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Abstrat. The lassial Bargmann representation is given by operators ating on the spae ofholomorphi funtions with the salar produt 〈zn|zk〉q = δn,k[n]q! = F (znzk). We onsider theproblem of representing the funtional F as a measure for q > 1. We prove the existene ofsuh a measure and investigate some of its properties like uniqueness and radiality. The aboveproblem is losely related to the indeterminate Stieltjes moment problem.1. Introdution. The q-ommutation relations aja

+
k − qa+

k aj = δjkId were introduedby Greenberg [Gre℄, Frish and Bourret [FB℄. They were intensively investigated byBo»ejko and Speiher [BSp℄ as an interpolation between bosoni (q = 1) and fermioni(q = −1) ases. The one dimensional ase, whih is the main objet of this paper, wasstudied by Bargmann [Ba℄. We onsider the Bargmann-Fok representation of the q-ommutation relation whih is given by operators ating on the spae of homomorphifuntions with the salar produt 〈zn|zk〉q = δn,k[n]q!. For q > 1 we show a family ofmeasures suh that
∫

C

znzkdµ(z) = δn,k[n]q!,where [n]q = 1 + q + · · · + qn−1 and [n]q! = [1]q[2]q . . . [n]q. The problem turns out to bean indeterminate omplex moment problem.We shall make use of the language of the q-alulus. The q-binomial oe�ients andthe q-shifted fatorial are de�ned as follows:
(

n

k

)

q

=
[n]q!
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172 I. KRÓLAK

(a; q)n =

n−1
∏

j=0

(1 − aqj) with (a; q)0 = 1,We are looking for operators a, a+ = a⋆ on some Hilbert spae suh that they satisfy therelation:
aa+ − qa+a = Id. (⋆)The Bargmann representation of the above relation is given by

(a+f)(z) = zf(z), (af)(z) = Dqf(z) =

{

f(qz)−f(z)
z(q−1) if z 6= 0,

f ′(0) if z = 0.The representation spae H2(µq) is the ompletion of the spae of analyti funtions onthe dis Dq = {z ∈ C; |z|2 < 1
1−q

} with respet to the inner produt:
〈zk, zn〉 = δn,k[n]q! =

∫

C

znzkdµq(z) (⋆⋆)It is known that for q ∈ (0, 1), dµq(z) is unique, radial and
dµq(z) = (q; q)∞

∞
∑

k=0

qk

(q; q)k

dλrk
(z), rk =

q
k
2

√
1 − q

,where dλrk
is the normalized Lebesgue measure on the irle with radius rk.However, we will prove, that for q > 1, there are many measures satisfying (⋆⋆) andsome of them are not radial.This paper is organized as follows. In setion 2 we onstrut a family of radial measuressatisfying (⋆⋆). In a subsequent setion we estimate asymptotis of orthogonal polynomi-als with respet to a measure with moments mn = [n]q!, whih enables us to desribe allradial solutions of our problem. In setion 4 we alulate extremal measures. Finally thelast setion is devoted to the existene and study of non-radial measures. We also give,in general, neessary and su�ient onditions for the existene of non-radial measureswhih orthogonalize monomials on the omplex plane.2. The existene of µq(dz). For our further onsiderations we assume that the number

q is greater than 1 and �xed. We are looking for a probability measure (or family ofprobability measures) whih satis�es (⋆⋆).Using the polar oordinates we an write this measure as a produt of its radial andangular part i.e.
dµ(z) = dµ(r)(ϕ)dν(r),where ∫ 2π

0
dµ(r)(ϕ) = 1 and ∫ ∞

0
r2ndν(r) = [n]q!.The above measure dµ(z) orthogonalizes monomials {zn}n≥0. That is why amongsolutions there are radial ones.Proposition 2.1. There is one to one orrespondene between radial solutions of (⋆⋆)and solutions of the problem:

∫ ∞

0

xkdν(x) = [k]q!, k = 0, 1, 2, . . . (⋆⋆⋆)



BARGMANN REPRESENTATION OF q-COMMUTATION RELATIONS 173We will use methods of q-analysis. The following de�nitions and lemmas are analogsof suitable fats onneted with the ase 0 < q < 1 (see [LM℄).Proposition 2.2. The operator a = Dq has the following properties:1. Dq(z
n) = [n]qz

n−1,2. Dq(f(z)h(z)) = (Dqf)(z)h(z) + f(qz)(Dqh)(z),3. Dq

(

f(z)

h(z)

)

=
(Dqf)(z)h(z) − f(z)(Dqh)(z)

h(z)h(qz)
.There is also an analogue of the integral.Proposition 2.3. Assume that f(x) = (DqF )(x) and F (∞) = limx→∞ F (x) exists.Then

∫ ∞

0

f(x)da
q(x)

def
=

∞
∑

k=−∞

f(aqk)qk(q − 1)a = F (∞) − F (0),if only the series is onvergent for every a > 0.For example all funtions whih derease faster than 1
x2 as x tends to in�nity and arebounded in the neighbourhood of 0, are integrable.We an also de�ne the q-exponential funtion:Proposition 2.4. The expression

f(z) = expq(z)
def
=

∞
∑

k=0

zk

[k]q!
, q > 1,de�nes an entire funtion with the property: (Dqf)(z) = f(z). Additionally this funtionhas the following in�nite produt representation:

expq(x) =
∞
∏

k=0

(xq−k − xq−k−1 + 1)−1.Sketh of the proof. Notie that the series above is absolutely onvergent and apply Dq toeah term. Sine (Dqf)(y) = f(y) for y = q−1x then f(q−1x) = f(x)
x−q−1x+1 . If we iteratethis equality and use the ontinuity of f at 0 we get the in�nite produt representation.Proposition 2.5. We have the following integration by parts proedure:

∫ ∞

0

Dq

(

xn

expq(x)

)

da
q (x) =



















xn

expq(x)

∣

∣

∣

∣

0

∞

= −δ0,n,

[n]q

∫ ∞

0

xn−1

expq(qx)
da

q (x) −
∫ ∞

0

xn

expq(qx)
da

q (x).Now we are ready to write expliitly the measure.Theorem 2.1. If
dνa(x) = a(q − 1)

∞
∑

k=−∞

qk

expq(q
k+1a)

δqka, a ∈ [1, q],then for every a > 0,
∫ ∞

0
xndνa(x) = [n]q!. Additionally for any t ∈ R+, there exists

a ∈ [1, q) suh that t ∈ supp νa(x).



174 I. KRÓLAKProof. Proposition 2.5 implies:
∫ ∞

0

xn

expq(qx)
da

q (x) = [n]q!.By replaing the q-integral symbol by its de�nition we get:
[n]q! =

∞
∑

k=−∞

(aqk)n (q − 1)aqk

expq(q
k+1a)

=

∫ ∞

0

xndν(x).The seond part of the assertion is obvious.3. Orthogonal polynomials and their asymptotis. Consider a probability measure
dα(x) suh that:

∫ ∞

0

xndα(x) = [n]q!.The problem of �nding all probability measures whih satisfy the ondition given aboveis alled the moment problem for the sequene {[n]q!}. We will look for a solution usinga sequene of orthogonal polynomials Rn(x), i.e. ∫ ∞

−∞
Rn(x)Rm(x)dα(x) = 0 if m 6= n.We would like to estimate the asymptotis of Rn(x) as n → ∞. We will use theLeibniz expression for alulating Dq on the produt of funtions:

D(n)
q (fg(x)) =

n
∑

k=0

(

n

k

)

q

[D(k)
q g](x)[D(n−k)

q f ](qkx). (3.1)As a onsequene we getLemma 3.1.
D(k)

q

(

xk

expq(q
−k+1x)

)

expq(qx) =

k
∑

s=0

(

k

s

)

q

[k]q!

[s]q!
xs(−1)sq

s(s+1−2k)
2 . (3.2)Proof. For h(x) = f(qpx) we have [Dqh](x) = qp[Dqf ](qpx). This impliesDq(expq(q

px)) =

qp expq(q
px). Further

Dq

(

1

expq(q
px)

)

= qp −1

expq(q
p+1x)

.Finally we get
D(s)

q

1

expq(q
−k+1x)

= q−sk+1+2+···+s (−1)s

expq(q
−k+s+1x)

.Now we an apply Proposition 2.1, whih ompletes the proof.Lemma 3.2. Let ∫ ∞

0
xndα(x) = [n]q! and

Qk(x) = D(k)
q

(

xk

expq(q
−k+1x)

)

expq(qx), Q0(x) = 1.Then
∫ ∞

0

Qk(x)Qm(x)dα(x) = δm,k[k]q![k]q ! q
k.



BARGMANN REPRESENTATION OF q-COMMUTATION RELATIONS 175Proof. It su�es to show the assertion in the ase dα(x) = dνa(x) for an arbitrary measure
dνa(x) de�ned in Theorem 2.1, i.e. suh that

∫ ∞

0

f(x)dν(x) =

∫ ∞

0

f(x)
1

expq(qx)
da

q (x).Let s, k, m ∈ N and s ≤ k, m ≤ k. Then the Leibniz rule (3.1) gives
D(s−1)

q

(

xk

expq(q
−k+1x)

)

=
xWk−1(x)

expq(q
s−kx)

,where Wk−1(x) has degree (k − 1).Therefore
T =

∫ ∞

0

Dq

(

D(s−1)
q

(

xk

expq(q
−k+1x)

)

xm

)

d1
q(x)

= D(s−1)
q

(

xk

expq(q
−k+1x)

)

xm

]0

∞

=
Wk−1(x)xm+1

expq(q
s−kx)

]0

∞

= 0.By taking derivative under the integral we get:
T = qm

∫ ∞

0

D(s)
q

(

xk

expq(q
−k+1x)

)

xmd1
q(x)

+ [m]q

∫ ∞

0

D(s−1)
q

(

xk

expq(q
−k+1x)

)

xm−1d1
q(x),whih implies the following reurrene formula:

∫ ∞

0

D(s)
q

(

xk

expq(q
−k+1x)

)

xmd1
q(x) = − [m]q

qm

∫ ∞

0

D(s−1)
q

(

xk

expq(q
−k+1x)

)

xm−1d1
q(x).Let s = k. Then iteration of the above formula m-times gives:

∫ ∞

0

Qk(x)xmdν(x) = (−1)m[m]q!q
−(m+1

2 )
∫ ∞

0

D(k−m)
q

(

xk

expq(q
−k+1x)

)

x0d1
q(x).For k > m we have then

∫ ∞

0

Qk(x)xmdν(x) = 0.However, for k = m we get:
∫ ∞

0

Qk(x)xkdν(x) = (−1)k[k]q!q
−(k+1

2 )
∫ ∞

0

xk

expq(q
−k+1x)

d1
q(x)

= (−1)k[k]q!q
−(k+1

2 )
∞
∑

p=−∞

(q − 1)qpqpk

expq(q
−k+1+px)

= (−1)k[k]q!q
−(k+1

2 )qk2+k

∞
∑

s=−∞

(q − 1)qsqsk

expq(q
s+1x)

= (−1)k[k]q!q
−(k+1

2 )qk2+k

∫ ∞

0

xk

expq(qx)
d1

q(x)

= (−1)kq
(k+1)k

2 [k]q![k]q!.



176 I. KRÓLAKSumming up:
∫ ∞

0

Qk(x)Qm(x)dν(x) = 0 for k 6= mand
∫ ∞

0

Qk(x)Qk(x)dν(x) =

∫ ∞

0

Qk(x)(−1)kq−
k(k−1)

2 xkdν(x) = qk[k]q ![k]q!.Now we will estimate polynomials Qn(x) as n tends to in�nity. First, we alulate thegenerating funtion for
Ln(x) =

Qn(x)

[n]q!
, i.e. G(r, x) =

∞
∑

s=0

rnLn(x).Seondly we will look at the Taylor oe�ients of the resulting funtion at zero. Finally,we apply the Darboux method (see Lemma 3.4).To alulate G(r, x) we will use the binomial theorem (see [GR℄ for the proof).Theorem 3.1. Let 0 < q < 1 and
ha(z) =

∞
∑

n=0

(a; q)n

(q; q)n

zn.

Then ha(z) is holomorphi in {z; |z| < 1} and
ha(z) = lim

p→∞

(az; q)p

(z; q)p

=
(az; q)∞
(z; q)∞

. (3.3)In the next lemma we alulate the generating funtion for Ln(x).Lemma 3.3. If Ln(x) = Qn(x)
[n]q! then

G(r, x) =
∞
∑

n=0

rnLn(x) =
∞
∑

s=0

(−rx)s

[s]q!(r; q−1)s+1
q−(s

2). (3.4)
and de�nes a holomorphi funtion in {z; |z| < 1}.Proof. We know that

Ln(x) =
n

∑

s=0

[n]q!

[n − s]q!

1

[s]q![s]q!
(−1)sq(

s+1
2 )q−snxs.

Let ∑∞
n=0 rnLn(x) =

∑∞
s=0 As(r)x

s. We want to alulate As(r). The following equalityholds:
[n + s]q!

[n]q!
= [s]q!q

sn (q−(s+1); q−1)n

(q−1; q−1)n

. (3.5)



BARGMANN REPRESENTATION OF q-COMMUTATION RELATIONS 177For simpliity we will write [m]q = [m]. Remember that q > 1. Then
As(r) =

(−1)s

[s]![s]!
q(

s+1
2 )

∞
∑

n=s

[n]!

[n − s]!
rnq−sn =

(−1)s

[s]![s]!
q(

s+1
2 )q−s2

rs

∞
∑

n=0

rnq−sn [n + s]!

[n]!

=
(−1)s

[s]![s]!
q(

s+1
2 )q−s2

rs[s]!

∞
∑

n=0

rn (q−(s+1); q−1)n

(q−1; q−1)n

[Now we use the binomial theorem]

=
(−1)s

[s]![s]!
q(

s+1
2 )q−s2

rs[s]!
(q−(s+1)r; q−1)∞

(r; q−1)∞

=
(−1)s

[s]![s]!
q(

s+1
2 )q−s2

rs[s]!
1

(r; q−1)s+1
=

(−r)s

[s]!(r; q−1)s+1
q−(s

2). (3.6)This proves (3.4). Further for |r| < 1 − ǫ and arbitrary k we have |(r; q−1)k| > C and
[s]q! ≥ s! for arbitrary s. This implies that the series (3.4) is uniformly onvergent on thegiven above area.Now we are ready to desribe the asymptotis of Ln(x).We will use a lemma about oe�ients of the power series of funtions holomorphiin the neighbourhood of 0. (see [GR℄).Lemma 3.4. Let f(r) =

∑∞
n=0 anrn be a meromorphi funtion with a �nite number ofpoles, holomorphi around zero. Let r1, . . . , rk be ritial points losest to zero. Let theritial points r1, . . . , rk be the poles of the �rst degree. Then

∣

∣

∣
an −

k
∑

i=1

−(ri)
−(n+1)Res(f, ri)

∣

∣

∣
= o(|r1|−n). (3.7)As a onsequene we get:Theorem 3.2. Let Ln(x) = Qn(x)/[n]q! . Then

L∞(x) = lim
n→∞

Ln(x) =

∞
∑

s=0

(−x)s

[s]q!(q−1; q−1)s

q−(s

2). (3.8)Proof. From lemma 3.3 we know that
∞
∑

n=0

rnLn(x) =

∞
∑

s=0

(−rx)s

[s]q!(r; q−1)s+1
q−(s

2) = f(r).The funtion f(r) has a pole at r = 1. The remaining poles are at points rk = qk > 1.Additionally
Res(f, 1) = lim

r→1
(r − 1)f(r) = −

∞
∑

s=0

(−x)s

[s]q!(q−1; q−1)s

q−(s

2).Appliation of Lemma 3.4 ends the proof.Remark 3.1. The polynomials Ln are onneted with the q-Bessel funtion:
J0(x, q−1) =

∞
∑

s=0

(−1)sq−s2(x
2

)2s

[s] 1
q
![s] 1

q
!

.
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L∞(x) = J0

(

2q

√

x

q − 1
, q−1

)

.

4. Two speial radial measures. The problem of �nding all measures whih satisfy
∫ ∞

0
xkdν = mk for a given sequene of numbers mk is alled the Stieltjes moment problem.In our ase we have mk = [k]q!. In setion 2 we prove that the problem has in�nitelymany solutions. Instead of onsidering the Stieltjes moment problem we will onsider theproblem of �nding symmetri measures whih satisfy: ∫ ∞

−∞
xk = [k]q!. We will apply thegeneral theory to our ase. With every moment problem we an assoiate two sequenesof polynomials Pn(x), Rn(x). They are solutions of the following reurrene relation:

ωn+1(x) = (x − αn+1)ωn(x) − βnωn−1(x),with initial onditions:
R0(x) = 1, R1(x) = x − α1, P0(x) = 0, P1(x) = 1,where αn ∈ R for n > 0 and βn ≥ 0 for n > 0.The polynomials Rn(x) generated in this way are orthogonal with respet to themeasure whih solves the problem. Moreover αn, βn are uniquely determined by themeasure. Conversely, arbitrary pair of sequenes (αn ∈ R) and (βn ≥ 0) orrespond tosome measure with moments uniquely determined by (αn) and (βn). Additionally αn = 0for every n if and only if m2s+1 = 0 for eah s (see [A℄ for details).In our ase as we show in lemmas 3.1 and 3.2 that

Rn(x) =
n

∑

k=0

(

n

k

)

q

(−1)n+kq
k(k+1−2n)

2 q(
k

2) [n]q!

[k]q!
xk.

Our moment problem ∫ ∞

0
xkdν = [k]q! is the Stieltjes moment problem.Proposition 4.1. There is one to one orrespondene between the solutions of the prob-lem ∫ ∞

0
xkdν = mk and the symmetri solutions of the problem:

∫ ∞

−∞

xsdµ =

{

0 if s = 2k + 1,

mk if s = 2k,
(4.1)The problem (4.1) for the sequene mk = [k]q! does not have a unique solution. Thefollowing lassial theorem is true (see [A℄).Theorem 4.1. If the moment problem ∫ ∞

−∞
xkdν = mk does not have a unique solutionthen the set of measures Θ(dx, σ) whih solve the problem is indexed by the funtions

σ(z), whih are analyti in C+ and satisfy Imσ(z) ≤ 0 for Imz > 0. Additionally, thereexist entire funtions A(z), B(z), C(z), D(z) suh that
∫ ∞

−∞

Θ(dx, σ)

z − x
=

A(z) − σ(z)C(z)

B(z) − σ(z)D(z)
.
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A, B, C, D are almost uniform limits of An, Bn, Cn, Dn, where

An+1 = [Pn+1(z)Pn(0) − Pn+1(0)Pn(z)]c−1
n ,

Bn+1 = [Rn+1(z)Pn(0) − Pn+1(0)Rn(z)]c−1
n ,

Cn+1 = [Pn+1(z)Rn(0) − Rn+1(0)Pn(z)]c−1
n ,

Dn+1 = [Rn+1(z)Rn(0) − Rn+1(0)Rn(z)]c−1
n ,where

cn = (β1 · · ·βn) =

∫ ∞

−∞

|Rn(x)|2Θ(dx).Additionally σ(z) is uniquely determined by Θ(dx, σ).There are some speial solutions.Theorem 4.2. Let Θ(dx, ̺) be the solution to our moment problem, whih orrespondsto the funtion σ(z) = const. = ̺, where ̺ ∈ R. Then the support of the measure Θ(dx, ̺)oinides with zeros of the funtion B(z) − ̺D(z) , z ∈ R. The zeros xj(̺1)
∞
j=0 interlaewith the zeros xj(̺2)

∞
j=0 for ̺1 6= ̺2. Also, for arbitrary t ∈ R, there exists a unique ̺0,suh that t ∈ supp Θ(dx, ̺0). Additionally xj(̺) is monotoni and ontinuous in ̺.Remark 4.1. The solutions Θ(dx, ̺) desribed in the above theorem are alled N -ex-tremal. For suh measures polynomials are dense in L2(Θ(dx, σ)).The symmetri moment problem has only two symmetri N -extremal solutions. Theyorrespond to the ases ̺ = 0 and ̺ = +∞. They orrespond to N -extremal solutionsof the orresponding Stieltjes moment problem (see Proposition 4.1). The ase σ(z) = 0orresponds to N -extremal solution with support whih has the longest distane to zerofrom all solutions. The ase σ(z) = +∞ orresponds to N -extremal measure with supportwhih ontains zero.The supports of these measures are limit points of zeros of orthogonal polynomials ofeven and odd degree.Lemma 4.1. For the symmetri moment problem we have:

B(z) = lim
n→∞

anR2n(z), D(z) = lim
n→∞

bnR2n+1(z),for some sequenes an, bn, where B(z), D(z) are as in Theorem 4.1.Proof. For the symmetri moment problem, Pn and Rn satisfy the following reurreneformula:
ωn+1(x) = xωn(x) − βnωn−1(x), βn > 0.Therefore P0(0) = 0 i R1(0) = 0 implies that P2s(0) = 0 and R2s+1(0) = 0 for everynatural s. Applying this to theorem 4.1 we get the assertion.We an alulate expliitly orthogonal polynomials for our symmetri moment prob-lem.Lemma 4.2. Let

∫ ∞

0

xkdΘ1 = mk and ∫ ∞

−∞

xsdΘ2 =

{

0 if s = 2k + 1,

mk if s = 2k.
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(1)
n and R

(2)
n be sequenes of orthogonal monomials with respet to Θ1 and Θ2 re-spetively. Then

R
(1)
2n (x) = R(2)

n (x2) for x ∈ R.We know that R2k(x) = (−1)kq(
k
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x2s.Analogously as in ase of Ln(x) we an estimate the asymptotis of R2k+1(x) as k → ∞.First we will alulate the generating funtion.Lemma 4.3. Let Mn(x) = R2n+1(x)
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respetively, where J0, J1 are the q-Bessel funtions of degree zero and one.As in ase of lassial Bessel funtion we know only approximate value of the zeros of
J0(z, q−1) and J1(z, q−1). Details an be found in [IM℄.5. Charaterization of non-radial measures. This setion is devoted to the desrip-tion of non-radial solutions of our initial omplex moment problem. It turns out that theproblem of the existene of suh measures is losely onneted with the number of solu-tions of the real problem ∫ ∞
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BARGMANN REPRESENTATION OF q-COMMUTATION RELATIONS 183We an apply this theorem to an arbitrary moment problem whih does not have aunique solution.Corollary 5.1. Let ν1 and ν2 be two di�erent solutions of the problem:
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f(x)x2nν(dx) = 0 for all natural n.Now we an apply theorem 5.1 and get non-radial measures whih de�ne the salarprodut in the Bargmann representation for q > 1.
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