PERSPECTIVES IN OPERATOR THEORY BANACH CENTER PUBLICATIONS, VOLUME 75 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2007

ORBITS IN STRIPS

JAROSLAV ZEMÁNEK

Institute of Mathematics, Polish Academy of Sciences P.O. Box 21, 00-956 Warszawa, Poland E-mail: zemanek@impan.gov.pl

By a *strip* we mean a subset of the complex plane that is bounded by two parallel lines.

Let A be a bounded linear operator on a Hilbert space such that, for each fixed unit vector x, the scalar-valued orbit

$$\{\langle A^n x, x \rangle : n \in \mathbb{N}\}\tag{1}$$

is contained in some strip (depending on x). Does it follow that all orbits (1), for all unit vectors x, are contained in a common strip?

If the space is finite-dimensional, we can associate with $A = (a_{ij})$ the Gerschgorin set

$$\mathcal{G}(A) = \bigcup_{i} \left\{ z \in \mathbb{C} : |a_{ii} - z| \le \sum_{j \ne i} |a_{ij}| \right\}.$$

Suppose that the spectral radius of A is no more than 1, and that all $\mathcal{G}(A^n)$, for $n \in \mathbb{N}$, are contained in a fixed strip. Does it follow that the powers A^n are bounded, for all $n \in \mathbb{N}$?

The above questions are motivated by the paper [1].

References

 A. Gomilko, I. Wróbel, and J. Zemánek, Numerical ranges in a strip, in: Operator Theory 20, K. R. Davidson, D. Gaşpar, Ş. Strătilă, D. Timotin, and F.-H. Vasilescu (eds.), Proceedings of the 20th International Conference on Operator Theory, Timişoara (Romania), June 30-July 5, 2004, Theta, Bucharest, 2006, 111–121.