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Abstrat. A new set of su�ient onditions under whih every sequene of independent iden-tially distributed funtions from a rearrangement invariant (r.i.) spae on [0, 1] spans there aHilbertian subspae are given. We apply these results to resolve open problems of N. L. Carothersand S. L. Dilworth, and of M. Sh. Braverman, onerning suh sequenes in onrete r.i. spaes.1. Introdution. Let X be a r.i. spae on [0, 1], and let {fk}

∞
k=1 ⊂ X be a sequeneof independent identially distributed random variables (i.i.d.r.v.'s). In this artile, weare onerned with the question under whih onditions on the spae X, there exists aonstant C > 0 suh that the inequality
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)1/2 (1.1)holds for every n ∈ N and {ak}
n
k=1 ⊂ R. It is onvenient to reall �rst some relevantresults from [Br, Chapter 3℄. Note that only the right inequality in (1.1) is of interest,sine the left inequality holds for an arbitrary r.i. X [Br, Lemma 1, p. 52℄. The (easy) setof onditions on X and f1 neessary for (1.1) to hold is listed in [Br, p. 71℄ (all unexplainednotions from the Banah funtion spae theory are de�ned in the next setion, see also[LT℄):2000 Mathematis Subjet Classi�ation: 46A30, 60G50.Key words and phrases: rearrangement invariant spae, i.i.d. sequene.The paper is in �nal form and no version of it will be published elsewhere.[27℄ © Instytut Matematyzny PAN, 2008



28 S. V. ASTASHKIN AND F. A. SUKOCHEV(a) the Köthe bidual X×× ontains the Orliz spae LN generated by the funtion
N(t) = et2 − 1;(b) f1 ∈ L2;() Ef1 :=

∫ 1

0
f1(x)dx = 0.To present a set of su�ient onditions for (1.1) to hold, we need �rst some notationsfrom [Br, Chapter 3℄. For a sequene a = (ak)∞k=1 and a r.v. f on [0, 1], we set

Qaf(t) =
∞
∑

k=1

λ{s ∈ [0, 1] : |akf(s)| > t}, t > 0, (1.2)where λ is Lebesgue measure. The r.v. f is said to have the property A2(X) (brie�y,
f ∈ A2(X)) if for all a ∈ l2 the r.i. spae X ontains all r.v.'s g satisfying the ondition
λ{s ∈ [0, 1] : |g(s)| > t} ≤ CQaf(t) (t > 0) for some C > 0. For the de�nition anddetailed disussion of the so-alled Kruglov property, see next setion.Theorem ([Br℄). If X has the Kruglov property and {fk}

∞
k=1 is a sequene of i.i.d.r.v.'ssuh that f1 ∈ A2(X), f1 ∈ L2 and Ef1 = 0, then (1.1) holds.The proof of this result given in [Br℄ is rather indiret and based on �ne estimates ofin�nitely divisible distributions in r.i. spaes. The novelty of our approah here is twofold.Firstly, we observe that sequenes {fk}

∞
k=1 of independent mean zero r.v.'s in a r.i. spae

X with the Kruglov property behave very similarly to the sequenes of their disjointtranslates {f̄k(·) := fk(·−k+1)}∞k=1 in some r.i. spae Z2
X on the semi-axis (0,∞) [AS3℄.More preisely, in this ase there exists a onstant C > 0 suh that for every sequene ofr.v.'s {fk}

∞
k=1 ⊂ X as above, we have
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. (1.3)Here, the r.i. spae Z2
X onsists of all measurable funtions f on (0,∞), suh that
‖f‖Z2

X
:= ‖f∗χ[0,1]‖X + ‖f∗χ[1,∞)‖L2[1,∞) < ∞, (1.4)where f∗(s) is the non-inreasing rearrangement of |f(s)| (see next setion). The on-netion of the Kruglov property with the estimates similar to (1.3) explained in detailin [AS1, AS2, AS3℄ allows us to signi�antly straighten the arguments in the proof of(1.1) and avoid using in�nitely divisible distributions. It is �tting to mention that undera somewhat stronger assumption that X ⊃ Lp for p < ∞, the inequality (1.3) had beenobtained earlier in [JS℄, where it is also shown that the left hand side inequality in (1.3)holds in every r.i. spae X.To see that the theorem above is an easy orollary of the right hand side inequality(1.3), let {fk}

∞
k=1 be a sequene of i.i.d.r.v.'s suh that f1 ∈ A2(X), f1 ∈ L2 and Ef1 = 0.A standard argument shows that (1.1) is an immediate orollary of the following impli-ation: a = (ak)∞k=1 ∈ l2 ⇒

∑∞
k=1 akfk ∈ X. Now, if f̄a =

∑∞
k=1 akf̄k, then we obtainfrom the de�nition (1.2)

Qaf1(t) = λ{s > 0 : |f̄a(s)| > t} (t > 0).



SEQUENCES OF INDEPENDENT IDENTICALLY DISTRIBUTED FUNCTIONS 29Therefore, the assumption f1 ∈ A2(X) implies f∗
aχ[0,1] ∈ X and similarly the assumption

f1 ∈ L2 guarantees that f̄a ∈ L2(0,∞) for every a = (ak)∞k=1 ∈ l2. At last, the de�nitionof the spae Z2
X (see (1.4)) yields f̄a ∈ Z2

X , and due to (1.3), we onlude ∑∞
k=1 akfk ∈ X.The seond novelty of our approah is related to the study of the lass of r.i. spaes

X suh that (1.1) holds for every sequene of i.i.d.r.v.'s {fk}
∞
k=1 ⊂ X. To study thequestion when f ∈ A2(X) for any given f ∈ X, we employ interpolation methods. Aninterpolation type assumption on X whih we use here is very easy to verify in onretesituations and, in fat, it allows us to ompletely eliminate from onsideration a rathervague ondition f ∈ A2(X).Our approah allows us to answer in full two open questions from [CD℄ and [Br℄. Thenegative answer to the question raised in [Br, p. 71℄ on whether the onditions (a)�()are su�ient to guarantee that (1.1) holds is given in Corollary 3.6 below. There, we alsoanswer negatively the question [CD℄ whether an arbitrary i.i.d. sequene of r.v.'s spans aHilbertian subspae in the spae L2,q, 0 < q < 2. We note that a negative answer to thequestion of N. L. Carothers and S. J. Dilworth has been announed in [N℄, but the proofgiven there is inomplete.In view of the neessity of onditions (a)�() above, we shall assume below that

X ⊆ L2 and that the sequene {fk}
∞
k=1 onsists of mean zero r.v.'s. The main result ofthis artile is Theorem 3.1 below.2. De�nitions and preliminaries2.1. Rearrangement invariant spaes. A Banah spae X of real-valued Lebesgue mea-surable funtions (with identi�ation λ-a.e.) on the interval J , where J = [0, 1] or [0,∞),will be alled rearrangement invariant (r.i.) if(i) X is an ideal lattie, that is, if y ∈ X, and if x is any measurable funtion on Jwith 0 ≤ |x| ≤ |y| then x ∈ X and ‖x‖X ≤ ‖y‖X ;(ii) if y ∈ X, and if x is any measurable funtion on J with x∗ = y∗, then x ∈ X and

‖x‖X = ‖y‖X .Here, x∗ denotes the non-inreasing, right-ontinuous rearrangement of x given by
x∗(t) = inf{τ ≥ 0 : n|x|(τ ) ≤ t}, t > 0,where n|x|(τ ) := λ{s ≥ 0 : |x(s)| > τ}.The Köthe dual X× of an r.i. spae X on the interval J onsists of all measurablefuntions y for whih

‖y‖X× := sup

{
∫

J

x(t)y(t) dt : x ∈ X, ‖x‖X ≤ 1

}

< ∞.If X∗ denotes the Banah dual of X, it is known that X× ⊂ X∗ and X× = X∗ if andonly if X is separable. The norm ‖ · ‖X on X is said to be a Fatou norm if the unit ballof X is losed in E with respet to almost everywhere onvergene. The norm on the r.i.spae X is a Fatou norm if and only if the natural embedding X →֒ X×× of X into itsKöthe bidual is an isometry.



30 S. V. ASTASHKIN AND F. A. SUKOCHEVAn important harateristi of a r.i. spae X is the so-alled fundamental funtion
ϕX(t) = ‖1(0,t]‖X , where we denote by 1e the indiator funtion of a measurable set
e ⊂ [0,∞).Every inreasing onave funtion ϕ on [0, 1], ϕ(0) = 0, generates the Lorentz spae
Λ(ϕ) endowed with the norm

‖x‖Λ(ϕ) =

∫ 1

0

x∗(t)dϕ(t).It is easy to hek that ϕΛ(ϕ)(t) = ϕ(t).We also reall the de�nition of the (Lorentz) spaes Lp,q: x ∈ Lp,q if and only if thequasi-norm
‖x‖p,q =
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t

)1/q

, q < ∞,

sup x∗(t)t1/p, q = ∞,is �nite. Lp,q-spaes play a signi�ant role in the interpolation theory [KPS℄, [LT℄. Theexpression ‖·‖p,q is a norm if 1 ≤ q ≤ p and is equivalent to a (Banah) norm if q > p ≥ 1.Let X be a r.i. spae on [0, 1]. We shall also work with a r.i. spae X(Ω, µ) of r.v.'son a probability spae (Ω, µ) given by
X(Ω, µ) := {f ∈ L1(Ω, µ) : f∗ ∈ X}, ‖f‖X(Ω,µ) := ‖f∗‖X .Here, the dereasing rearrangement f∗ is alulated with respet to the measure µ on Ω.We denote by S(Ω) (= S(Ω, µ)) the linear spae of all measurable �nite a.e. funtionson a given measure spae (Ω, µ) equipped with the topology of onvergene loally inmeasure.For basi properties of rearrangement invariant spaes, we refer to the monographs[KPS℄, [LT℄.2.2. Interpolation funtors. Throughout this paper, we denote by −→

X = (X0, X1) a (om-patible) Banah ouple [KPS℄, [LT℄, [BK℄. The sum X0 +X1 and the intersetion X0∩X1are equipped with the usual norms:
‖x‖X0+X1

= inf{‖x0‖X0
+ ‖x1‖X1

: x = x0 + x1, x0 ∈ X0, x1 ∈ X1},

‖x‖X0∩X1
= max{‖x‖X0

, ‖x‖X1
}.Let −→X = (X0, X1) and X be a Banah spae suh that X0 ∩X1 ⊆ X ⊆ X0 + X1. Wesay that X is an interpolation spae between X0 and X1 if any bounded linear operator

A : X0 + X1 → X0 + X1 whih maps Xi boundedly into Xi (i = 0, 1) also maps Xboundedly into X. The set of all interpolation spaes between X0 and X1 will be denotedby Int(X0, X1).The K-funtional K(t, x;
−→
X ) is de�ned for x ∈ X0 + X1 and t > 0 by setting

K(t, x;
−→
X ) = inf{‖x0‖X0

+ t‖x1‖X1
: x = x0 + x1, x0 ∈ X0, x1 ∈ X1}.Let Φ be a Banah lattie over ((0,∞), dt

t ) satisfying the ondition min(1, t) ∈ Φ.Denote by (X0, X1)
K
Φ the set of all elements x ∈ X0 + X1 suh that K(t, x, X0, X1) ∈ Φendowed with the norm ‖x‖(X0,X1)K

Φ
= ‖K(t, x;

−→
X )‖Φ.



SEQUENCES OF INDEPENDENT IDENTICALLY DISTRIBUTED FUNCTIONS 31It is well known that the map (X0, X1) 7→ (X0, X1)
K
Φ is an interpolation funtor (seee.g. [BK, 3.3.12℄). The latter means, in partiular, that if −→X = (X0, X1) is a Banahouple, then the spae (X0, X1)

K
Φ ∈ Int(X0, X1). This interpolation method is alled the

K-method and the lattie Φ is alled the parameter of the K-method.A ouple of Banah spaes −→X = (X0, X1) is said to be a K-monotone ouple if thereexists a onstant C > 0 suh that for any x, y ∈ X0 + X1 with K(t, x;
−→
X ) ≤ K(t, y;

−→
X ),

t ∈ (0,∞), there exists a linear operator A : X0 + X1 → X0 + X1 suh that x = Ay andsuh that A is bounded in X0 and X1 with maxi=0,1 ‖A‖Xi→Xi
≤ C.2.3. The Kruglov property and the operator K in r.i. spaes. Let f be a r.v. on [0, 1] andletFf be its distribution funtion. By π(f) we denote any r.v. on [0, 1] whose harateristifuntion is given by

ϕπ(f)(t) = exp

(
∫ ∞

−∞

(eitx − 1)dFf (x)

)

,or, equivalently a r.v. ∑N
i=1 fi, where fi's are independent opies of f and N is a Poissonrandom variable with parameter 1 independent of the sequene {fi}.Definition. An r.i. spae X is said to have the Kruglov property (we write: X ∈ K) ifand only if f ∈ X ⇔ π(f) ∈ X.This property has been studied and extensively used by M. Sh. Braverman [Br℄, whonoted, in partiular, that only the impliation f ∈ X ⇒ π(f) ∈ X is non-trivial, sinethe impliation π(f) ∈ X ⇒ f ∈ X is always satis�ed [Br, p. 11℄. Note that an r.i. spae

X ∈ K if X ⊇ Lp for some p < ∞ [Br, Theorem 2, p. 16℄. Moreover, Kruglov's theorem[K℄ gives that exponential Orliz spaes LNp
, where Np(u) is equivalent to the funtion

eup

− 1 for su�iently large u > 0, also possess this property if 0 < p ≤ 1.In [AS2℄ (see also [AS1℄) we de�ned the operator K on S([0, 1], λ) whih is loselylinked with the Kruglov property. From a tehnial viewpoint, it is more onvenient toassume that this operator takes its values in S(Ω,P) , where (Ω,P) :=
∏∞

k=0([0, 1], λk)(here, λk is Lebesgue measure on [0, 1] for every k ≥ 0). Let {En} be a sequene ofpairwise disjoint subsets of [0, 1], m(En) = 1
e·n! , n ∈ N. For a given f ∈ S([0, 1], λ), weset

Kf(ω0, ω1, ω2, . . . ) :=
∞
∑

n=1

n
∑

k=1

f(ωk)χEn
(ω0).Let also δ : (Ω,P) → ([0, 1], λ) be a measure preserving isomorphism. For every g ∈

S(Ω,P), we set T (g)(x) := g(δ−1x), x ∈ [0, 1]. Note that T is a rearrangement-preservingmapping between S(Ω,P) and S([0, 1], λ). So, the distribution funtion of TKf is thesame as the distribution funtion of Kf. The operator TK ats on S([0, 1], λ) and, by anabuse of language, we shall refer to the latter operator as K.It is important to note that the operator K (= TK) maps an r.i. spae X boundedlyinto itself if and only if X has the Kruglov property [AS2, Lemma 3.3℄. In [AS2℄, theation of the linear operator K on various lasses of r.i. spaes is studied. In [AS3℄,we have studied series of independent mean zero r.v.'s in r.i. spaes with the Kruglovproperty.



32 S. V. ASTASHKIN AND F. A. SUKOCHEV3. Results and proofs. Our main results are the following.Theorem 3.1. If X is a r.i. spae on [0, 1] suh that X ∈ Int(L2, L∞) and either(i) K : X → X, or(ii) X has Fatou norm and K : X → X××,then there exists c > 0 suh that for any i.i.d. mean zero sequene {fk}
∞
k=1 ⊂ X and forevery a = (ak)∞k=1 ∈ l2, the following inequality holds:
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∥
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akfk
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∥

∥

X
≤ c‖f1‖X‖a‖2. (3.1)Proof. For any given a = (ak)∞k=1 ∈ l2, we de�ne a linear operator Ta : S(0, 1) → S(0,∞)by setting

Taf(t) =

∞
∑

k=1

akf(t − k + 1)1(k−1,k](t).Noting, that for every f ∈ L2 (respetively, f ∈ L∞) we have
‖Taf‖2 =

( ∞
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k=1

a2
k

∫ k
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f2(t − k + 1)dt

)1/2

= ‖a‖2‖f‖2(respetively, ‖Taf‖∞ = sup
k

|ak|‖f‖∞ ≤ ‖a‖2‖f‖∞)

(3.2)
we onlude that Ta ats boundedly from L2(0, 1) into Z2

L2
(= L2(0,∞)) (respetively,from L∞(0, 1) into L∞(0,∞)). Combining the inequality

‖g‖Z2
L∞

≤ 2‖g‖L∞(0,∞)∩L2(0,∞)(in fat, Z2
L∞

= L∞(0,∞) ∩ L2(0,∞)) with (3.2), we obtain:
‖Taf‖Z2

L∞

≤ 2‖a‖2‖f‖∞, ∀f ∈ L∞(0, 1), (3.3)i.e. Ta ats boundedly from L∞(0, 1) into Z2
L∞

. In order to �interpolate� inequalities (3.2)and (3.3) and extend them to an arbitrary r.i. spae X ∈ Int(L2, L∞), we will need thefollowing auxiliary lemmas, the �rst of them is proved in [A, Lemma 4℄.Lemma 3.2. For any Banah ouple (X0, X1) and an arbitrary parameter Φ of the
K-method the following equality holds:

(X0, X0 ∩ X1)
K
Φ = (X0, X1)

K
Φ ∩ X0.Sine the ouple (L2, L∞) is K-monotone [LS℄ and sine X ∈ Int(L2, L∞), we haveby [BK, Theorem 3.3.20℄ that there exists a parameter Φ of the K-method suh that

X = (L2, L∞)K
Φ . (3.4)Lemma 3.3. If the parameter Φ is suh that (3.4) holds, then

Z2
X(0,∞) = (L2(0,∞), L∞(0,∞))K

Φ ∩ L2(0,∞)up to norm equivalene.Proof. Set
V := (L2(0,∞), L∞(0,∞))K

Φ and W := V ∩ L2(0,∞).



SEQUENCES OF INDEPENDENT IDENTICALLY DISTRIBUTED FUNCTIONS 33The projetion Pf(t) = f1[0,1](t), f ∈ S(0,∞) ats from Lp(0,∞) onto Lp with norm 1,for every 1 ≤ p ≤ ∞. Hene, for every f ∈ W , we have ‖f‖W ≥ ‖f∗
1[0,1]‖V = ‖f∗

1[0,1]‖X .This yields immediately ‖f‖W ≥ 2−1‖f‖Z2
X
.In order to prove the onverse inequality, we note �rst that X ⊂ L2 (by assumption)and so for some c ≥ 1, we have ‖f‖2 ≤ c‖f‖X , ∀f ∈ X. Hene,

‖f‖L2(0,∞) ≤ c‖f∗
1[0,1]‖X + ‖f∗

1[1,∞)‖L2
≤ c‖f‖Z2

Xand
‖f‖V ≤ ‖f∗

1[0,1]‖X + ‖f∗
1[1,∞)‖(L2∩L∞)(0,∞)

≤ ‖f∗
1[0,1]‖X + f∗(1) + ‖f∗

1[1,∞)‖L2(1,∞)

≤ (1 + ‖1[0,1]‖
−1
X )‖f∗

1[0,1]‖X + ‖f∗
1[1,∞)‖L2(1,∞)

≤ (1 + ϕX(1)
−1

)‖f‖Z2
X

,where ϕX(u) is the fundamental funtion of X. Finally, we have
‖f‖W ≤ max(c, 1 + ϕX(1)−1)‖f‖Z2

Xand the lemma is proved.We ontinue the proof of Theorem 3.1. Combining (3.2), (3.3) and Lemmas 3.2 and3.3, we see that there exists c1 > 0 depending only on the spae X suh that
‖Taf‖Z2

X
≤ c1‖a‖2‖f‖X , ∀f ∈ X, a ∈ l2. (3.5)On the other hand, the assumptions on the spae X made in Theorem 3.1 allow us touse [AS3, Theorem 1℄. In partiular, for any sequene {fk}

n
k=1 ⊂ X of i.i.d. mean zeror.v.'s and for any n ∈ N, we have
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∥

∥
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∥
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∥

∥
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akf̄k

∥

∥
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Z2
X

, ∀a1, a2, . . . , an ∈ R. (3.6)Sine the funtions fk, k = 1, 2 . . . are identially distributed the same holds also for thefuntions ∑n
k=1akf̄k and Tanf1, where an = (an

k), an
k = ak (k ≤ n) and an

k = 0 (k > n).So (3.5) and (3.6) yield the following inequality
∥

∥

∥

n
∑

k=1

akfk

∥

∥

∥

X
≤ c1c2‖f1‖X‖a‖2, n = 1, 2, . . . .Sine the last inequality is equivalent to (3.1), the theorem is proved.The ondition that (1.1) holds for an arbitrary sequene {fk}

∞
k=1 ⊂ X of i.i.d. meanzero r.v.'s is formally weaker than the assertion of of Theorem 3.1. Nevertheless, thefollowing result holds.Theorem 3.4. Let X be a r.i. spae on [0, 1]. Any sequene {fk}
∞
k=1 ⊂ X of i.i.d. meanzero r.v.'s spans a Hilbertian subspae in X if and only if the inequality (3.1) holds forany suh sequene and some onstant c > 0, whih depends only on X.Proof. We only need to show that if X is a r.i. spae suh that any sequene {fk}

∞
k=1 ⊂ Xof i.i.d. mean zero r.v.'s spans a Hilbertian subspae in X, then we have the inequality(3.1). Following [N℄, we de�ne the set A(X) of all sequenes a = (ak)∞k=1 suh that the



34 S. V. ASTASHKIN AND F. A. SUKOCHEVseries ∑∞
k=1akfk onverges in X for any sequene {fk}

∞
k=1 ⊂ X of i.i.d. mean zero r.v.'s.Note that the set X0 := {f ∈ X :

∫ 1

0
f(x)dx = 0} is a losed subspae in X.For any a = (ak)∞k=1 ∈ A(X), we de�ne a linear operator Tn

a : X0 → X(Ω, µ) bysetting
Tn

a f(ω1, ω2, . . .) =
n

∑

k=1

akf(ωk), n ∈ N.Here, Ω = [0, 1]∞ and µ =
∏∞

k=1λk. Sine ‖Tn
a f‖X(Ω,µ) ≤

∑n
k=1|ak|‖f‖X , the operator

Tn
a is bounded for every n ∈ N. Moreover, by the de�nition of A(X) we have

sup
n

‖Tn
a f‖X(Ω,µ) < ∞, ∀f ∈ X0.Therefore, applying the Banah-Steinhaus priniple, we obtain

sup
f∈X0,‖f‖X≤1

sup
n∈N

∥

∥

∥

n
∑

k=1

akf(ωk)
∥

∥

∥

X(Ω,µ)

< ∞for all a ∈ A(X), or equivalently
sup

{fk}∞

k=1,‖f1‖X≤1

∥

∥

∥

∞
∑

k=1

akfk

∥

∥

∥

X
< ∞, (3.7)where {fk}

n
k=1 is an arbitrary i.i.d. mean zero sequene of r.v.'s from X. Now, if wede�ne ‖a‖A(X) to be equal to the supremum in (3.7), then

∥

∥

∥

∞
∑

k=1

akfk

∥

∥

∥

X
≤ ‖a‖A(X)‖f1‖X . (3.8)Using standard arguments it is not hard to show that (A(X), ‖ · ‖A(X)) is a Banahspae. Moreover, it is easy to see that onvergene in A(X) implies pointwise onvergene.Applying the Closed Graph Theorem, we may onlude that the embedding l2 ⊆ A(X)given by the assumption on of the theorem is ontinuous, in other words, ‖a‖A(X) ≤ c‖a‖2

(∀a ∈ l2). Now, inequality (3.1) follows diretly from (3.8). The theorem is proved.Corollary 3.5. Let X be a r.i. spae on [0, 1] suh that inequality (1.1) holds for anysequene {fk}
∞
k=1 ⊂ X of i.i.d. mean zero r.v.'s. Then there exists c > 0 suh thatfor any n ∈ N, any sequene of disjointly supported and identially distributed funtions

{gk}
n
k=1 ∈ X, ‖g1‖X = 1 and any ak ∈ R, k = 1, 2, . . . , n the following inequality holds:

∥

∥

∥

n
∑

k=1

akgk

∥

∥

∥

X
≤ c

(

n
∑

k=1

a2
k

)1/2

. (3.9)In partiular,
∥

∥

∥

n
∑

k=1

ak1[ k−1
n

, k
n

]

∥

∥

∥

X
≤ cϕX(1/n)

(

n
∑

k=1

a2
k

)1/2

, (3.10)where ϕX is the fundamental funtion of the r.i. spae X.Proof. It is easy to see that there are sets {g+
k }n

k=1 and {g−k }n
k=1 of identially distributedr.v.'s suh that |gk| = g+

k + g−k , g+
k g−k = 0 and ∫ 1

0
g+

k (x)dx =
∫ 1

0
g−k (x)dx for any k =

1, 2, . . . , n. Setting g′k = g+
k − g−k , k = 1, 2, . . . , n we obtain an identially distributed
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n
k=1 be a sequene of independent opies of g′k. Wehave ‖f1‖X = ‖g′1‖X = ‖g1‖X = 1, and by Theorem 3.4

∥

∥

∥

n
∑

k=1

akfk

∥

∥

∥

X
≤ c

(

n
∑

k=1

a2
k

)1/2

, ∀a1, a2, . . . , an ∈ R, (3.11)with some onstant c > 0 independent of {gk}
n
k=1. We now note that the proof of theleft hand side inequality (3) in by [JS, Theorem 1℄ does not use the assumption that anembedding Lp ⊆ X holds for some p < ∞ (see also [Br, Lemma 5, p.14-15℄). Therefore,applying this inequality to the sequene {fk}

n
k=1 of i.i.d. mean zero r.v.'s, we have

∥

∥

∥

n
∑

k=1

akfk

∥

∥

∥

X
≥

1

4

∥

∥

∥

n
∑

k=1

akg′k

∥

∥

∥

X
=

1

4

∥

∥

∥

n
∑

k=1

akgk

∥

∥

∥

X
. (3.12)Inequality (3.9) follows from (3.11) and (3.12), and inequality (3.10) is a onsequeneof (3.9).Corollary 3.6. If a r.i. spae X $ L2 and ϕX(u) = u1/2, then there exists an i.i.d.mean zero sequene {fk}

∞
k=1 ⊂ X spanning a subspae in X whih is not isomorphi to l2.Proof. If every i.i.d. mean zero sequene of r.v.'s {fk}

∞
k=1 ⊂ X spans a subspae isomor-phi to l2, then by the preeding orollary, the inequality (3.10) would hold. In this ase(3.10) may be equivalently re-written as

∥

∥

∥

n
∑

k=1

ak1[ k−1
n

, k
n

]

∥

∥

∥

X
≤ c

∥

∥

∥

n
∑

k=1

ak1[ k−1
n

, k
n

]

∥

∥

∥

L2for any n ∈ N and any ak ∈ R, k = 1, 2, . . . , n. This immediately yields that L2 ⊆ X,and invoking the assumption, we onlude that X = L2, whih is not the ase, sine bythe same assumption X 6= L2. The orollary is proved.Remark 3.7. In partiular, if X = L2,q, 1 ≤ q < 2, then it follows from Corollary 3.6that there exists an i.i.d. mean zero sequene {fk}
∞
k=1 ⊂ L2,q spanning a subspae in

L2,q whih is not isomorphi to l2. This answers in the negative a question from [CD,p. 157℄. The same answer was earlier stated in [N℄; however, the proof there is inomplete.Similarly, the same example also demonstrates that the onditions (a)�() on a r.i. spae
X stated in the Introdution are not su�ient to guarantee that (1.1) holds for everyi.i.d. mean zero sequene {fk}

∞
k=1 ⊂ X of r.v.'s. This answers in the negative a questionin [Br, p. 71℄.Corollary 3.8. If a r.i. spae X has a Fatou norm, X $ L2 and ϕX(u) = u1/2, then

X /∈ Int(L2, L∞). In partiular, L2,q /∈ Int(L2, L∞) for every 1 ≤ q < 2.Proof. Sine X ⊃ L2,1 ⊃ Lr, r > 2, then by [AS2, Corollary 5.4℄, the operator K :

X → X×× is bounded. Therefore, if X ∈ Int(L2, L∞) then, by Theorem 3.4, every i.i.d.mean zero sequene {fk}
∞
k=1 ⊂ X of r.v.'s would span a Hilbertian subspae in X. Thisontradits the assertion of Corollary 3.6.Remark 3.9. A proof of a similar result to that of the preeding orollary by a di�erentmethod may be found also in [MM, Theorem 5℄.



36 S. V. ASTASHKIN AND F. A. SUKOCHEVCorollary 3.10. Let ϕ be an inreasing and onave funtion on [0, 1] suh that t
1
2 ≤

C1 · ϕ(t), 0 < t ≤ 1 and
∞
∑

k=1

ϕ

(

tk

k!

)

≤ C2ϕ(t), 0 < t < 1, (3.13)for some onstants C1 and C2. Then every i.i.d. mean zero sequene of r.v.'s from theLorentz spae Λ(ϕ) spans in Λ(ϕ) a Hilbertian subspae if and only if there exists aonstant C3 > 0 suh that
( n

∑

k=1

(

ϕ

(

k

n

)

− ϕ

(

k − 1

n

))2)1/2

≤ C3ϕ

(

1

n

)

, n ∈ N. (3.14)Proof. First, we suppose that every i.i.d. mean zero sequene of r.v.'s from the Lorentzspae Λ(ϕ) spans in Λ(ϕ) a Hilbertian subspae. By the de�nition of the norm in theLorentz spae Λ(ϕ), we have
∥

∥

∥

n
∑

k=1

ak1[ k−1
n

, k
n

]

∥

∥

∥

Λ(ϕ)
=

n
∑

k=1

a∗
k

(

ϕ

(

k

n

)

− ϕ

(

k − 1

n

))

,where {a∗
k}

n
k=1 is the dereasing rearrangement of the sequene {|ak|}

n
k=1. Thus, it followsfrom (3.10) that

n
∑

k=1

a∗
k

(

ϕ

(

k

n

)

− ϕ

(

k − 1

n

))

≤ cϕ

(

1

n

)

(

n
∑

k=1

a2
k

)1/2

for any n ∈ N and ak ∈ R, k = 1, 2, . . . , n. It is obvious that the last inequality isequivalent to (3.14).Conversely, suppose that (3.14) holds. Sine (3.13) means that the operator K sends
Λ(ϕ) into itself [AS2, Theorem 5.1℄, it follows from the proof of Theorem 3.1 that it issu�ient to verify that for every sequene a = (ak)∞k=1 ∈ l2, the operator

Taf(t) =

∞
∑

k=1

akf(t − k + 1)1(k−1,k](t)is bounded from Λ(ϕ) into Z2
Λ(ϕ). Fix n ∈ N. By the assumption and (3.14), we have

‖Ta1[0, 1
n

]‖Z2
Λ(ϕ)

=
∥

∥

∥

n
∑

k=1

a∗
k1( k−1

n
, k

n
]

∥

∥

∥

Λ(ϕ)
+

∥

∥

∥

∞
∑

k=n+1

a∗
k1( k−1

n
, k

n
]

∥

∥

∥

L2(1,∞)

=

n
∑

k=1

a∗
k

(

ϕ

(

k

n

)

− ϕ

(

k − 1

n

))

+

(

1

n

∞
∑

k=n+1

(a∗
k)2

)
1
2

≤ C3ϕ

(

1

n

)

(

n
∑

k=1

(a∗
k)2

)
1
2

+ C1ϕ

(

1

n

)

(

∞
∑

k=n+1

(a∗
k)2

)
1
2

≤ (C1 + C3)ϕ

(

1

n

)

‖a‖l2 .If h ∈ (0, 1), then there exists n ∈ N suh that (n+ 1)−1 < h ≤ n−1. Using the argument
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‖Ta1[0,h]‖Z2

Λ(ϕ)
≤ ‖Ta1[0, 1

n
]‖Z2

Λ(ϕ)

≤ (C1 + C3)ϕ
( 1

n

)

‖a‖l2 ≤ 2(C1 + C3)ϕ(h)‖a‖l2 .Combining this inequality with Corollary 1 to Lemma II.5.2 in [KPS℄, we see that Ta atsboundedly from Λ(ϕ) into Z2
Λ(ϕ) with the norm less or equal to 4(C1 + C3)‖a‖l2 .
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