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Abstract. We show that the Nielsen number is a knot invariant via representation variety.

1. Introduction. We briefly describe the few basic notions of Nielsen fixed point theory

(see [2]). We assume X to be a connected, compact polyhedron and f : X → X to

be a continuous map. Let p : X̃ → X be the universal cover of X and f̃ : X̃ → X̃ a

lifting of f , i.e. p ◦ f̃ = f ◦ p. Two liftings f̃ and f̃ ′ are called conjugate if there is a

γ ∈ Γ ∼= π1(X) such that f̃ ′ = γ ◦ f̃ ◦ γ−1. The subset p(Fix(f̃)) ⊂ Fix(f) is called the

fixed point class of f determined by the lifting class [f̃ ]. Two fixed points x0 and x1 of f

belong to the same fixed point class iff there is a path c from x0 to x1 such that c ∼= f ◦ c

(homotopy relative endpoints). This fact can be considered as an equivalent definition of

a non-empty fixed point class. Every map f has only finitely many non-empty fixed point

classes, each a compact subset of X. A fixed point class is called essential if its index is

non-zero. The number of essential fixed point classes is called the Nielsen number of f ,

denoted by N(f). The Nielsen number is always finite and is a homotopy invariant. In

the category of compact, connected polyhedra, the Nielsen number of a map is, apart

from certain exceptional cases, equal to the least number of fixed points of maps with

the same homotopy type as f .

Let us consider a braid representative of a knot and induced map of corresponding

representation variety (see Section 2). We prove in Section 3 that the Nielsen number of

induced map is invariant under Markov moves and so is a knot invariant.
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2. Casson–Lin invariant. We recall firstly Lin’s construction in [7] for the intersection

number of the representation spaces corresponding to a braid representative of a knot K

in S3. Let (S3, D3
+, D

3
−, S

2) be a Heegard decomposition of S3 with genus 0, where

S3 = D3
+ ∪S2 D3

−, ∂D3
+ = ∂D3

−D
3
+ ∩D

3
− = S2.

Suppose that a knot K ⊂ S3 is in general position with respect to this Heegard de-

composition. So K ∩ S2 = {x1, . . . , xn, y1, . . . , yn}, K ∩D
3
± is a collection of unknotted,

unlinked arcs {γ±1 , . . . , γ
±
n } ⊂ D3

±, where ∂γ
−
i = {xi, yi} and {γ

+
1 , . . . , γ

+
n } = K ∩ D3

+

becomes a braid of n strands inside D3
+. Denote by β a corresponding word in the braid

group Bn. Given top end points xi of γ
+
i , the bottom end points of {γ

+
1 , . . . , γ

+
n } yield a

permutation of {y1, . . . , yn} that gives us a map

π : Bn → Sn,

where π(β) is the permutation of {y1, . . . , yn} in the symmetric group of n letters. Let

K = β be the closure of β. It is well-known that there is a correspondence between knots

and braids β for which π(β) is a complete cycle of the n letters (see [1]).

There is a corresponding Heegard decomposition for the complement of a K,

S3 \K = (D3
+ \K) ∪(S2\K) (D3

− \K),

D3
± \K = D3

± \ (D3
± ∩K), S2 \K = S2 \ (S2 ∩K).

Thus by Seifert–van Kampen theorem we have following diagram

π1(S
2 \K) → π1(D

3
+ \K)

↓ ↓

π1(D
3
− \K)→ π1(S

3 \K),

and a corresponding diagram of representation spaces

R(S2 \K) ← R(D3
+ \K)

↑ ↑

R(D3
− \K)← R(S3 \K),

(1)

where R(X) = Hom(π1(X), SU(2))/SU(2) for XS2 \K, D3
± \K, S

3 \K.

In [8], Magnus used the trace free matrices to represent the generators of a free group

to show that the faithfulness of a representation of braid groups in the automorphism

groups of the rings generated by the character functions on free groups. This is an original

idea to have representations with trace free along all meridians which Lin worked in [7]

to define the knot invariant. It has been carried out by M. Heusener and J. Kroll in [4]

for the representation of knot groups with the trace of the meridian fixed (not necessary

zero). Let R(S2 \K)[i] be the space of SU(2) representations ρ : π1(S
2 \K) → SU(2)

such that

ρ([mxi ]) ∼

(

i 0

0 −i

)

, ρ([myi ]) ∼

(

i 0

0 −i

)

, (2)

where mxi ,myi , i = 1, 2, . . . , n, are the meridian circles around xi, yi respectively. Note

that π1(S
2 \K) is generated by mxi ,myi , i = 1, 2, . . . , n, and one relation

∏n

i=1mxi =
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∏n

i=1myi . Corresponding to (1), we have

R(S2 \K)[i] ← R(D3
+ \K)[i]

↑ ↑

R(D3
− \K)[i] ← R(S3 \K)[i].

(3)

The conjugacy class in SU(2) is completely determined by its trace. So the condition (2)

can be reformulated for ρ ∈ R(X)[i],

trace ρ([mxi ]) = trace ρ([myi ]) = 0. (4)

The space R(S2 \ K)[i] can be identified with the space of 2n matrices X1, . . . , Xn,

Y1, . . . , Yn in SU(2) satisfying

trace (Xi) = trace (Yi) = 0 for i = 1, . . . , n, (5)

X1 ·X2 · · ·Xn = Y1 · Y2 · · ·Yn. (6)

Let Qn be the space {(X1, . . . , Xn) ∈ SU(2)n : trace (Xi) = 0, i = 1, . . . , n}. Let

R∗(S2 \K)[i] be the subset of R(S2 \K)[i] consisting of irreducible representations. Note

that R∗(S2 \K)[i] = (Hn \ Sn)/SU(2) in Lin’s notation [7], where

Hn = {(X1, . . . , Xn, Y1, . . . , Yn) ∈ Qn ×Qn : X1 · · ·Xn = Y1 · · ·Yn},

Sn is the subspace of Hn consisting of all the reducible points. Here Hn \ Sn is the total

space of a SU(2)-fiber bundle over R∗(S2 \K)[i].

Given β ∈ Bn, we denote by Γβ the graph of β in Qn ×Qn, i.e.

Γβ = {(X1, . . . , Xn, β(X1), . . . , β(Xn)) ∈ Qn ×Qn}.

As an automorphism of the free group Z[mx1 ] ∗ Z[mx2 ] ∗ · · · ∗ Z[mxn ], this element

β ∈ Bn preserves the word [mx1 ] · · · [mxn ]. Thus we have X1 · · ·Xn = β(X1) · · ·β(Xn),

or in other words Γβ is a subspace of Hn. In fact, for β = K, this subspace Γβ co-

incides with the subspace of representations ρ : π1(S
2 \ K) → SU(2) in Hn which

can be extended to π1(D
3
+ \ K), Γβ = Hom(π1(D

3
+ \ K), SU(2))[i]. Hence the space

R∗(D3
+ \K)[i] = Γβ,irre/SU(2) is the irreducible SU(2) representations with traceless

condition over D3
+ \K.

In the special case β = id, Γid represents the diagonal in Qn ×Qn,

Γid = {(X1, . . . , Xn, X1, . . . , Xn) ∈ Qn ×Qn}.

Since K ∩ D3
− represents the trivial braid, this space Γid ⊂ Hn can be identified with

the subspace of representations in Hom(π1(S
2 \K), SU(2))[i] which can be extended to

π1(D
3
− \K), i.e. Γid = Hom(π1(D

3
− \K), SU(2))[i]. By Seifert–van Kampen Theorem, the

intersection Γβ ∩ Γid is the same as the space of representations of π1(S
3 \K) satisfying

the monodromy condition [i] (see (1)),

Γβ ∩ Γid = Hom(π1(S
3 \K), SU(2))[i].

Given β ∈ Bn with β = K, there is an induced diffeomorphism (still denoted by β)

from Qn to itself. Such a diffeomorphism also induces a diffeomorphism

fβ : R∗(S2 \K)[i] →R∗(S2 \K)[i]

of the representation variety.
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Note that Γ β = (Γβ \ (Γβ ∩ Sn))/SU(2) is the image of the “diagonal” Γ id under

diffeomorphism fβ . By Seifert–van Kampen theorem (3), it is clear that the fixed point

set of fβ is

Fix(fβ |R∗(S2\K)[i])Γ β ∩ Γ idR
∗(S3 \K)[i].

The oriented submanifolds Γ β = R∗(D3
+ \K)[i], Γ id = R∗(D3

− \K)[i] intersect each

other in a compact subspace of R∗(S2 \ K)[i] by Lemma 1.6 from [7]. Hence we can

perturb fβ , or in other words, perturb R
∗(D3

+ \K)[i] to R̂∗(D3
+ \K)[i] by a compactly

support isotopy so that R̂∗(D3
+ \K)[i] intersects R∗(D3

− \K)[i] transversally at a finite

number of intersection points. Denote the perturbed diffeomorphism by f̂β . So its fixed

points are all non-degenerated.

The Casson–Lin invariant of a knot K = β is given by counting the algebraic inter-

section number of R̂∗(D3
+ \K)[i] and R∗(D3

− \K)[i], or the algebraic number of Fix(f̂β),

λCL(K) = λCL(β) = Algebraic (#Fix(f̂β))

= Algebraic (#(R̂∗(D3
+ \K)[i] ∩R∗(D3

− \K)[i])).

The results proved by Lin in [7] show that the Casson-Lin invariant λCL(K) = λCL(β)

is independent of its braid representatives, i.e. λCL(β) is invariant under the Markov

moves of type I and type II on β and is one half of the classical signature of the knot K.

3. Nielsen number is a knot invariant. In this section we propose to count fixed

points of fβ in a Nielsen way, namely, using the classical Nielsen numbers of fβ . Nielsen

counting of fixed points is a counting in the presence of the fundamental group. In order

to get an invariant of knots from braids, we have to verify that Nielsen number N(fβ) is

invariant under Markov moves. A Markov move of type I changes σ ∈ Bn to ξ
−1σξ ∈ Bn

for any ξ ∈ Bn, and the Markov move of type II changes σ ∈ Bn to σ
±
n σ ∈ Bn+1, or

the inverses of these operations. It is well-known that two braids β1 and β2 have isotopic

closure if and only if β1 can be changed to β2 by a sequence of finitely many Markov

moves [1].

Theorem 1. If β1 = β2 = K is a knot, β1 ∈ Bn, β2 ∈ Bm, then

N(fβ1) = N(fβ2).

So the Nielsen number N(fβ) is a knot invariant.

Proof. We only need to show that for β ∈ Bn with β being a knot K, the Markov moves

of type I and type II on β provide either a conjugacy or a isotopy of fβ . Hence from the

commutativity and the invariance property under isotopy of the Nielsen numbers, we get

that N(fβ) is an invariant of knot K = β.

Suppose we have the Markov move of type I: change β to ξ−1βξ for some ξ ∈ Bn. The

element ξ in Bn induces a diffeomorphism ξ : Qn → Qn, which is orientation preserving

as observed by Lin in [7]. Note that Bn is generated by σ1, . . . , σn−1. For any σ
±
i , the

induced diffeomorphism σ±i × σ
±
i : Qn × Qn → Qn × Qn is an orientation preserving

diffeomorphism. So ξ is also a orientation preserving diffeomorphism since orientation

preserving properties are invariant under the composition operation. Hence there is a
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homeomorphism

ξ × ξ : Qn ×Qn → Qn ×Qn,

which commutes with the SU(2)-action and

(ξ × ξ)(R∗(S2 \K)[i]) = R∗(S2 \K)[i] (changing variables by ξ × ξ),

(ξ × ξ)(R∗(D3
− \K)[i]) = R∗(D3

− \K)[i] (in new coordinate ξ(X1), . . . , ξ(Xn)),

(ξ × ξ)(R∗(D3
+ \K)[i]) = R∗(D3

+ \K)[i] (in new coordinate ξ(X1), . . . , ξ(Xn)),

as oriented manifolds. Let gξ : R∗(S2 \K)[i] →R∗(S2 \K)[i] be the induced homeomor-

phism, induced from ξ × ξ as coordinate changes. Hence we get a conjugacy relation

g−1
ξ ◦ fβ ◦ gξ = fξ−1βξ,

from changing variables via gξ. Note that Fix(fξ−1βξ) is identified with Fix(fβ) under gξ.

Thus the Markov move of type I preserves the conjugacy class of fβ . Therefore by com-

mutativity of the Nielsen number (see [5]) we have

N(fξ−1βξ)N(g−1
ξ ◦ fβ ◦ gξ) = N(fβ). (7)

It is clear that the argument goes through for the inverse operation of Markov move of

type I.

Suppose we have the Markov move of type II: change β to σnβ ∈ Bn+1. Recall that

σn(xi) = xi, 1 ≤ i ≤ n−1, σn(xn) = xnxn+1x
−1
n and σn(xn+1) = xn. We need to identify

the Nielsen number from the construction in Ĥn into the one from Ĥn+1. Following Lin [7],

there is an imbedding q : Qn ×Qn → Qn+1 ×Qn+1 given by

q(X1, . . . , Xn, Y1, . . . , Yn) = (X1, . . . , Xn, Yn, Y1, . . . , Yn, Yn).

Such an imbedding commutes with the SU(2)-action and q(Hn) ⊂ Hn+1, and induces an

imbedding

q̂ : Ĥn(= R
∗(S2 \ β)[i])→ Ĥn+1(= R

∗(S2 \ σnβ)[i]).

Note that the symplectic structure of Ĥn+1 restricted on q̂(Ĥn) is the symplectic structure

on Ĥn. Under this imbedding, we see that q̂(fβ) : Ĥn+1 → Ĥn+1 is given by

(X1, . . . , Xn, X1, . . . , Xn) 7→ (X1, . . . , Xn, β(Xn), β(X1), . . . , β(Xn), β(Xn)). (8)

The image of q̂(fβ) is invariant under the operation of σn. Also the corresponding diffeo-

morphism fσnβ is given by

fσnβ(X1, . . . , Xn, Xn+1, X1, . . . , Xn, Xn+1)

= (X1, . . . , Xn+1, β(X1), . . . , β(Xn−1), β(Xn)Xn+1β(Xn)
−1, β(Xn)). (9)

Thus we have

q̂(R∗(D3
− \ β)[i]) ⊂ R∗(D3

− \ σnβ)[i], q̂(R∗(D3
+ \ β)[i]) ⊂ R∗(D3

+ \ σnβ)[i].

The fixed points of fσnβ are elements

β(Xi) = Xi, 1 ≤ i ≤ n1; β(Xn)Xn+1β(Xn)
−1 = Xn, β(Xn) = Xn+1,

which is equivalent to β(Xi) = Xi, 1 ≤ i ≤ n, i.e.

Fix(fσnβ) = Fix(q̂(fβ)) = Fix(fβ).



74 A. FEL’SHTYN

Then there is a (Hamiltonian) isotopy ψt : Ĥn+1(= (Hn+1 \ Sn+1)/SU(2)) → Ĥn+1

between ψt0 = q̂(fβ) by (8) and ψt1 = fσnβ (9) (see [6, 7] for the explicit constructions).

So we have

N(fσnβ) = N(ĝ(fβ))N(fβ). (10)

The first equality follows from the invariance property of Nielsen numbers under the

isotopy ψt and the second from the natural identification. We can similarly prove that

N(fσ−1
n β

)N(fβ).

Remark 2. It is known for a long time that the problem of computation of Nielsen

numbers is a very difficult problem. By this reason, we strongly believe that the Nielsen

number N(fβ) is a new knot invariant, which cannot be reduced to the known knot

invariants, as it happened in the case of the Casson–Lin invariant of knots.

Example 3 (“Pillowcase”). For n = 2 the irreducible variety R∗(S2 \K)[i] is a 2-sphere

with four cone points deleted (see [7]). So, in this case the space R∗(S2 \ K)[i] is non-

simply-connected and the Nielsen number N(fβ) is not trivial for general β.

Question 4. Is the space R∗(S2 \K)[i] simply-connected if n > 2?

The author was informed by Hans Boden that Theorem 8.3 in [3] about a moduli

space of stable parabolic bundles over 2-sphere with marked points with given degree

and weights may be very useful for the full answer on this question.
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