SUBNORMALITY FROM BOUNDED VECTORS

FRANCISZEK HUGON SZAFRANIEC

Institute of Mathematics, Jagiellonian University
Reymont St. 4, 30-059 Kraków, Poland
E-mail: Franciszek.Szafraniec@uj.edu.pl

For a densely defined operator S in a Hilbert space \mathcal{H} having invariant domain, that is, $SD(S) \subset D(S)$, consider the following positive definiteness condition:

$$\sum_{i,j=0}^{p} \langle S^i f_j, S^j f_i \rangle \geq 0, \quad f_0, \ldots, f_p \in D(S).$$

(1)

Moreover, for a densely defined operator A in \mathcal{H}, $f \in \cap_{n=1}^{\infty} D(A^n)$ is said to be a bounded vector if

$$\|A^n f\| \leq ab^n, \quad n \in \mathbb{N},$$

with a and b depending on f.

QUESTION. Is S subnormal if it satisfies (1) and the set of bounded vectors of S^* is dense?

References