ≤ a(xy−1) ∀x, y ∈ G}.

By CD(G) we denote the Banach space of all convolution dominated operators.

We remark that A ∈ B(l2(G)) is convolution dominated if the supremum norms of

the side diagonals of its matrix are summable, i.e. if
∑

z∈G

sup
{x,y: xy−1=z}

|A(x, y)| < ∞.

Moreover this quantity just equals the norm ‖A‖1.

Since l1(G) is a convolution algebra it follows that the space of convolution dominated

operators is an algebra under composition of operators. Moreover it is not hard to see

that it becomes a Banach ∗-algebra (containing an identity) with respect to the usual

involution of operators in B(l2(G)).

We consider l∞(G) as a C∗-algebra (really, it is a von Neumann algebra) with re-

spect to pointwise multiplication and complex conjugation as involution. For x ∈ G

let Tx : l∞(G) → l∞(G) denote the C∗-automorphism of the algebra l∞(G) given by

left translation Txn(z) = n(x−1z), n ∈ l∞(G), so that x 7→ Tx is a representation of

G in the group of C∗-automorphisms of l∞(G). With these data we form the twisted

L1-algebra in the sense of Leptin [7, 8, 9] (with trivial factor system), which we denote

by l1(G, l∞(G), T ), or simply by L. It consists of all functions f : G → l∞(G), such that

‖f‖ :=
∑

z∈G ‖f(z)‖∞ < ∞. The product (twisted convolution) is given by

h ⋆ f(x) =
∑

y

Tyh(xy)f(y−1), for x ∈ G, h, f ∈ L

and the involution by

h∗(x) = Tx−1h(x−1), for x ∈ G, h ∈ L.

The C∗-algebra l∞(G) is isometrically represented as multiplication operators on

l2(G):

Dmf(x) = m(x)f(x), where x ∈ G, f ∈ l2(G), m ∈ l∞(G).

We have the covariance relation λ(x−1)Dmλ(x) = DT−1

x
m, so from λ : G → B(l2(G))

and D : l∞(G) → B(l2(G)) we obtain a representation R of L on l2(G). An element

f ∈ L may be uniquely written as

f =
∑

z∈G

mzδz,

where mz = f(z) ∈ l∞(G). The representation R : l1(G, l∞(G), T ) → B(l2(G)) is given

by the prescription

Rf =
∑

z

λ(z)Dmz .
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This means that we read f as an operator on l2(G) by placing f(z) (which is an l∞-

function) on the zth side-diagonal of the matrix defining the operator Rf . To be more

precise

(Rf)(x, y) = f(xy−1)(y), x, y ∈ G,

i.e. the entry at position (x, y), which lies on the zth side-diagonal (z = xy−1), is given

by f(z)(y) = mz(y). We call R the canonical representation of L.

Proposition 2. The map R : l1(G, l∞(G), T ) → CD(G) is an isometric ∗-isomorphism.

Recall that a Banach algebra A with involution is called symmetric if every positive

element has its spectrum contained in the non-negative reals, i. e. sp(a∗a) ⊂ [0,∞)

∀a ∈ A. Accordingly, a locally compact group G is called symmetric if its convolution

algebra L1(G) is symmetric. Various classes of groups are known to be symmetric, e. g.

Abelian locally compact groups, compact groups, finite extensions of discrete nilpotent

groups, compactly generated groups of polynomial growth.

Leptin and Poguntke [10] showed that the groups of the first three classes satisfy the

stronger property of rigid symmetry. Namely for any C∗-algebra C the projective tensor

product L1(G)⊗̂C is symmetric. Later Poguntke [11] showed that all nilpotent locally

compact groups are rigidly symmetric.

Define a map

Q : l1(G, l∞(G), T ) → l1(G)⊗̂B(l2(G))

by

f =
∑

v

mvδv 7→
∑

v

δv ⊗ λ(v)Dmv .

Proposition 3. The above defined map Q is an isometric ∗-isomorphism of L onto a

closed subalgebra of l1(G)⊗̂B(l2(G)).

Since symmetry passes to closed subalgebras, we have

Corollary 4. Let G be a discrete rigidly symmetric group, then L and CD(G) are

symmetric Banach ∗-algebras.

Recall that by D : m 7→ Dm the C∗-algebra l∞(G) is faithfully represented by multi-

plication operators on l2(G). On the Hilbert space l2(G, l2(G)), the D-regular represen-

tation λD of L = l1(G, l∞(G), T ) is defined (see [9, §3]) by

λD(f)ξ(x) =
∑

y

DTyf(xy)ξ(y−1), where ξ ∈ l2(G, l2(G)), f ∈ L.

On the other hand R : L → CD(G) ⊂ B(l2(G)) is a ∗-representation of L on l2(G). We

identify l2(G, l2(G)) with l2(G×G) and define a multiple of the canonical representation

by letting the operators R(f) =
∑

y λ(y)Df(y), f ∈ L, act in the first coordinate of the

l2(G× G)-functions only. The unitary operator Sξ(x, z) = ξ(xz, z), where ξ ∈ l2(G× G)

actually intertwines these two representations, so we have

Proposition 5. The D-regular representation of L is equivalent to a multiple of the

canonical representation.
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These representations are faithful ∗-representations of L. Hence the greatest C∗ semi-

norm

‖f‖∗ = sup{‖π(f)‖ : π a ∗-representation of L on a Hilbert space}, f ∈ L,

is in fact a norm.

Corollary 6. Let G be an amenable discrete group, then the greatest C∗ semi-norm on

L equals the operator norm on CD(G).

Proof. It follows from [9, Satz 6] of Leptin that for the representation D of l∞(G) the

D-regular representation λD defines the greatest C∗ semi-norm on L. Denoting this norm

by ‖ . ‖∗ we have for f ∈ L:

‖f‖∗ = ‖λD(f)‖ = ‖R(f)‖B(l2(G)),

where the last equality follows from Proposition 5.

For an element a of a normed algebra A we denote by rA(a) its spectral radius.

Proposition 7. Let G be a discrete, amenable, and rigidly symmetric group. Then for

f ∈ L

rL(f∗f) = rCD(G)(R(f)∗Rf) = ‖R(f)‖2
B(l2(G)).

Proof. By Corollary 4 we know that L and CD(G) are symmetric. By a theorem of

Pták [12] it follows that ‖f‖2
∗ = rL(f∗f) = rCD(G)(R(f)∗R(f)) (see e.g. [2, §41 Corol-

lary 8]). Corollary 6 now proves the assertion.

Theorem 8. Let G be a discrete, amenable, and rigidly symmetric group. If f ∈ L is

such that R(f) ∈ CD(G) has an inverse in B(l2(G)) then f−1 exists in L and R(f−1) =

R(f)−1 is in CD(G).

Proof. If f ∈ L is hermitian, i.e. f = f∗, then

rL(f)2 = rL(f∗f) = ‖R(f)‖2
B(l2(G)).

We apply Hulanicki’s Lemma [5, Prop. 2.5] and obtain that

spL(f) = spB(l2(G))(R(f)), ∀f = f∗ ∈ L.

This implies

spL(f) = spB(l2(G))(R(f)), ∀f ∈ L,

(see Lemma [4, 3.7]).
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