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Abstract. A bounded linear operator T defined on a Banach space X is said to be supercyclic

if there exists a vector x ∈ X such that the projective orbit {λT nx : λ ∈ C, n ∈ N} is dense

in X. The aim of this survey is to show the relationship between positivity and supercyclicity.

This relationship comes from the so called Positive Supercyclicity Theorem. Throughout this

exposition, interesting new directions and open problems will appear.

1. Introduction. A bounded linear operator T defined on a Banach space X is said to

be supercyclic if the projective orbit of some vector x:

{λTnx : n ∈ N, λ ∈ C}

is dense in X.

Supercyclicity is an intermediate property between the hypercyclicity (T ∈ L(X) is

called hypercyclic if the orbit {Tnx} is dense for some vector x) and the cyclicity (if

the linear span of {Tnx} is dense in X). These notions are intimately related to the
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222 F. LEÓN AND A. PIQUERAS

invariant subspace problem. A good reference on hypercyclic operators is the survey of

K. G. Große-Erdmann [21] (for a more recent survey see [34]).

Supercyclicity was introduced in the sixties by Hilden and Wallen [24] who proved

that weighted backward shifts are all supercyclic. Since 1991 this property has been

studied extensively, thanks to the interesting work by Godefroy and Shapiro ([18]). The

first example of supercyclic operator in infinite-dimensional Banach spaces (in fact, a

hypercyclic operator) was discovered by S. Rolewicz in 1969 ([33]).

This survey paper deals with positive supercyclicity. An operator T is said to be

positively supercyclic if the subset

{rTnx : r ∈ R+, n ∈ N},

where R+ denotes the positive real numbers, is dense in X for some x. The Positive

Supercyclicity Theorem appeared in [27] where F. León and V. Müller gave a positive

answer to a question raised in [6].

Theorem 1.1 (Positive Supercyclicity Theorem). If T is a supercyclic operator with

σp(T
⋆) = ∅ then T is positive supercyclic. Moreover, if for some vector x ∈ X the subset

{λTnx : n ∈ N, λ ∈ C}

is dense in X, then the subset {rTnx : n ∈ N, r ∈ R+} is dense in X.

The above result actually simplifies the notion of supercyclicity. Throughout what

follows we will see new applications of Theorem 1.1.

The next result is similar to Theorem 1.1 in the context of hypercyclic operators. Let

D be the open unit disc in the complex plane.

Theorem 1.2. Let T be a hypercyclic operator in L(X) and suppose that α ∈ ∂D. Then

T has the same hypercyclic vectors as αT .

Theorem 1.2 solved a question posed independently by several authors at the same

time. The same technique used to prove Theorem 1.1 yields the following more general

result (see [27]).

Theorem 1.3. Let M be a semigroup of operators defined on a Banach space X and for

which there exists a vector x ∈ X such that the subset {λSx : S ∈ M , λ ∈ ∂D} is dense

in X. Suppose that there exists a bounded linear operator T ∈ M such that σp(T
⋆) = ∅

and ST = TS for all S ∈ M. Then the subset {Sx : S ∈ M} is dense in X.

In Section 2, we will see the connection between the above result on positive super-

cyclicity and the invariant subspace problem for positive operators. This connection is

very natural. In fact, as an immediate consequence, we will see that each positive oper-

ator has many non-supercyclic vectors. In this section we analyze also a recent result of

V. Müller ([31],[32]), and we will clarify its relation with the invariant subspace problem

for positive operators.

Section 3 is devoted to the study of the orbits of some integral operators. In Section 3

it is proved that the classical Cesàro operator is hypercyclic on Lp[0, 1], 1 < p < ∞,

nevertheless (thanks to the Positive Supercyclicity Theorem), this result is not true on
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C[0, 1] with the uniform norm. This result is extended in [29], where the authors ex-

tensively study the hypercyclic and supercyclic properties of integral operators. Related

results on supercyclicity of integral operators appeared in [17].

A bounded linear operator T defined on a Banach space X is said to be weakly

supercyclic if there exists a vector x ∈ X such that the orbit {λTnx : n ∈ N, λ ∈ C} is

weakly dense in X. In [35] the existence of weakly supercyclic operators which are not

(norm) supercyclic is shown. In Section 4 we will prove a weak version of the Positive

Supercyclicity Theorem. These results are included in [28].

The paper will be concluded with some open questions and further directions.

We want to thank the organizers of the Workshop on Operator Theory: M. Mbekhta,

Y. Tomilov, J. Zemánek, and the whole staff of the Institute of Mathematics of the Polish

Academy of Sciences for their hospitality and for making possible fruitful meetings of this

type. Also, we want to thank Prof. H. Salas and the referee for their comments. Finally,

we want to thank Prof. D. Tsedenbayar for the interesting discussions that we had during

his visit to the University of Càdiz in May, 2004.

2. The invariant subspace problem for positive operators. The invariant subspace

problem is one of the most fascinating unsolved problems in operator theory. Even if

certain conditions of regularity are imposed on T , then it is not known if the operator

T has nontrivial invariant closed subspaces. For instance, let us suppose that (X,≤C) is

a Banach space with an order ≤C . The order is defined by means of a closed cone C; a

cone is a subset C for which C + C ⊂ C and rC ⊂ C for all r ∈ R+. Let T be a positive

operator on X with respect to ≤C ; that is, T (C) ⊂ C. Then, in this regular situation it

is not known if there exist non-trivial invariant closed subspaces for T .

The above problem is known as the invariant subspace problem for positive operators.

The main reference, which collects the general results related to this topic, is the survey

of Abramovich, Aliprantis and Burkinshaw (see [1]). In this context, some advances have

been made recently by Atzmon-Godefroy and Kalton (see [3],[4]).

In terms of cyclic vectors the above problem can be reformulated in the following

way: it is not known if a positive bounded linear operator on (X,≤C) has a non-trivial

non-cyclic vector.

However as a consequence of the Positive Supercyclicity Theorem, every positive op-

erator has a lot of non-supercyclic vectors. In fact, each vector of the cone C, or −C is

non-supercyclic for T .

Proposition 2.1. Let T be a positive operator defined on the ordered vector space (X,≤C)

where X is a Banach space. If C is the positive cone which defines the order, then each

vector of C is non-supercyclic for T .

Now we will turn our attention to an “apparently” different problem. Let us consider

an operator T defined on a separable infinite-dimensional Hilbert space H. If T is a

contraction with spectral radius r(T ) equal to 1, then, does a closed non-trivial invariant

subspace exist for T? Or equivalently, does a (non-trivial) non-cyclic vector exist for T?

In general form:
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Question 2.2. Let T ∈ L(H) be a power-bounded operator with r(T ) = 1. Does a

(non-trivial) non-cyclic vector exist for T?

The previous problem is related to the articles by Brown-Chevreau and Pearcy. They

proved (see [10], [11]) that if the spectrum of a Hilbert space contraction T is rich (namely,

the spectrum of T contains the unit circle), then T has a non-trivial non-cyclic vector. In

this direction, some recent advances have been made by C. Ambrozie and V. Müller (see

[2]) who improved the result of Brown-Chevreau and Pearcy to polynomially bounded

operators.

This situation is where the Positive Supercyclicity Theorem appears. Regarding the

Question 2.2, V. Müller has recently proved that if T is a power bounded operator with

spectral radius 1, then there exists a non-supercyclic vector (non-trivial) for T . In fact,

the result in [31] is more general:

Theorem 2.3 (V. Müller). Let T ∈ L(H) be a power-bounded operator with 1 ∈ σ(T )

and let us suppose that Tnx → 0 for all x ∈ H. If {an} is a sequence of positive real

numbers converging to zero, then there exists x ∈ H \ {0} such that

Re 〈Tnx, x〉 ≥ an

for all n.

Let us observe that by the Positive Supercyclicity Theorem the vector x constructed

in Theorem 2.3 is a non-supercyclic vector. It is folklore in the context of the invariant

subspace problem (see [5] Chapter XIII) that we can suppose without loss of generality

that either Tnx → 0 for all x ∈ H or T ∗nx → 0 for all x ∈ H.

Moreover Theorem 2.3 gives a surprising connection between the invariant subspace

problem for positive operators and Question 2.2. We believe that the two problems are

equivalent. In fact the following conjecture arises.

Conjecture 2.4. Let us denote by (H,≤C) a separable complex Hilbert space and by

≤C an order defined by means of a closed cone C. Then each positive operator T on H

has a non-trivial invariant closed subspace if and only if for each power-bounded operator

T with r(T ) = 1 there exists a non-trivial invariant closed subspace for T .

In fact, the following result is true.

Corollary 2.5. Let us denote by (H,≤C) a separable complex Hilbert space. If each

positive operator T on H has a non-trivial invariant closed subspace then for each power-

bounded operator T with r(T ) = 1 there exists a non-trivial invariant closed subspace

for T .

The proof is a direct consequence of Theorem 2.3. We only need to put all the infor-

mation together. Let us consider a power bounded operator T with r(T ) = 1. We can

suppose without loss of generality that Tnx → 0 for all x ∈ H or T ∗nx → 0 for all x ∈ H.

In any case, we apply Theorem 2.3. Let us consider the following cone C:

C = {p(T )x : p polynomial with positive coefficients}−

where x is the vector which is guaranteed by Theorem 2.3. Let us observe that T is positive

with respect to C, and by hypothesis, there exists a non-trivial invariant subspace for T .
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3. Supercyclicity of integral operators. In this section we will see how the Positive

Supercyclicity Theorem helps us to prove non-supercyclicity of certain integral operators.

In fact, we will prove that the classical Cesàro operator is not supercyclic on C[0, 1] with

the uniform norm.

In the literature it is a clear fact that few operators of integral type (that is, unilateral

forward shifts, the Volterra operator, etc.) are supercyclic or hypercyclic. However, the

operators of derivative type (translation operators, unilateral backward shifts, etc.) are

more likely to be supercyclic or hypercyclic. The following question arises.

Question 3.1. For which kernels K is the integral operator

(VKf)(x) =

∫ x

0

K(x, t) f(t) dt

supercyclic or hypercyclic on Lp[0, 1] (1 ≤ p < ∞)?

The results in [29] suggest that if the kernel K is regular then the orbit of VK is also

regular. However, if the behaviour of K is irregular then the orbit of some vector under

V n
K can be chaotic. Nevertheless, for different kernels it is possible to obtain different

grades of hypercyclicity (see [29]).

For instance, if K is a continuous function on [0, 1]× [0, 1] it is well known that VK is

quasinilpotent, so that the orbit of each vector V n
Kf → 0 for all f ∈ Lp[0, 1] (1 ≤ p < ∞).

However, if we analyze the behaviour of the operator VK with kernel K(x, y) = 1
x , we

find a surprise.

Theorem 3.2. The operator

(Cf)(x) =
1

x

∫ x

0

f(s) ds

is hypercyclic on Lp[0, 1](1 < p < ∞).

Let us observe that in this case the operator C is the classical Hardy operator. The

Hardy operator was introduced in [22], and it was intensively studied in the 1980s. For

instance, in [9] and [26] the spectrum of C, defined on the space Lp[0, 1] (1 < p < ∞), is

computed. The Hardy operator is also known as the Cesàro operator. However, the name

Cesàro operator is also given in the literature (see [12], [37]) to another operator defined

on ℓp (1 ≤ p < ∞) by

TC(x1, x2, x3, x4, . . . ) =

(

x1,
x1 + x2

2
,
x1 + x2 + x3

3
,
x1 + · · · + x4

4
, . . .

)

which is of a different nature than C.

In fact, TC is not supercyclic on ℓ2 because it is subnormal ([25]) and subnormal

operators are not supercyclic ([7]). Moreover, TC is not supercyclic on ℓp (1 ≤ p < ∞);

see [29]. Indeed, let x = (x1, x2, . . . , xn, . . . ) be a supercyclic vector for TC , then x1 6= 0

otherwise x is not cyclic for TC . Now, an easy check in the first coordinates shows that

the positive projective orbit

{rTn
Cx : n ∈ N, r ∈ R+}

cannot be dense in ℓp, and using the Positive Supercyclicity Theorem we obtain the

desired result.
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To prove the hypercyclicity of C we need an extra tool discovered in [18].

Lemma 3.3 ([18]). Let T be a bounded linear operator defined on a Banach space X. If

the subsets

H+(T ) = linear span{Ker (T − λ) : |λ| > 1}

and

H−(T ) = linear span{Ker (T − λ) : |λ| < 1}

are dense in X, then T is hypercyclic.

To prove Theorem 3.2, let us observe that the functions xα are eigenvectors of C

corresponding to the eigenvalues 1
α+1 , that is, if fα(x) = xα then

(Cfα)(x) =
1

α + 1
xα.

Using the “full Müntz-Szàsz theorem” (see [14]), the linear span of

A = {xn−1 : n ≥ 1}

and the linear span

B = {x− 1
n+1 : n ≥ p}

are dense in Lp[0, 1] (1 ≤ p < ∞). Finally, let us observe that the functions in A

correspond to the eigenvalues 1
n and the functions in B correspond to the eigenvalues

1 + 1
n . Therefore the subsets H+(C) and H−(C) are dense in Lp[0, 1] (1 < p < ∞) and

Lemma 3.3 yields the desired result.

Nevertheless, this result is not true on C[0, 1] with the supremum norm (see [29]).

Moreover, the Cesàro operator C is not supercyclic on C[0, 1]. For this proof, we will

need again the Positive Supercyclicity Theorem.

Theorem 3.4. The Cesàro operator is not supercyclic on C[0, 1].

Proof. Let us observe that the range of C − λI is dense for all λ ∈ C (this is due

to the Weierstrass Approximation Theorem), that is σp(C
⋆) = ∅. Thus, we can use

the Positive Supercyclicity Theorem. Therefore it is sufficient to show that for every

continuous function f : [0, 1] → R the subset

{rCnf : n ∈ N, r ∈ R+}

is not dense in the space CR[0, 1], of all continuous real-valued continuous functions with

the supremum norm.

We can assume without loss of generality that f(0) ≥ 0. By applying L’Hôpital’s rule,

we obtain

(Cf)(0) = lim
x→0

∫ x

0
f(s) ds

x
= f(0)

and, therefore (Cnf)(0) = f(0) for all n. Thus, we have that

sup
[0,1]

|r(Cnf)(0) − (−1)| > 1,

for all n ∈ N and r ∈ R+, that is the projective orbit {rCnf : n ∈ N, r > 0} is separated

from the function (−1) by more than 1, and this finishes the proof.
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4. The weak version of the Positive Supercyclicity Theorem. The Positive Su-

percyclicity Theorem was discovered in [27]. In this section we will prove a weak version

of this result.

The proof of this result can be extended without any difficulty to semigroups of

operators. We will prove this more general result and as a consequence we deduce the

weak version of the Positive Supercyclicity Theorem.

Theorem 4.1. Let M be a semigroup of bounded linear operators acting on a Banach

space X, with separable dual. Let us suppose that there is an operator T ∈ M with

σp(T
⋆) = ∅ such that TS = ST for all S ∈ M. If there exists a vector x ∈ X such that

the subset

{λSx : |λ| = 1, S ∈ M}

is weakly dense in X, then the subset

{Sx : S ∈ M}

is weakly dense in X.

Proof. The proof will be carried out in several steps. If A ⊂ X we will denote by A−ω the

weak closure of A. The neighborhoods of a point x in the weak topology will be denoted

by V (x, ε; x⋆
1, . . . , x

⋆
n), that is,

V (x, ε; x⋆
1, . . . , x

⋆
n) =

{

y ∈ X : |x⋆
j (x − y)| ≤ ε : j = 1, . . . , n

}

.

For each u ∈ X set Mu = {Su : S ∈ M}−ω. For u, v ∈ X set

Fu,v = {µ ∈ C : |µ| = 1, µv ∈ Mu} .

Step (1). The set Fu,v is a closed subset of the unit circle T = {µ ∈ C : |µ| = 1}.

Proof. If Fu,v = ∅ then (1) is already proved. Let us suppose that Fu,v 6= ∅ and let {µn} ⊂

Fu,v be a sequence converging to µ ∈ T. Given a neighborhood V0 = V (µv, ε; x⋆
1, . . . , x

⋆
n),

there exists µn0
such that |µ − µn0

|‖v‖ < ε/2. Since µn0
v ∈ Mu there exists S0 ∈ M

such that S0u ∈ V (µ0v, ε/2; x⋆
1, . . . , x

⋆
n). An easy cross-check proves that S0u ∈ V0 and

therefore µv ∈ Mu which yields (1).

Let X0 be the set of all vectors u ∈ X such that {µSu : µ ∈ T, S ∈ M}−ω = X.

Step (2). Let u ∈ X0. Then Fu,v 6= ∅ for all v ∈ X.

Proof. Suppose on the contrary that Fu,v = ∅ for some v ∈ X. Let {x⋆
n}n≥1 be a dense

subset of X⋆. Since u ∈ X0, by induction, there exists a subsequence {µn}n≥1 ⊂ T such

that

x⋆
j (v − µnSnu) <

1

n
, j = 1, . . . , n.

Since {µn} ⊂ T and T is compact, there exists a subsequence µnk
converging to

some µ ∈ T. Therefore, we can suppose without loss of generality that the sequence µn

converges to µ. Since the sequence {µnSnu− v} converges weakly to 0, it is bounded and

we can suppose without loss of generality that it is contained in the unit ball.

We claim that µ−1 ∈ Fu,v. Let us fix a weak neighborhood of µ−1v:

V0 = V (µ−1v, ε; y⋆
1 , . . . , y⋆

l ).
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Since {x⋆
n} is dense there exist n1 < n2 < · · · < nl and x⋆

n1
, . . . , x⋆

nl
∈ X⋆ such that

1
n1

≤ ε
3 and

‖y⋆
j − x⋆

nj
‖ ≤

ε

3
j = 1, . . . , l.

Let n ≥ nl be large enough such that ‖y⋆
j ‖ |µ

−1
n −µ−1|‖v‖ ≤ ε

3 for all j = 1, . . . , l. Let

us observe that

|y⋆
j (Snu − µ−1v)| = |y⋆

j (Snu − µ−1v − µ−1
n v + µ−1

n v)|

≤ |y⋆
j (Snu − µ−1

n v)| + ‖y⋆
j ‖ |µ

−1
n − µ−1| ‖v‖

≤ |(y⋆
j − x⋆

nj
)(Snu − µ−1

n v)| + |x⋆
nj

(Snu − µ−1
n v)| +

ε

3

≤
ε

3
+

ε

3
+

ε

3
= ε

for j = 1, . . . , l. Therefore µ−1v ∈ Mu, since V0 is arbitrary. Then µ−1 ∈ Fu,v and the

proof is complete.

Step (3). Let u, v, w ∈ X such that µ1 ∈ Fu,v and µ2 ∈ Fv,w. Then µ1µ2 ∈ Fu,w.

Proof. Let V0 = V (µ1µ2w, ε; x⋆
1, . . . , x

⋆
n) be an arbitrary neighborhood of µ1µ2w. Since

µ2 ∈ Fv,w there exists S1 ∈ M such that

S1v ∈ V (µ2v, ε/2; x⋆
1, . . . , x

⋆
n).

On the other hand, since µ1 ∈ Fu,v there exists S2 ∈ M such that

S2u ∈ V

(

µ1v,
ε

2‖S⋆
1‖

; x⋆
1, . . . , x

⋆
n

)

.

Let us observe that
∣

∣x⋆
j (S1S2u − µ1µ2w)

∣

∣ ≤
∣

∣x⋆
j (S1(S2u − µ1v))

∣

∣ +
∣

∣x⋆
j (µ1(S1v − µ2w))

∣

∣

≤ ‖S⋆
1‖

∣

∣x⋆
j (S2u − µ1v)

∣

∣ +
∣

∣x⋆
j (S1v − µ2w)

∣

∣

≤ ε/2 + ε/2 = ε

for all j = 1, . . . , n. That is, Mu ∩ V0 6= ∅ for any neighborhood V0 of µ1µ2w. Therefore

µ1µ2 ∈ Fu,w and the proof is completed.

Step (4). (T − z)x ∈ X0 for all z ∈ C.

Proof. Since σp(T
⋆) = ∅ the range of T − z is dense for all z ∈ C. Therefore, the set

{µS(T − z)x : S ∈ M, µ ∈ T}−ω ⊃ (T − z){µSx : S ∈ M, µ ∈ T}−ω

= (T − z)(X)

is a dense subset of X.

Now fix x ∈ X0. By (2) and (3), Fx,x is a non-empty subsemigroup of the unit circle T.

Let us suppose that Fx,x = T. By (2) and (3) Fx,y = T for all y ∈ X, thus y ∈ Mx for all

y ∈ X, and therefore the set {Sx : S ∈ M is weakly dense in X.

We will suppose from now on that Fx,x 6= T, and we will see that this hypothesis leads

to a contradiction. The proofs of the steps (4) and (5) are similar to the paragraphs (c)

and (d) of [27], page 387, and we omitted them. The remainder of the proof mimics the

proof of [27].



POSITIVITY AND SUPERCYCLIC OPERATORS 229

Step (5). There exists k ∈ N such that Fx,x = {e2πij/k : j = 0, 1, . . . , k − 1}.

Step (6). Let y ∈ X0. There exists µy ∈ T such that Fx,y = {µye2πij/k : j = 0, 1, . . . ,

k − 1}.

Now, for any non-zero vector y in the subspace generated by x and Tx, let us define

f(y) = µk where µ is any element of Fx,y. The function f is clearly well defined by Step

(6). Moreover, the function f is continuous (see [27] p. 288 for the details).

Proof. The vectors x and Tx are linearly independent. Otherwise, there exists α ∈ C

such that Tx = αx. Since S ∈ M commutes with T , S(Ker(T − α)) ⊂ Ker(T − α) for

all S ∈ M, and therefore {µSx : µ ∈ T, S ∈ M}−ω = X ⊂ Ker(T − α), which is a

contradiction because T cannot be a multiple of the identity: σp(T
⋆) = ∅.

Let us denote by D the closed unit disk, and let us define the function g : D → T by

g(z) = f(zx+(1− |z|)Tx). For all z in the boundary of D, we have that Fx,zx = z−1Fx,x

and therefore g(z) = f(zx) = z−kf(x) = z−k. The function g provides a homotopy

between the constant path γ1(t) = 0 and the path γ2(t) = g(eit) = e−kit which has the

winding number −k, a contradiction.

As a consequence of Theorem 4.1 we obtain the following corollary.

Corollary 4.2. Let X be a separable Banach space with separable dual X⋆, and let T

be a bounded linear operator on X. Let us suppose that σp(T
⋆) = ∅. Then the vector x is

weakly supercyclic for T if and only if the set

{rTnx : n ∈ N, r ∈ R}

is weakly dense in X.

Proof. The proof follows directly, if we apply Theorem 4.1 to the semigroup {rTn : n ∈ N,

r ∈ R+}.

The weakly hypercyclic version of Theorem 4.1 is the following result.

Corollary 4.3. Let T be a weakly hypercyclic operator defined on a Banach space X

with separable dual X⋆ . Then x ∈ X is weakly hypercyclic for T if and only if x is weakly

hypercyclic for λT for all λ ∈ T.

Proof. Firstly, the operator T is weakly hypercyclic if and only if σp(T
⋆) = ∅ (see [13]).

The results follows by applying Theorem 4.1 to the semigroup M = {Tn : n ∈ N}.

5. Concluding remarks and open problems. Supercyclicity holds if the space has

dimension 1; that is, if X = C then each non-zero operator on X is supercyclic. However

if the dimension of X is finite and greater than 1, then curiously there are no supercyclic

operators in L(X).

The trivial case in dimension 1 has an influence on the structure of the class of

all supercyclic operators. Following D. A. Herrero [23] and [19] the class of supercyclic

operators is divided into two classes:

1. The class of supercyclic operators T for which the point spectrum of its adjoint is

empty: σp(T
⋆) = ∅.
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2. The class of supercyclic operators for which the point spectrum of T ⋆ is a non-zero

complex number α. In that case T is decomposed as the direct sum T = R ⊕ α1C.

Moreover (see [19]), supercyclic operators of the form T = R ⊕ α1C can be studied in

terms of the hypercyclic properties of the operator 1
αR.

The Positive Supercyclicity Theorem is true only for the first class of supercyclic

operators. The second, “pathological” class has been widely studied and it suggests the

notion of N -supercyclicity (see [8]).

Let us consider X = C, and the operators defined by T (1) = re2πθi with e2πθi a root of

unity. It is clear that T is not positive supercyclic. For the same reason, when T = R⊕α1C

with α = re2πθi and e2πθi is a root of unity, then T is not positive supercyclic, that is,

the Positive Supercyclicity Theorem is not true for these operators.

Now we turn our attention to the following example: X = C and the operators

T (1) = re2πθi. Let us suppose that e2πθi is not a root of unity (that is θ is irrational).

In this situation, it is clear that we have positive supercyclicity. To complete the relation

between positivity and supercyclicity we need to answer the following question:

Question 4.1. Let us suppose that θ is an irrational real number, and let us suppose

that T = R⊕α1C (α = re2πθi) is supercyclic on the infinite-dimensional Banach space X.

Is T positive supercyclic?

We believe that the above question has a positive answer. The Question 4.1 is related

to the bounded gap problem which is in fact equivalent to the Hypercyclicity Criterion

(see [20]).

Now, let us consider the Hardy space Hp(D) (1 ≤ p < ∞), the Banach space of

analytic functions f on the open unit disc D such that

sup
0<r<1

∫ 2π

0

|f(reiφ)|p dφ < ∞.

If ϕ is an analytic self-map of the unit disc into itself, then we can consider the composition

operator on Hp(D) induced by ϕ and defined by

Cϕf = f ◦ ϕ.

When ϕ is a Möbius map of parabolic non-automorphism type, it has been proved that

Cϕ is not supercyclic (see [16], [15]). If fact, more is true: Cϕ is decomposable ([36]); let

us observe that decomposability is connected with supercyclicity (see [30]). However the

proofs in [16] and [36] are very complicated. Both proofs establish decomposability of Cϕ

to prove that Cϕ is not supercyclic. However supercyclicity is a weaker condition, and we

believe that it is easier to prove non-supercyclicity of Cϕ with the help of the Positive

Supercyclicity Theorem. On the other hand, an unexplored field is the study of the

supercyclic properties of composition operator Cϕ induced by general non-automorphism

maps (not necessarily linear fractional maps) of parabolic type.

Addendum. After this paper was accepted, the authors improved Theorem 4.1 to the

non-locally convex setting. In fact, Theorem 4.1 is true without the hypothesis on sepa-

rability of the dual X⋆ (see [28]).
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