A REDUCIBILITY PROBLEM FOR THE CLASSICAL RESIDUE FORMULA

YU. I. LYUBICH

Department of Mathematics, Technion, 32000 Haifa, Israel
E-mail: lyubich@tx.technion.ac.il

Let z_1, \ldots, z_n be n distinct points in \mathbb{C} and let

$$G(z) = \prod_{k=1}^{n} (z - z_k).$$

Denote by Γ a simple contour surrounding $\{z_k\}_{k=1}^{n}$. The residue formula

$$\frac{1}{2\pi i} \int_{\Gamma} f(z) \frac{G'(z)}{G(z)} \, dz = \sum_{k=1}^{n} f(z_k)$$

is valid in a class of analytic functions, in particular, it is true for all polynomials of degree $\leq 2n - 1$. In this sense (1) is a Gauss type quadratic formula of order n.

DEFINITION 1. Let m be an integer, $2 \leq m \leq n$. A configuration $\{z_k\}_{k=1}^{n}$ is called m-reducible if there exists another configuration $\{w_j\}_{j=1}^{m}$ such that

$$\frac{1}{n} \sum_{k=1}^{n} f(z_k) = \sum_{j=1}^{m} \alpha_j f(w_j), \quad f \in \mathcal{P}(\mathbb{C}), \quad \deg f \leq 2m - 1,$$

with some complex coefficients $\alpha_1, \ldots, \alpha_m$. Obviously, (2) implies that $\sum_{j=1}^{m} \alpha_j = 1$.

REMARK. It does not make sense to extend Definition 1 to $m = 1$ since in this case the barycenter w_1 of the system $\{z_k\}$ satisfies (2) with $\alpha_1 = 1$. Thus one can say that every configuration is 1-reducible.

DEFINITION 2. A configuration $\{z_k\}_{k=1}^{n}$ is called irreducible if for each $m \in [2, n)$ it is not m-reducible.

Note that these properties are affine invariant, i.e. they are invariant with respect to transformations $z \mapsto az + b$.

It is shown in [1] that a triangle $\{z_k\}_{k=1}^{3}$ is irreducible if and only if it is either equilateral or isosceles with the angle between the equal sides which is equal to

$$\alpha = \frac{\pi}{2} + \arctan \frac{\eta}{\sqrt{4 - \eta^2}}$$
where \(\eta \) is the unique real root of the cubic equation
\[
4\eta^3 - 12\eta^2 + 9\eta + 2 = 0
\]
(so that \(\eta \approx 0.5283\pi \)).

Also it turns out that for every \(n \in \mathbb{N}, n \geq 3 \) the regular \(n \)-gon is irreducible. It would be interesting to find other examples for \(n \geq 4 \) and, maybe, to describe explicitly all of them for small \(n \). In general there is a characterization of irreducibility by a union of systems of algebraic equations. (This can be easily extracted from [1, Theorem 6].)

Conjecture. For every \(n \) the set of irreducible configurations is finite up to affine equivalence.

To support formally this conjecture let me indicate that each system mentioned above consists of \(n - 2 \) equations. On the other hand, the affine class of \(n \)-configuration depends exactly on \(n - 2 \) complex parameters.

References