PERSPECTIVES IN OPERATOR THEORY BANACH CENTER PUBLICATIONS, VOLUME 75 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2007

SUBNORMALITY FROM BOUNDED VECTORS

FRANCISZEK HUGON SZAFRANIEC

Institute of Mathematics, Jagiellonian University Reymont St. 4, 30-059 Kraków, Poland E-mail: Franciszek.Szafraniec@uj.edu.pl

For a densely defined operator S in a Hilbert space \mathcal{H} having invariant domain, that is, $S\mathcal{D}(S) \subset \mathcal{D}(S)$, consider the following *positive definiteness* condition:

$$\sum_{i,j=0}^{p} \langle S^{i} f_{j}, S^{j} f_{i} \rangle \ge 0, \qquad f_{0}, \dots, f_{p} \in \mathcal{D}(S).$$

$$(1)$$

Moreover, for a densely defined operator A in $\mathcal{H}, f \in \bigcap_{n=1}^{\infty} \mathcal{D}(A^n)$ is said to be a *bounded* vector if

 $||A^n f|| \le ab^n, \qquad n \in \mathbb{N},$

with a and b depending on f.

QUESTION. Is S subnormal if it satisfies (1) and the set of bounded vectors of S^* is dense?

References

 F. H. Szafraniec, Bounded vectors for subnormality via a group of unbounded operators, Contemp. Math. 341 (2004), 113–118.