NONCOMMUTATIVE HARMONIC ANALYSIS WITH APPLICATIONS TO PROBABILITY BANACH CENTER PUBLICATIONS, VOLUME 78 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2007

THE LÉVY–KHINTCHINE FORMULA AND NICA–SPEICHER PROPERTY FOR DEFORMATIONS OF THE FREE CONVOLUTION

ŁUKASZ JAN WOJAKOWSKI

Mathematical Institute, University of Wrocław Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland E-mail: Lukasz. Wojakowski@math.uni.wroc.pl

Abstract. We study deformations of the free convolution arising via invertible transformations of probability measures on the real line $T: \mu \mapsto T\mu$. We define new associative convolutions of measures by

$$\mu \boxplus_T \nu = T^{-1}(T \, \mu \boxplus T \, \nu).$$

We discuss infinite divisibility with respect to these convolutions, and we establish a Lévy– Khintchine formula. We conclude the paper by proving that for any such deformation of free probability all probability measures μ have the Nica–Speicher property, that is, one can find their convolution power $\mu^{\boxplus_{T^s}}$ for all $s \geq 1$. This behaviour is similar to the free case, as in the original paper of Nica and Speicher [NS].

1. Introduction. For every invertible transformation of probability measures on the real line $T: \mu \mapsto T\mu$, we are able to define a new associative convolution of measures by the requirement

$$\mu \boxplus_T \nu = T^{-1}(T \mu \boxplus T \nu).$$

In this paper we establish a Lévy–Khintchine formula for the deformed free convolution. The method of proof is similar to the case of t-deformation, see [Wo1] and [Wo2]. We also show that any invertible deformation of the free convolution has the Nica–Speicher

The paper is in final form and no version of it will be published elsewhere.

²⁰⁰⁰ Mathematics Subject Classification: Primary 46L53, 46L54; Secondary 60E10.

Key words and phrases: free convolution, deformations, Lévy-Khintchine formula, Nica-Speicher property.

Partially sponsored with KBN grant no 1P03A 01330 and the European Commission Marie Curie Host Fellowship for the Transfer of Knowledge "Harmonic Analysis, Nonlinear Analysis and Probability", MTKD-CT-2004-013389.

property, that is, for any number $s \ge 1$ there exists a probability measure μ_s such that $\mu_s = \mu^{\bigoplus_{TS}}$.

In Section 2 we recall the notion of the free convolution of probability measures on the real line together with the moment-cumulant formula for the free convolution.

In Section 3 we define deformations of the free convolution.

In Section 4 we prove an analogue of the free Lévy–Khintchine formula for the deformed free convolution. Namely, we show that a probability measure μ on \mathbb{R} is \boxplus_T infinitely divisible if and only if there exists an $\alpha \in \mathbb{R}$ and a finite positive measure ρ such that for all $z \in \mathbb{C}^+$

$$\varphi_{\mu}^{\boxplus_{T}}(z) = \alpha + \int_{-\infty}^{\infty} \frac{1+zx}{z-x} \, d\rho(x),$$

where $\varphi_{\mu}^{\boxplus_{T}}(z)$ is the *T*-deformed counterpart of the $\varphi_{\mu}^{\boxplus}(z)$ -transform of Voiculescu. Both transforms linearize the respective convolutions.

In Section 5 we prove that for any deformation of free probability that we consider all probability measures μ have the Nica–Speicher property.

2. Free convolution of measures. A noncommutative probability space is a pair (\mathcal{A}, φ) where \mathcal{A} is a unital complex \star -algebra and φ a linear positive functional such that $\varphi(1) = 1$. A noncommutative random variable is simply an element $X \in \mathcal{A}$. In the sequel we will be interested by self-adjoint random variables $X = X^*$. By the distribution of X we understand the moments $\varphi(X^n)$, $n = 0, 1, \ldots$ Since the sequence of moments is positive definite, there exists a measure $\mu \in \operatorname{Prob}(\mathbb{R})$ such that $\varphi(X^n) = \int x^n d\mu(x)$, moreover, if \mathcal{A} is a C^* -algebra, the measure μ has compact support, hence is uniquely determined by its moments. A family of subalgebras $\mathcal{A}_i \subset \mathcal{A}$ is called free if

$$\varphi(a_1 \, a_2 \cdots a_n) = \varphi(a_1) \, \varphi(a_2) \cdots \varphi(a_n) = 0$$

whenever $\varphi(a_j) = 0, \quad a_j \in \mathcal{A}_{i_j}, \quad j = 1, 2, \dots, n \text{ and } i_1 \neq i_2 \neq \cdots \neq i_n.$ (1)

Two random variables are called free if they belong to two distinct free subalgebras. For measures μ and ν with compact support, their free convolution $\mu \boxplus \nu$ is defined as the distribution of $X + Y \in \mathcal{A}$ where $X, Y \in \mathcal{A}$ are free and have distributions μ and ν respectively. To this concept there corresponds the notion of the free product of noncommutative probability spaces. Given $(\mathcal{A}_1, \varphi_1)$ and $(\mathcal{A}_2, \varphi_2)$ we define $\mathcal{A} = \mathcal{A}_1 \star \mathcal{A}_2$ as the free product with amalgamation of units, that is, the \star -algebra generated by the unit and words of the form $a_1^{i_1} b_1^{j_1} \dots a_n^{i_n} b_n^{j_n}$ where $a_k \in \mathcal{A}_1$, $b_k \in \mathcal{A}_2$, $k, i_k, j_k \in \mathbb{N}$, $i_k, j_k > 0$, $i_1, j_n \geq 0$. The state $\varphi = \varphi_1 \star \varphi_2$ is defined so as to satisfy the relation (1). Then we have $\varphi|_{\mathcal{A}_i} = \varphi_i$, the algebras \mathcal{A}_i naturally embedded into \mathcal{A} are free and if $X \in \mathcal{A}_1$, $Y \in \mathcal{A}_2$ then $m_{\mu_X \boxplus \mu_Y}(n) = \varphi((X + Y)^n)$.

Since the measure $\mu \boxplus \nu$ depends only on the measures μ and ν , it is essential to be able to describe it only in terms of μ and ν . This is done with the use of the *R*-transforms $R^{\boxplus}_{\mu}(z)$, $R^{\boxplus}_{\nu}(z)$, the analogues of the logarithm of the Fourier transform in classical probability. If we define

$$R^{\boxplus}_{\mu}(z) = G^{-1}_{\mu}(z) - \frac{1}{z},$$
(2)

where $G_{\mu}^{-1}(z)$ is the right inverse of the Cauchy transform of the measure μ with respect to composition of functions, we have

$$R^{\boxplus}_{\mu\boxplus\nu}(z) = R^{\boxplus}_{\mu}(z) + R^{\boxplus}_{\nu}(z).$$
(3)

Recall that the Cauchy transform of a probability measure μ for $z \in \mathbb{C}^+ = \{z \in \mathbb{C} : \text{Im } z > 0\}$ is defined as follows:

$$G_{\mu}(z) = \int_{-\infty}^{+\infty} \frac{d\mu(x)}{z - x}.$$

 $G^{-1}_{\mu}(z)$ and $R^{\boxplus}_{\nu}(z)$ are well defined in some neighbourhood of zero. We can thus write equation (2) in an alternative form

$$G_{\mu}(z) = \frac{1}{z - R^{\boxplus}_{\mu}(G_{\mu}(z))}.$$
(4)

Moreover, since $R^{\boxplus}_{\mu}(z)$ is analytic, it can be written as the series $\sum_{k=0}^{\infty} R^{\boxplus}_{\mu}(k+1) z^k$. The coefficients $R^{\boxplus}_{\mu}(k)$ can be calculated by the results of Speicher [Sp] from the combinatorial moment–cumulant formula

$$m_{\mu}(n) = \sum_{\substack{\pi \in \mathrm{NC}(n) \\ \pi = (\pi_1, \dots, \pi_k)}} \prod_{i=1}^k R^{\boxplus}_{\mu}(|\pi_i|),$$
(5)

where NC(n) is the set of noncrossing partitions of the ordered set $\{1, 2, ..., n\}$, π_i , i = 1, ..., k are blocks of the partition π and $|\pi_i|$ is the cardinality of the block. Equivalently, one can start with reciprocals instead of Cauchy transforms

$$F_{\mu}(z) = \frac{1}{G_{\mu}(z)}$$

and define

$$\varphi_{\mu}^{\boxplus}(z) = F_{\mu}^{-1}(z) - z$$

getting a similar linearity relation

$$\varphi_{\mu\boxplus\nu}^{\boxplus}(z) = \varphi_{\mu}^{\boxplus}(z) + \varphi_{\nu}^{\boxplus}(z).$$

Moreover, this approach extends to measures with unbounded support and with infinite moments, one only has to find an appropriate domain for z. This has been done by Maassen [Ma] for the case of measures with finite variance and by Bercovici and Voiculescu without this assumption in [BV2]. Bercovici and Voiculescu prove that for any probability measure $\mu \in \operatorname{Prob}(\mathbb{R})$ and any $\alpha > 0$ there exists $\beta > 0$ such that the function $\varphi_{\mu}(z)$ is analytic in a domain of the form

$$\{z: |z| > \beta, \operatorname{Im}(z) > 0, \operatorname{Re}(z) < \alpha \operatorname{Im}(z)\}\$$

and that such an analytic function determines a corresponding probability measure. Since the sum of two such functions is again analytic in such a truncated angle for β big enough, the corresponding measure is determined. **3. Deformations of free convolution.** For every invertible transformation $T: \mu_i \mapsto T\mu_i$, we are able to define a new deformation of the free convolution of measures on the real line by

$$\mu \boxplus_T \nu = T^{-1} \left(T \, \mu \boxplus T \, \nu \right)$$

and the convolution \boxplus_T is associative, since \boxplus is.

For such a deformation of free convolution we can define cumulants, deformed R-transforms and deformed φ -functions:

PROPOSITION 1. For any positive integer n and $z \in \mathbb{C}^+$ define

$$\begin{split} R^{\boxplus_T}_{\mu}(n) &:= R^{\boxplus}_{T\mu}(n), \\ R^{\boxplus_T}_{\mu}(z) &:= R^{\boxplus}_{T\mu}(z), \\ \varphi^{\boxplus_T}_{\mu}(z) &:= \varphi^{\boxplus_T}_{T\mu}(z). \end{split}$$

Then

$$\begin{split} R^{\boxplus_T}_{\mu\boxplus_T\nu}(z) &= R^{\boxplus_T}_{\mu}(z) + R^{\boxplus_T}_{\nu}(z),\\ \varphi^{\boxplus_T}_{\mu\boxplus_T\nu}(z) &= \varphi^{\boxplus_T}_{\mu}(z) + \varphi^{\boxplus_T}_{\nu}(z). \end{split}$$

4. Infinite divisibility for deformed free convolution

DEFINITION 1. We say that a probability measure μ is infinitely divisible with respect to a convolution \star if for every $N \in \mathbb{N}$ there exists a measure μ_N such that $\mu = \mu_N^{\star N}$.

This can be rewritten equivalently in terms of R^* -transforms: a probability measure μ is infinitely divisible with respect to a convolution \star if for every $N \in \mathbb{N}$ there exists a measure μ_N such that $R^*_{\mu}(z) = N R^*_{\mu_N}(z)$.

In the case of the deformed free convolution \boxplus_T we prefer to use the $\varphi_{\mu}^{\boxplus_T}(z)$ transform, since it allows to treat measures with unbounded support. We have an analogue of the free Lévy–Khintchine formula:

THEOREM 1. A measure μ is \boxplus_T -infinitely divisible if and only if there exist $\alpha \in \mathbb{R}$ and a finite positive measure ρ such that for all $z \in \mathbb{C}^+$

$$\varphi_{\mu}^{\boxplus_{T}}(z) = \alpha + \int_{-\infty}^{\infty} \frac{1+zx}{z-x} \, d\rho(x).$$

Proof. In the case of our convolution a measure μ is \boxplus_T -infinitely divisible if for every $N \in \mathbb{N}$ there exists a measure μ_N such that on some domain

$$\varphi_{\mu}^{\boxplus_T}(z) = N \cdot \varphi_{\mu_N}^{\boxplus_T}(z).$$

By a double application of the definition of the φ^{\boxplus_T} -transform to the left and right hand side of the above equation we get

$$\varphi_{T\mu}^{\boxplus}(z) = \varphi_{\mu}^{\boxplus_{T}}(z) = N \cdot \varphi_{\mu_{N}}^{\boxplus_{T}}(z) = N \cdot \varphi_{T\mu_{N}}^{\boxplus}(z),$$

hence, the measure μ is \boxplus_T -infinitely divisible if and only if

$$\varphi_{T\mu}^{\boxplus}(z) = N \cdot \varphi_{T\mu_N}^{\boxplus}(z),$$

which is equivalent to \boxplus -infinite divisibility of $T\mu$.

By the free Lévy–Khintchine formula (see [Ma],[BV1]) we know that the measure $T\mu$ is freely infinitely divisible if and only if there exist $\tilde{\alpha} \in \mathbb{R}$ and a positive measure $\tilde{\rho}$ such that for all $z \in \mathbb{C}^+$

$$\varphi_{T\mu}^{\boxplus}(z) = \tilde{\alpha} + \int_{-\infty}^{\infty} \frac{1+zx}{z-x} \, d\tilde{\rho}(x).$$

Hence

$$\varphi_{\mu}^{\boxplus_T}(z) = \varphi_{T\mu}^{\boxplus}(z) = \alpha + \int_{-\infty}^{\infty} \frac{1+zx}{z-x} \, d\rho(x),$$

where $\alpha = \tilde{\alpha}$ and $\rho = \tilde{\rho}$.

5. Nica-Speicher theorem for the deformation of free probability. By a result of Nica and Speicher [NS], we know that for any probability measure μ , possibly not infinitely divisible, and any number $s \geq 1$ there exists a probability measure μ^s such that $\mu^s = \mu^{\boxplus s}$, which is understood as

$$s \, \varphi_{\mu}^{\boxplus}(z) = \varphi_{\mu^s}^{\boxplus}(z)$$

For the deformation of the free convolution we also have the following

THEOREM 2. For an arbitrary probability measure $\mu \in \operatorname{Prob}(\mathbb{R})$ there exists a measure $\mu^s \in \operatorname{Prob}(\mathbb{R})$ such that

$$\mu^s = \mu^{\boxplus_T s} \quad for \quad s \ge 1.$$

Proof. By definition

$$\varphi_{\mu}^{\boxplus_{T}}(z) = \varphi_{T\,\mu}^{\boxplus}(z) = \varphi_{\nu}^{\boxplus}(z),$$

where $T \mu = \nu \in \operatorname{Prob}(\mathbb{R})$. By the Nica and Speicher theorem for all $s \geq 1$ there exist measures ν^s such that $\nu^s = \nu^{\boxplus s}$, which gives

$$s\,\varphi_{\nu}^{\boxplus}(z) = \varphi_{\nu^s}^{\boxplus}(z) = \varphi_{T^{-1}\nu^s}^{\boxplus_T}(z).$$

Hence

$$s\,\varphi_{\mu}^{\boxplus_T}(z) = \varphi_{T^{-1}\nu^s}^{\boxplus_T}(z).$$

We have therefore found a family of measures $T^{-1}\nu^s$ which has the required property

$$(T^{-1}\nu^s) = \mu^{\boxplus_T s} \quad \text{for} \quad s \ge 1.$$

It is not possible to prove this theorem for 0 < s < 1, since that would imply that the free convolution version would also hold for 0 < s < 1, which is known to be false.

References

- [BV1] H. Bercovici and D. Voiculescu, Lévy-Hinčin type theorems for multiplicative and additive free convolution, Pacific J. Math. 153 (1992), 217-248.
- [BV2] H. Bercovici and D. Voiculescu, Free convolution of measures with unbounded support, Indiana Univ. Math. J. 42 (1993), 733–773.

- [Ma] H. Maassen, Addition of freely independent random variables, J. Funct. Anal. 106 (1992), 409–438.
- [NS] A. Nica and R. Speicher, On the multiplication of free n-tuples of noncommutative random variables, American Journal of Mathematics 118 (1996), 799–837.
- [Sp] R. Speicher, Multiplicative functions on the lattice of non-crossing partitions and free convolution, Math. Ann. 298 (1994), 611–628.
- [Wo1] Ł. J. Wojakowski, Probability interpolating between free and boolean, Ph.D. Thesis, University of Wrocław, 2004.
- [Wo2] Ł. J. Wojakowski, Probability interpolating between free and boolean, Dissertationes Mathematicae 446 (2007).