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Abstrat. Let E be a Banah funtion spae and let X be a real Banah spae. We examineweakly ompat linear operators from a Köthe-Bohner spae E(X) endowed with some naturalmixed topology γE(X) (in the sense of Wiweger) to a Banah spae Y .
1. Introdution and preliminaries. The paper is devoted to the study of weaklyompat operators ating from a Köthe-Bohner spae E(X) endowed with the mixedtopology γE(X) to a Banah spae Y .The problem of haraterizing weakly ompat operators has been onsidered by manyauthors (see [Ga℄, [G℄, [D℄, [Ru℄). In [G, III. 3, Corollary 1 of Theorem 11℄ A. Grothendiekhas proved that every linear ontinuous operator from a quasinormable Hausdor� loallyonvex spae X into a Banah spae Y , whih transforms bounded sets into relativelyweakly ompat sets is weakly ompat. Grothendiek's result was partially extended byD. van Dulst to the ase when Y is Fréhet spae, but under the additional assumptionabout the spae X (see [D℄ for more details). Both those results were later extended by W.Ruess in [Ru℄ for operators ating between gDF-spaes and Fréhet spaes. gDF spaeshave been introdued and studied by K. Noureddine in [No1℄, [No2℄ under the name of
Db-spaes (�espaes Db� in Frenh). Sine not only many properties of lassial DF-spaesof Grothendiek arry over to Db-spaes, but also some fruitful DF-tehniques an beapplied to them, W. Ruess deided in [Ru℄ to hange their original name of Noureddineto the gDF-spaes (generalized DF-spaes), in order to stress their lose relationship withDF-spaes.2000 Mathematis Subjet Classi�ation: 47B38, 46E40, 46E30.Key words and phrases: Köthe-Bohner spaes, mixed topologies, weakly ompat operators,DF-spaes, gDF-spaes, onditional weak ompatness, weak ompatness, almost re�exivity.The paper is in �nal form and no version of it will be published elsewhere.[71℄ © Instytut Matematyzny PAN, 2008



72 K. FELEDZIAKGiven a topologial vetor spae (L, ξ), by (L, ξ)∗ or L∗
ξ we will denote its topolog-ial dual and by Bd(L, ξ) we will denote the family of all ξ-bounded subsets of L. Wedenote by σ(L, K) and τ (L, K) the weak topology and the Makey topology on L withrespet to a dual system 〈L, K〉 respetively. Reall that a subset Z of L is said to beonditionally σ(L, K)-ompat (resp. relatively σ(L, K)-sequentially ompat) whenevereah sequene in Z ontains a σ(L, K)-Cauhy subsequene (resp. eah sequene in Zontains a subsequene whih is σ(L, K)-onvergent to some element of L).For terminology onerning Riesz spaes and funtion spaes we refer to [AB℄, [KA℄.Throughout the paper let (Ω, Σ, µ) be an atomless, omplete and σ-�nite measure spaeand let L0 denote the orresponding spae of µ-equivalene lasses of Σ-measurable realvalued funtions. Then L0 is super Dedekind omplete Riesz spae under the ordering

u1 ≤ u2 whenever u1(ω) ≤ u2(ω) a.e. on Ω. A Banah spae (E, ‖ · ‖E) is assumed to bea Banah funtion spae, that is, E is an ideal of L0 with supp E = Ω and ‖ · ‖E is aRiesz norm. The Köthe dual of E is de�ned by
E′ =

{
v ∈ L0 :

∫

Ω

|u(ω)v(ω)|dµ < ∞ for all u ∈ E

}
.The assoiated norm ‖ · ‖E′ on E′ is de�ned for v ∈ E′ by

‖v‖E′ = sup

{∣∣∣∣
∫

Ω

u(ω)v(ω)dµ

∣∣∣∣ : u ∈ E, ‖u‖E ≤ 1

}
.It is known that supp E′ = Ω (see [KA, Theorem 6.1.3℄). Reall that a Banah funtionspae (E, ‖ · ‖E) is said to be perfet if E′′ = E and ‖u‖E′′ = ‖u‖E for u ∈ E. It is wellknown that E is perfet if and only if the norm ‖ · ‖E satis�es both the σ-Fatou property(i.e., 0 ≤ un ↑ u in E implies ‖un‖E ↑ ‖u‖E) and the σ-Levy property (i.e., if 0 ≤ un ↑in E and sup ‖un‖E < ∞, then there exists u in E suh that un ↑ u) (see [KA, Theorem6.1.7℄). We denote by Ea the ideal of elements of order ontinuous norm in E, i.e.,

Ea = {u ∈ E : |u| ≥ un ↓ 0 in E imply ‖un‖ → 0}.From now on in this paper we assume that (E, ‖ · ‖E) is a perfet Banah funtionspae and supp(E′)a = Ω. Note that (L1)′ = L∞ and (L∞)a = {0}. Hene the spae L1is exluded.Let Z be a σ(E, (E′)a)-bounded subset of E. Then Z is also |σ|(E, (E′)a)-bounded(see [AB, Theorem 2.33℄), so one an de�ne a Riesz seminorm pZ on (E′)a by
pZ(v) = sup

{∫

Ω

|u(ω)v(ω)|dµ : u ∈ Z

}
.Then by [N2, Theorem 1.1℄ we have

Bd(E, σ(E, (E′)a)) = Bd(E, ‖ · ‖E).Hene for every σ(E, (E′)a)-bounded subset Z of E the seminorm pZ on (E′)a is orderontinuous. Making use of [N4, Proposition 1.1℄ and [BD, Corollary 5.2℄ we getProposition 1.1. For a subset Z of E the following statements are equivalent:(i) Z is onditionally σ(E, (E′)a)-ompat.(ii) Z is relatively σ(E, (E′)a)-sequentially ompat.



WEAKLY COMPACT OPERATORS ON KÖTHE-BOCHNER SPACES 73(iii) Z is σ(E, (E′)a)-bounded.(iv) Z is ‖ · ‖E-bounded.Now we establish terminology and some basi results onerning vetor-valued fun-tion spaes (see [Bu1℄, [Bu2℄, [L, Chap. 3℄). Let (X, ‖ · ‖X) be a real Banah spae andlet X∗ stand for the Banah dual of X. Let BX denote the losed unit ball in X. By
L0(X) we denote the set of µ-equivalene lasses of all strongly Σ-measurable funtions
f : Ω → X. The F -norm

‖f‖L0(X) =

∫

Ω

‖f(ω)‖X

1 + ‖f(ω)‖X

w(ω)dµ for f ∈ L0(X),where w : Ω → (0,∞) is a Σ-measurable funtion with ∫
Ω

w(ω)dµ = 1, determines thetopology T0(X) on L0(X) of onvergene in measure on sets of �nite measure.For f ∈ L0(X) let us set f̃(ω) = ‖f(ω)‖X for ω ∈ Ω. The linear spae
E(X) = {f ∈ L0(X) : f̃ ∈ E}provided with the norm ‖f‖E(X) := ‖f̃‖E is a Banah spae and is alled a Köthe-Bohnerspae (see [L℄). For r > 0 we will write

BE(X)(r) = {f ∈ E(X) : ‖f‖E(X) ≤ r}.Let L0(X∗, X) be the set of weak∗-equivalene lasses of all weak∗-measurable fun-tions g : Ω → X∗. One an de�ne the so-alled abstrat norm ϑ : L0(X∗, X) → L0by ϑ(g) = sup{|gx| : x ∈ BX}, where gx(ω) = g(ω)(x) for ω ∈ Ω and x ∈ X.Then for f ∈ L0(X) and g ∈ L0(X∗, X) the funtion 〈f, g〉 : Ω → R de�ned by
〈f, g〉(ω) = 〈f(ω), g(ω)〉 is measurable and |〈f, g〉| ≤ f̃ϑ(g). Moreover, ϑ(g) = g̃ for
g ∈ L0(X∗). For an ideal M of E′ let

M(X∗, X) = {g ∈ L0(X∗, X) : ϑ(g) ∈ M}.Then M(X∗, X) is an ideal of E′(X∗, X), i.e., if ϑ(g1) ≤ ϑ(g2) with g1 ∈ E′(X∗, X)and g2 ∈ M(X∗, X), then g1 ∈ M(X∗, X). M(X∗, X) an be provided with the norm
‖g‖M(X∗,X) := ‖ϑ(g)‖E′ for g ∈ M(X∗, X).In partiular, we will onsider the dual pair 〈E(X), (E′)a(X∗, X)〉 with the duality:

〈f, g〉 =

∫

Ω

〈f(ω), g(ω)〉dµ for f ∈ E(X), g ∈ (E′)a(X∗, X).2. Mixed topologies on Köthe-Bohner spaes. In this setion we onsider themixed topology γ[TE(X), T0(X)|E(X)] on E(X) (brie�y γE(X)), where TE(X) stands forthe topology on E(X) of the norm ‖ · ‖E(X). For the de�nition and basi properties of
γE(X) see [F℄, [W℄. In ase when X = R the mixed topology γE (= γE(R)) on E has beenstudied in [N1℄ and [N2℄. It is known that T0(X)|E(X) ⊂ γE(X) ⊂ TE(X). We will needthe following:Proposition 2.1. We have Bd(E(X), γE(X)) = Bd(E(X), ‖ · ‖E(X)).Proof. Using [KA, Lemma 4.3.4℄ we see that BE(X)(1) is losed in (E(X), T0(X)|E(X)).Hene by [W, Theorem 2.4.1℄ we get Bd(E(X), γE(X)) = Bd(E(X), ‖ · ‖E(X)).



74 K. FELEDZIAKThe mixed topology γE(X) is a Hausdor� loally onvex-solid topology on E(X) (see[F, �3℄) and it is the �nest loally onvex topology on E(X) whih agrees with T0(X)on ‖ · ‖E(X)-bounded sets in E(X) (see [W, 2.2.2℄). Sine (BE(X)(2
n) : n ∈ N) is afundamental sequene of γE(X)-bounded sets in E(X), (E(X), γE(X)) is a generalizedDF spae (see [Ru, De�nition 1.1℄).Reall that a loally solid topology τ on E(X) is said to be uniformly Lebesgueif fn → 0 for τ in E(X) whenever ‖fn‖L0(X) → 0 with supn ‖fn‖E(X) < ∞ (see[F, De�nition 2.2℄).The basi properties of γE(X) are given in the following (see [F, Theorem 3.1℄):Proposition 2.2. We have(i) γE(X) is the �nest uniformly Lebesgue toplogy on E(X).(ii) fn → 0 in E(X) for γE(X) if and only if ‖fn‖L0(X) → 0 and supn ‖fn‖E(X) < ∞.A linear operator T : E(X) → Y is said to be γ-linear if ‖T (fn)‖Y → 0 whenever

‖fn‖L0(X) → 0 and supn ‖fn‖E(X) < ∞.Proposition 2.3. For a linear operator T : E(X) → Y the following statements areequaivalent:(i) T is (γE(X), ‖ · ‖Y )-ontinuous.(ii) T is sequentially (γE(X), ‖ · ‖Y )-ontinuous.(iii) T is γ-linear.(iv) T is (γE(X)|BE(X)(r), ‖ · ‖Y )-ontinuous for every r > 0.Proof. (i)⇒(ii) It is obvious.(ii)⇒(iii) It follows from Proposition 2.2(i).(iii)⇒(iv) It is obvious, beause γE(X)|BE(X)(r) = T0(X)|BE(X)(r) for r > 0.(iv)⇔(i) See [W, 2.2.4℄.Reall that a Banah spae X is said to be almost re�exive if every norm-boundedsubset of X is onditionally weakly ompat (see [C℄, [H℄). The fundamental l1-Rosenthaltheorem [R℄ says that X is almost re�exive if and only if it ontains no isomorphi opyof l1.From now on for a subset H of E(X) we will denote
H̃ = {f̃ : f ∈ H}.The following result extends Proposition 1.1 to the vetor-valued setting.Proposition 2.4. Let X be an almost re�exive Banah spae. Then for a subset H of

E(X) the following statements are equivalent:(i) supf∈H ‖f‖E(X) < ∞.(ii) H is onditionally σ(E(X), (E′)a(X∗, X))-ompat.Moreover, if X is a re�exive Banah spae, then the statements (i)�(ii) are equivalent tothe following:(iii) H is relatively σ(E(X), (E′)a(X∗, X))-ompat.



WEAKLY COMPACT OPERATORS ON KÖTHE-BOCHNER SPACES 75Proof. (i)⇒(ii) Assume that supf∈H ‖f‖E(X) < ∞, i.e., H̃ is a ‖ · ‖E-bounded subset of
E. Then by Proposition 1.1 H̃ is onditionally σ(E, (E′)a)-ompat. Making use of [N4,Corollary 2.3℄ we obtain that H is onditionally σ(E(X), (E′)a(X∗, X))-ompat.(ii)⇒(i) Assume that H is onditionally σ(E(X), (E′)a(X∗, X))-ompat. Then H̃ isonditionally σ(E, (E′)a)-ompat in E (see [N4, Theorem 2.2℄), so by Proposition 1.1
supf∈H ‖f‖E(X) < ∞.(i)⇔(iii) See [N3, Corollary 2.4℄.3. Weakly ompat operators on Köthe-Bohner spaes. In this setion we exam-ine linear operators T : E(X) → Y whenever E(X) is provided with the mixed topology
γE(X). Reall that a linear operator T : E(X) → Y is said to be (γE(X), ‖ · ‖Y )-weaklyompat if there exists a neighbourhood V of 0 for γE(X) suh that T (V ) is a relatively
σ(Y, Y ∗)-ompat subset of Y .Theorem 3.1. For a linear operator T : E(X) → Y the following statements are equiv-alent:(i) T is (γE(X), ‖ · ‖Y )-weakly ompat.(ii) T is (γE(X), ‖ · ‖Y )-ontinuous and (‖ · ‖E(X), ‖ · ‖Y )-weakly ompat.Proof. (i)⇒(ii) It is obvious.(ii)⇒(i) Assume that T is (γE(X), ‖ · ‖Y )-ontinuous and (‖ · ‖E(X), ‖ · ‖Y )-weaklyompat. Hene for every r > 0, T (BE(X)(r)) is a relatively σ(Y, Y ∗)-ompat subset of
Y . Sine Bd(E(X), γE(X)) = Bd(E(X), ‖ · ‖E(X)) (see Proposition 2.1), in view of [Ru,Theorem 3.1℄ T is (γE(X), ‖ · ‖E(X))-weakly ompat, as desired.Remark. For the proof of the impliation (ii)⇒(i) one an also use the earlier resultof Grothendiek. Indeed, sine (E(X), γE(X)) is a generalized DF-spae, it is as well aquasinormable Hausdor� loally onvex spae. Moreover, T is (γE(X), ‖ · ‖Y )-ontinuousand (‖ · ‖E(X), ‖ · ‖)-weakly ompat, so T transforms ‖ · ‖E(X)-bounded sets into rela-tively σ(Y, Y ∗)-ompat sets in Y . Thus by [G, III. 3, Corollary 1 of Theorem 11℄ T is
(γE(X), ‖ · ‖Y )-weakly ompat, beause Bd(E(X), γE(X)) = Bd(E(X), ‖ · ‖E(X)).Corollary 3.2. Assume that a linear operator T : E(X) → Y is (‖·‖E(X), ‖·‖Y )-weaklyompat. Then the following statements are equivalent:(i) T is (γE(X), ‖ · ‖Y )-weakly ompat.(ii) T is (γE(X), ‖ · ‖Y )-ontinuous.Corollary 3.3. Assume that a linear operator T : E(X) → Y is (γE(X), ‖ · ‖Y )-ontinuous. Then the following statements are equivalent:(i) T is (γE(X), ‖ · ‖Y )-weakly ompat.(ii) T is (‖ · ‖E(X), ‖ · ‖Y )-weakly ompat.Now we are ready to present our main results.Theorem 3.4. Let X be an almost re�exive Banah spae and let Y be a weakly sequen-tially omplete Banah spae. Then for a linear operator T : E(X) → Y the following



76 K. FELEDZIAKstatements are equivalent:(i) T is (γE(X), ‖ · ‖Y )-ontinuous.(ii) T is (γE(X), ‖ · ‖Y )-weakly ompat.Proof. (i)⇒(ii) Assume that T is (γE(X), ‖ · ‖Y )-ontinuous. In view of Corollary 3.3it is enough to show that T transforms ‖ · ‖E(X)-bounded sets in E(X) into relatively
σ(Y, Y ∗)-ompat sets in Y . Indeed, let H be a ‖ · ‖E(X)-bounded set in E(X). Thenby Proposition 2.4 H is onditionally σ(E(X), (E′)a(X∗, X))-ompat. In view of [F,Theorem 3.2℄ it is seen that the topology γE(X) is oarser than the Makey topology
τ (E(X), (E′)a(X∗, X)). Hene T is also (τ (E(X), (E′)a(X∗, X)), ‖ · ‖Y )-ontinuous andit follows that T is (σ(E(X), (E′)a(X∗, X)), σ(Y, Y ∗))-ontinuous. Thus T (H) is a ondi-tionally σ(Y, Y ∗)-ompat subset of Y , and sine Y is σ(Y, Y ∗)-sequentially omplete, weobtain that T (H) is relatively σ(Y, Y ∗)-sequentially ompat in Y . It follows that T (H)is relatively σ(Y, Y ∗)-ompat in Y , as desired.(ii)⇒(i) See Theorem 3.1.Theorem 3.5. Let X be a re�exive Banah spae. Then for a linear operator T :

E(X) → Y the following statements are equivalent:(i) T is (γE(X), ‖ · ‖Y )-ontinuous.(ii) T is (γE(X), ‖ · ‖Y )-weakly ompat.Proof. (i)⇒(ii) Assume that T is (γE(X), ‖ · ‖Y )-ontinuous. Sine γE(X) ⊂ τ (E(X),

(E′)a(X∗, X)), T is also (τ (E(X), (E′)a(X∗, X)), ‖ · ‖Y )-ontinuous. It follows that T isalso (σ(E(X), (E′)a(X∗, X)), σ(Y, Y ∗))-ontinuous. Note that T transforms ‖ · ‖E(X)-bounded sets in E(X) into relatively σ(Y, Y ∗)-ompat sets in Y . Indeed, let H bea ‖ · ‖E(X)-bounded set in E(X). Then by Proposition 2.4, H is relatively (σ(E(X),

(E′)a(X∗, X))-ompat, and onsequently T (H) is relatively σ(Y, Y ∗)-ompat in Y . ByCorollary 3.3, T is (γE(X), ‖ · ‖Y )-weakly ompat.(ii)⇒(i) It is obvious.
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