ON THE SPECTRUM AND EIGENFUNCTIONS
OF THE OPERATOR \((Vf)(x) = \int_0^x f(t)dt\)

I. Yu. DOMANOV

Institute of Applied Mathematics and Mechanics, NAS of Ukraine
Roza-Luxemburg St. 74, Donetsk, 83114, Ukraine
E-mail: domanovi@yahoo.com

1. Introduction. It is well known that the Volterra operator \(V : f \rightarrow \int_0^x f(t)dt\) defined on \(L^p(0,1) (C[0,1])\) is quasinilpotent, that is, \(\sigma(V) = \{0\}\). It was pointed out in [5]–[6] that the operator

\[(1) V_\phi : f \rightarrow \int_0^{\phi(x)} f(t)dt\]

which is a composition of integration and substitution with \(\phi \in C[0,1]\) is quasinilpotent on \(C[0,1]\) if \(\phi(x) \leq x\) for all \(x \in [0,1]\).

Let \(\phi : [0,1] \rightarrow [0,1]\) be a measurable function and let \(V_\phi : L^p(0,1) \rightarrow L^p(0,1) (1 \leq p < \infty)\) be defined by (1). It was proved in [12]–[13] that \(V_\phi\) is quasinilpotent on \(L^p(0,1)\) if and only if \(\phi(x) \leq x\) for almost all \(x \in [0,1]\). It was also noted in [13] and proved in [14] that the spectral radius of \(V_{x^\alpha}\) defined on \(L^p(0,1)\) or \(C[0,1]\) is \(1 - \alpha\) \((0 < \alpha < 1)\).

We note also paper [4], where the hypercyclicity of \(V_{x^\alpha}\) was proved on some Fréchet space.

In this note we find the spectrum of \(V_{x^\alpha}\) defined on \(L^2(0,1)\) and investigate some properties of its eigenfunctions.

Notations. Let \(X\) be a Banach space and let \(T\) be a bounded operator on \(X\). Then \(\ker T := \{x \in X : Tx = 0\}\) denotes a kernel of \(T\) and \(R(T) := \{Tx : x \in X\}\) denotes a range of \(T\). \(I\) denotes the identity operator on \(X\); \(\text{span} E\) denotes the closed linear span of the set \(E \subset X\); \(\mathbb{1}\) denotes the function \(f \equiv 1\) in \(L^2(0,1)\); \(\mathbb{Z}_+ := \{0,1,2,\ldots\}\). For simplicity we set \(\sum_{k=n}^m a_k := 0\) if \(n > m\).

2000 Mathematics Subject Classification: Primary 47A75; Secondary 47A10, 47G10.

Key words and phrases: eigenvalue, eigenfunction, integral operator.
This research was partially supported by NAS of Ukraine, Grant # 0105U006289.
The paper is in final form and no version of it will be published elsewhere.
2. Auxiliary results. The following two Lemmas are well known. For the sake of completeness, proofs are given.

Lemma 1. The system $\{(\ln x)^n\}_{n=0}^{\infty}$ is complete in $L^2(0, 1)$.

Proof. Since the Laguerre functions $f_n(x) := e^{-x/2}\frac{1}{\pi}e^{x/2}x^n e^{-x} (n \in \mathbb{Z}_+)$ form [1] an orthonormal basis in $L^2(0, \infty)$, the system $\{x^n e^{-x/2}\}_{n=0}^{\infty}$ is complete in $L^2(0, \infty)$. Let the operator $T : L^2(0, \infty) \to L^2(0, 1)$ be defined by

$$(Tf)(x) := \frac{f(-\ln x)}{x^{1/2}}.$$

It is easily proved that T is a surjective isometry. Thus the system $\{T(x^n e^{-x/2})\}_{n=0}^{\infty} = \{(\ln x)^n\}_{n=0}^{\infty}$ is complete in $L^2(0, 1)$.

Remark 1. Consider an operator $C : L^2(0, 1) \to L^2(0, 1)$ defined by $(Cf)(x) = f(x) - \int_x^1 \frac{f(t)}{t} \, dt$. It is well known [2] that C is a simple unilateral shift. Since $\ker C^* = \{c \cdot 1 : c \in \mathbb{C}\}$, it follows [8] that the set $\{C^n 1\}_{n=0}^{\infty}$ forms an orthonormal basis in $L^2(0, 1)$. It can easily be checked that $(C^n 1)(x) = P_n(ln x)$, where P_n is a polynomial of degree n. Thus $L^2(0, 1) = \text{span}\{(\ln x)^n : n \geq 0\}$.

Lemma 2. Let A be a compact operator defined on a Hilbert space H, $Af_n = \lambda_n f_n$ and $\text{span}\{f_n : n \geq 1\} = H$. Then

1) $\sigma_p(A) = \{\lambda_n\}_{n=1}^{\infty}$;

2) if $\lambda_i \neq \lambda_j$ for $i \neq j$ then for every eigenvalue of A the algebraic multiplicity is equal to one.

Proof. 1) Let $\lambda \in \sigma_p(A)$ and $\lambda \neq \lambda_n$ for all $n = 1, 2, \ldots$. Then $\overline{\lambda} \in \sigma_p(A^*)$ and hence

$$H \neq (\ker(A^* - \overline{\lambda}I))^\perp = R(A - \lambda I) = \text{span}\{(A - \lambda I)f_n : n \geq 1\}$$

$$= \text{span}\{(\lambda_n - \lambda)f_n : n \geq 1\} = \text{span}\{f_n : n \geq 1\} = H.$$

This contradiction proves 1).

2) Let $\lambda_k \in \sigma_p(A)$. Since A is a compact operator and $\text{span}\{f_n : n \geq 1\} = H$, we obtain

$$\text{dim ker}(A - \lambda_k I)^m = \dim R(A - \lambda_k I)^m = \dim (\text{span}\{(\lambda_n - \lambda_k)^m f_n : n \geq 0\})^\perp = \dim (\text{span}\{f_n : n \geq 0, n \neq k\})^\perp = 1, \quad m = 1, 2, \ldots.$$

Hence the algebraic multiplicity of λ_k is equal to one.

The following Lemma is a rephrasing of Problems I.50, V.161, V.162 from [9].

Lemma 3. Let $|q| < 1$ then

1) $F_q(z) := \prod_{k=1}^{\infty} (1 - q^k z) = 1 + \sum_{k=1}^{\infty} \frac{q^k (k+1)/2}{(q - 1) \cdots (q^k - 1)} z^k$ is an entire function.

2) The polynomials $P_n(z) := 1 + \sum_{k=1}^{n} \frac{n!}{(n-k)!} \frac{q^k (k+1)/2}{(q - 1) \cdots (q^k - 1)} z^k$ have only real positive zeroes.
3. Main results

Proposition 1. Let $0 < \alpha < 1$ and $V_\alpha := V_{x^\alpha}$ be defined on $L^2(0, 1)$. Then

1) $\sigma_p(V_\alpha) = \{(1 - \alpha)^n\}_{n=1}^\infty$;

2) the algebraic multiplicity of every eigenvalue of V_α is equal to one;

3) $f_{n+1}(x) = x^{\frac{\alpha}{1-\alpha}} \left(\ln^n x + \sum_{k=1}^{n} \frac{n! \alpha^{(k-1)/2} (1 - \alpha)^k}{(n-k)! (1-\alpha) \cdots (1-\alpha^k)} \ln^{n-k} x \right)$, \quad $n \in \mathbb{Z}_+$

is an eigenfunction for the operator V_α with eigenvalue $\lambda_{n+1} := (1 - \alpha)\alpha^n$;

4) $g_{n+1}(x) = 1 + \sum_{k=1}^{\infty} (-1)^{k-1} \frac{\alpha^{(k-1)(k-2)/2} (1 - \alpha)^{k-1}}{(1 - \alpha) \cdots (1 - \alpha^{k-1})} \frac{1}{x^{(1 - \alpha)^{k-1}}}$, \quad $n \in \mathbb{Z}_+$

is an eigenfunction for the operator V_α^* with eigenvalue $\lambda_{n+1} := (1 - \alpha)\alpha^n$.

5) the system $\{f_n\}_{n=1}^\infty$ is complete in $L^2(0, 1)$;

6) the system $\{g_n\}_{n=1}^\infty$ is not complete in $L^2(0, 1)$.

7) the operator V_α does not admit a spectral synthesis, i.e. there exists an invariant subspace E such that $V_\alpha|E$ is quasinilpotent.

Proof. 3) Since $x^\varepsilon \ln^m x \in C[0, 1]$ for all $\varepsilon > 0$ and $m \in \mathbb{Z}_+$, we have that $f_{n+1} \in L^2(0, 1)$.

Let us check that $f_{n+1}(x)$ is an eigenfunction of V_α corresponding to the eigenvalue $\lambda_{n+1} := (1 - \alpha)\alpha^n$. By definition, put

$$C_{n-k}(\alpha) := \frac{n! \alpha^{(k-1)/2} (1 - \alpha)^k}{(n-k)! (1-\alpha) \cdots (1-\alpha^k)}, \quad k = 1 \ldots n.$$

Then

$$\frac{\alpha}{1 - \alpha} C_{n-k}(\alpha) + (n-k+1) C_{n-k+1}(\alpha) = \frac{n! \alpha^{(k-1)(k-2)/2} (1 - \alpha)^{k-1}}{(n-k)! (1 - \alpha) \cdots (1 - \alpha^{k-1})} \left(\frac{\alpha^k}{1 - \alpha^k} + 1 \right)$$

$$= \frac{n! \alpha^{(k-1)(k-2)/2} (1 - \alpha)^{k-1}}{(n-k)! (1 - \alpha) \cdots (1 - \alpha^{k-1})}, \quad k = 1 \ldots n.$$

Further,

$$f_{n+1}(x) = \alpha x^{\alpha-1} \ln^n x \sum_{k=1}^{n} C_{n-k}(\alpha) \ln^{n-k} x$$

$$= \alpha x^{\alpha-1} \ln^n x \sum_{k=1}^{n} \frac{n! \alpha^{(k-1)/2} (1 - \alpha)^k}{(n-k)! (1-\alpha) \cdots (1-\alpha^k)} \ln^{n-k} x$$

$$= (1 - \alpha)\alpha^n x^{\frac{2\alpha-1}{1-\alpha}} \left(\alpha \ln^n x + \sum_{k=1}^{n} \frac{n! \alpha^{(k-1)(k-2)/2} (1 - \alpha)^{k-1}}{(n-k)! (1 - \alpha) \cdots (1 - \alpha^{k-1})} \ln^{n-k} x \right), \quad n \in \mathbb{Z}_+,$$

and

$$f'_{n+1}(x) = \frac{\alpha}{1 - \alpha} x^{\frac{\alpha}{1-\alpha}-1} \left(\ln^n x + \sum_{k=1}^{n} C_{n-k}(\alpha) \ln^{n-k} x \right)$$
\[+x^{1-\alpha} \left(\frac{n \ln^{n-1} x}{x} + \sum_{k=1}^{n-1} C_n \alpha (n-k) \ln^{n-k-1} x \right) \]
\[= x^{2-\alpha} \left(\frac{\alpha \ln x}{1-\alpha} + n \ln^{n-1} x \right) \]
\[+ x^{2-\alpha} \left(\sum_{k=1}^{n} \frac{\alpha C_{n-k} (\alpha)}{1-\alpha} \ln^{n-k} x + \sum_{k=2}^{n} C_{n-k+1} (\alpha) (n-k+1) \ln^{n-k} x \right) \]
\[= x^{2-\alpha} \left[\frac{\alpha \ln x}{1-\alpha} + \sum_{k=1}^{n} \frac{n!}{(n-k)!} \frac{\alpha^{(k-1)(k-2)/2}(1-\alpha)^{k-1}}{(1-\alpha)\ldots(1-\alpha^k)} \ln^{n-k} x \right], \quad n \in \mathbb{Z}_+. \]

It follows from (2)-(3) that \(\alpha x^{\alpha - 1} f_{n+1} (x^\alpha) = (1-\alpha)\alpha^n f'_{n+1} (x) \). Thus
\[(V_{\alpha} f_{n+1})(x) = \int_0^x f_{n+1}(t) dt = \int_0^x \alpha^{\alpha - 1} f_{n+1}(t^\alpha) dt = (1-\alpha)\alpha^n \int_0^x f'_{n+1}(t) dt \]
\[= (1-\alpha)\alpha^n (f_{n+1}(1) - f_{n+1}(0)) = (1-\alpha)\alpha^n f_{n+1}(x), \quad n \in \mathbb{Z}_+. \]

4) The convergence of the series
\[S := \sum_{k=2}^{\infty} \frac{\alpha^{(k-1)(k-2)/2}}{(1-\alpha)\ldots(1-\alpha^k)} x^{k-1}, \quad x \in [0, 1] \]
follows from d’Alembert rule. Since \(\frac{\alpha^{k-1}}{(\alpha-1)(\alpha^k-1)} = \frac{1}{\alpha} + \ldots + \frac{1}{\alpha^{k-1}} > k-1 \), we obtain that
\(x^{k-1} > x^{\frac{1}{(\alpha-1)\ldots(\alpha^k-1)}} \) for \(x \in [0, 1] \). Now the absolute convergence of \(g_n(x) \) for \(x \in [0, 1] \)
(and hence continuity of \(g_n \)) is implied by the convergence of \(S \).

Let us check that \(g_{n+1}(x) \) is an eigenfunction for the operator \(V_{\alpha}^* \) with the corresponding eigenvalue \(\lambda_{n+1} := (1-\alpha)\alpha^n \):

\[(V_{\alpha}^* g_{n+1})(x) = \int_{x^{1/\alpha}}^1 g_{n+1}(t) dt \]
\[= 1 - x^{1/\alpha} + \sum_{k=2}^{\infty} \frac{(-1)^{k-1} \alpha^{(k-1)(k-2)/2}}{(1-\alpha)\ldots(1-\alpha^k)} \frac{1}{(1-\alpha)} \left. x^{1-\alpha} \right|_{x^{1/\alpha}} \]
\[= (1-\alpha)\alpha^n \sum_{k=1}^{\infty} \frac{(-1)^{k-1} \alpha^{(k-1)(k-2)/2}}{(1-\alpha)\ldots(1-\alpha^k)} x^{(1-\alpha)\alpha^k} =: \lambda_{n+1}(S_1 - S_2) \]
\[= \lambda_{n+1} S_1 - (1 - g_{n+1}(x)) \]
\[= \lambda_{n+1}(S_1 - (1 - g_{n+1}(x))) = \lambda_{n+1}(S_1 - 1) + \lambda_{n+1} g_{n+1}(x). \]

By Lemma 3.1
\[S_1 = \sum_{k=1}^{\infty} \frac{(-1)^{k-1} \alpha^{(k-1)(k-2)/2}}{(1-\alpha)\ldots(1-\alpha^k)} = -\sum_{k=1}^{\infty} \frac{\alpha^{k(k+1)/2}\alpha^{(-n-1)k}}{(\alpha - 1)\ldots(\alpha^k - 1)} = -(F_\alpha(\alpha^{n-1}) - 1) = 1. \]
Combining (4) and (5), we get \((V_{\alpha}^* g_{n+1})(x) = \lambda_{n+1} g_{n+1}(x) \).
5) It can be proved that $E_{n+1} := \text{span}\{f_1, \ldots, f_{n+1}\} = \text{span}\{x^\frac{n}{\alpha} \ln^k x : k = 0 \ldots n\}$. Hence by Lemma 1

$$E_\infty := \text{span}\{f_k : k \in \mathbb{Z}_+\} = \text{span}\{x^\frac{n}{\alpha} \ln^k x : k \in \mathbb{Z}_+\} = x^\frac{n}{\alpha} L^2(0,1) = L^2(0,1).$$

1), 2) follow from 5) and Lemma 2.

6) It follows from M"untz-Sz"asz theorem [7], [11] that the system $\{x^{(1-\alpha)n}\}_{n=0}^\infty$ is not complete in $L^2(0,1)$. Since $\text{span}\{g_n : n \geq 1\} \subset \text{span}\{x^{\frac{n}{\alpha}-\alpha n} : n \geq 0\}$, we have that the system $\{g_n\}_{n=1}^\infty$ is not complete in $L^2(0,1)$.

7) Let $E = \text{span}\{g_n : n \geq 1\}$. Then $V_\alpha E \subset E$ and by 5) the operator $V_\alpha|_E$ is quasinilpotent.

Corollary 1. Let $0 < \alpha < 1$, $\phi(x) = 1 - (1 - x)^{1/\alpha}$. Then the operators V_x^α and V_ϕ are unitarily equivalent and hence $\sigma_p(V_\phi) = \{(1-\alpha)\alpha^{-n-1}\}_{n=1}^\infty$.

Proof. Let U be a unitary operator defined by $(Uf)(x) = f(1-x)$. Then simple computations show that $V_x^\alpha = U^{-1}V_\phi U$.

Remark 2. Suppose $\phi(x) = (1 - (1 - x)^{1/\alpha})'$, then $\phi'(0) = 1/\alpha$. Thus Corollary 1 states that the condition $\phi'(0) = \infty$ is not necessary for $\text{card}\{\sigma_p(V_\phi)\} = \infty$.

Remark 3. It is interesting to note that if $\phi(\phi(x)) = x$ then the operator V_ϕ is selfadjoint, and hence eigenfunctions of V_ϕ form an orthonormal basis in $L^2(0,1)$. The statements 5) and 6) of Proposition 1 imply that the operator V_α is not similar and even quasisimilar (see definition in [8], [10]) to V_α^*. It contrasts to the case $\alpha = 1 : V^* = U^{-1}VU$.

It follows also that V_α is not quasisimilar to any selfadjoint operator.

Corollary 2. 1) $f_n(x)$ is a continuous function with n real zeroes which belong to $[0,1]$;

2) zeroes of $f_n(x)$ and $f_{n+1}(x)$ interlace.

Proof. 1) The continuity of $f_n(x)$ was proved in Proposition 1. Let us prove that the function f_{n+1} has $n+1$ zeroes which belong to $[0,1]$. By definition, put

$$P_n(x) := \left(\frac{t^{\frac{n}{\alpha}} f_{n+1}(t)}{\ln^n t} \right)_{t=e^{-\frac{1}{\alpha x}}}$$

$$= \left(1 + \sum_{k=1}^{\infty} \frac{n!}{(n-k)!} \frac{\alpha^{k(1-\alpha)/2}(1-\alpha^k)}{(1-\alpha) \ldots (1-\alpha^k)} \ln^k t \right)_{t=e^{-\frac{1}{\alpha x}}}$$

$$= 1 + \sum_{k=1}^{\infty} \frac{n!}{(n-k)!} \frac{\alpha^{k(1-\alpha)/2}}{(1-\alpha) \ldots (1-\alpha^k)} x^k.$$

It can easily be checked that

$$f_{n+1}(t) = t^{\frac{n}{\alpha}} \ln^n t P_n \left(\frac{-\alpha}{1-\alpha} \ln t \right).$$

It follows from Lemma 3 2) that the polynomial P_n has exactly n positive zeroes. Thus the function f_{n+1} has $n+1$ zeroes which belong $[0,1]$.

2) Let us note that $(x^n P_{n+1}(x^{-1}))' = nx^{n-1} P_n(x^{-1})$. Therefore zeroes of $P_n(x)$ and $P_{n+1}(x)$ interlace. Hence zeroes of $f_n(x)$ and $f_{n+1}(x)$ interlace.
Remark 4. We suppose that eigenfunctions g_n of the operator $V_{x_\alpha}^*$ have the same properties of zeroes as f_n. Namely

1) $g_n(x)$ is a continuous function with n real zeroes which belong to $[0,1]$;
2) zeroes of $g_n(x)$ and $g_{n+1}(x)$ interlace.

Remark 5. Proposition 1 as well as Corollary 2 hold also if the operator V_α is defined on $L^p(0,1)$ ($1 \leq p < \infty$). To prove it one can easily check that the operator V_α defined on $L^2(0,1)$ is quasisimilar to the operator V_α defined on $L^p(0,1)$.

Remark 6. It was proved in [4] that V_α is hypercyclic on the Fréchet space $C_0([0,1]) := \{u \in C([0,1]) : u(0) = 0\}$, endowed with the system of seminorms
$$
\|u\|_k = \max_{t \in [0,1-1/(k+1)]} |u(t)|, \quad k = 1, 2, \ldots .
$$
If the operator V_α is defined on $L^p(0,1)$ ($1 \leq p < \infty$) then $\sigma(V_\alpha^*)$ is an infinite set and hence (see [3]) V_α cannot be even supercyclic on $L^p(0,1)$.

Acknowledgments. I am grateful to Professor J. Zemánek for encouraging me to study the operator V_{x_α} and to Professor M. M. Malamud for helpful remarks.

References